Semantic Role Labeling (SRL)

INF5830 Fall 2015

Semantic Roles

- Origins in the linguistic notion of case [Fillmore 1968]
- Classify arguments of predicates into a set of participant types
- Describe the semantic relation between the arguments of the verb and the situation described by the verb
 - ► The boy threw the red ball to the girl
 - ► The boy the participant responsible for the action, the "doer"
 - ▶ the red ball —the affected entity, "undergoer"
 - the girl endpoint in a change of location
- A variety of semantic roles have been proposed:
 - AGENT
 - PATIENT
 - ► INSTRUMENT
 - BENEFICIARY
 - ▶ SOURCE
 - etc.

Semantic Roles and syntax

- Semantic roles are often indicated by syntactic position
 - ▶ AGENT: subject
 - PATIENT: direct object
 - ► INSTRUMENT: object of with
 - BENEFICIARY: object of for
 - SOURCE: object of from
- Above generalizations are preferences at best
 - ► The hammer hit the window
 - The ball was passed to Mary from John
 - ▶ John went to the movie with Mary
 - John bought the car for \$20K

Problems for semantic roles

- No real consensus about role inventory
 - granularity
 - atomicity
- Difficult to formulate formal definitions of role types
- ➤ more fine-grained roles, relative to "frames" [Fillmore 1968, Fillmore 1977]
- ▶ ⇒ generalized semantic roles [Dowty 1991]
 - PROTO-AGENT, PROTO-PATIENT

Semantic roles in NLP

How might semantic role information benefit NLP applications?

Semantic roles in NLP

- How might semantic role information benefit NLP applications?
- Question Answering [Narayanan and Harabagiu 2004, Shen and Lapata 2007]
 - Q: What year did the U.S. buy Alaska?
 - ▶ **A:** ... before Russia sold Alaska to the United States in 1867.

Semantic roles in NLP

- How might semantic role information benefit NLP applications?
- Question Answering [Narayanan and Harabagiu 2004, Shen and Lapata 2007]
 - Q: What year did the U.S. buy Alaska?
 - ▶ **A:** ... before Russia sold Alaska to the United States in 1867.
- Information Extraction [Surdeanu et al. 2003]: generalization for template-systems, e.g., Acquisitions-and-Mergers:
 - Apple bought Cisco
 - Apple acquired Cisco
 - Cisco was taken over by Apple

Semantic Role Labeling (SRL)

- ► Task: determine the semantic relations between a predicate and its associated participants
- pre-specified list of semantic roles
- 1. identify role-bearing constituents
- 2. assign correct semantic role
- ► [The girl on the swing] $_{AGENT}$ [whispered] $_{PRED}$ to [the boy beside her] $_{REC}$

Overview of today's lecture

- Resources
 - ▶ FrameNet
 - ▶ PropBank
- SRL approaches
 - ▶ Pioneering: [Gildea and Jurafsky 2002]
 - ▶ Overview: [Màrquez et al. 2008]
 - ▶ Dependency analysis: [Johansson and Nugues 2008]
- Project, part B

FrameNet

- Based on Fillmore's frame semantics
- Roles are specific to frames, which are invoked by multiple words
- Database of specific frames developed manually
- Sentences that employ these frames selected from the British National Corpus (BNC) and annotated by linguists for semantic roles
- ► Initial version: 67 frames, 1462 target words, 49013 sentences, 99232 role fillers

Frame Examples

- apply heat: situation involving a cook, food and a heating instrument evoked by bake, blanch, boil, broil, brown, simmer, etc.
- change position on a scale: situation involving the change of an items's position on a scale (the attribute) from a starting point (initial value) to an end point (final value) evoked by decline, decrease, gain, rise, etc.
- damaging: situation involving an agent that affects a patient in such a way that the patient (or some sub-region of the patient) ends up in a non-canonical state evoked by damage, sabotage, scratch, tear, vandalise, etc.

Frame Annotation Examples

- Verbs:
 - ► [Cook Matilde] fried [Food the catfish] [Heating Instrument in an iron skillet]
 - ► [Item Colgate's stocks] rose [Difference \$3.64] to [FinalValue \$49.94]
- Nouns:
 - ...the **reduction** of [$_{Item}$ debt levels] to [$_{Value_2}$ \$25] from [$_{Value_1}$ \$2066]
- Adjectives:
 - ightharpoonup [Sleeper They] were **asleep** [Duration for hours]

PropBank

- Adds a layer of semantic roles to the syntactic trees of the Penn Treebank
- Semantic roles are specific to each individual verb to avoid agreeing on a universal set
- Consistent across uses of a single verb (sense)
- ▶ But the same tags are used (Arg0, Arg1, Arg2, ...)
 - ▶ inspired by [Dowty 1991]
 - Arg $0 \approx \text{proto-Agent}$
 - ▶ Arg1 \approx proto-Patient
 - ▶ ...
 - ▶ variety of ArgM's (Arg#>5): TMP, LOC, DIR, MNR, etc.

PropBank

- Annotation process:
 - 1. rule-based argument tagger on corpus (83% acc on pilot data)
 - 2. tagger output manually corrected, verb-by-verb basis
 - 3. differences between annotators resolved
- ► Annotated over 1M words of Wall Street Journal text with existing gold standard parse trees
- Statistics:
 - ▶ 43594 sentences
 - ▶ 3324 unique verbs
 - 99265 propositions (verbs+roles)
 - ▶ 262281 role assignments

PropBank Examples

- ▶ Predicate accept₁ "take willingly"
 - ► Arg0: acceptor
 - Arg1: thing accepted
 - ► Arg2: accepted-from
 - Arg3: attribute
- ► [$_{Argo}$ He] [$_{ArgM-mod}$ would] [$_{ArgM-neg}$ n't] accept [$_{Arg_1}$ anything of value] [$_{Arg_2}$ from those he was writing about].
- Predicate kick₁ "drive or impel with the foot"
 - Arg0: kicker
 - Arg1: thing kicked
 - ► Arg2: instrument (defaults to foot)
- ► [Arg_0 John] tried [Arg_0 *trace*] to kick [Arg_1 the football].

PropBank Polysemy

- Polysemous verbs have more than one role assignment
- Predicate decline₁ "go down incrementally"
 - ► Arg1: entity going down
 - ► Arg2: amount gone down by EXT
 - Arg3: start point
 - Arg4: end point
- \blacktriangleright ... [Arg_1 its income] **declining** [Arg_2 -EXT42%] [Arg_4 to \$2,420].
- ▶ Predicate decline₂ "demure, reject"
 - ► Arg0: agent
 - Arg1: rejected thing
- ► $[Arg_0A]$ spokesman declined $[Arg_1]$ *trace* to elaborate.

NomBank

- Argument structure for nouns
- Extension of PropBank
 - same Wall Street Journal data
 - same set of semantic roles
- but for nouns?
 - nominalizations of verbs (destruction)
 - nominalizations of adjectives (ability)
- based on verb senses for verbal nominalizations
- adjectival nominalizations manually coded

NomBank Examples

- ▶ Noun complaint (based on complain.01)
 - Arg0: agentArg1: topic
 - ► Arg2: recipient
- Noun example: There have been no [Argo customer] complaints [Argo about that issue].
- Verb example: [Argo They] complained [Arg₁ about that issue].

NomBank Examples

- Hyphenated modifiers
 - captures relations within hyphenated words
 - ▶ first segment: H0, segment after first hyphen: H1, segment after Nth hyphen: HN
- ► This is a time of self-criticism REL-H1 = self-criticism, Arg1-H0 = self-criticism
- ► a second daily Chicago-Paris flight REL = flight, Arg4-H0 = Chicago-Paris, Arg3-H1 = Chicago-Paris, ArgM-TMP = daily

Approaches to SRL – overview

- ► Supervised methods: training data used to train a classifier
 - majority of systems
 - work on FrameNet and PropBank resources
 - shared tasks
- Unsupervised methods: lexical information (large corpora) used to develop classifier
 - ▶ few systems

FrameNet SRL

Daniel Gildea and Daniel Jurafsky (2002): "Automatic labeling of semantic roles". *Computational Linguistics* 28(3):245-288.

- ► Task: Given an input sentence, a target word and a frame, assign all constituents with their semantic roles.
 - locate relevant constituents
 - assign correct semantic roles
- Based on FrameNet examples (BNC)
- Assumed correct frames, the task was to assign roles
- Automatically produced syntactic analyses using Collins (1997) statistical parser
- Results:
 - ▶ 80.4% correct role assignment
 - ► Increased to 82.1% when frame-specific roles were collapsed to 16 more general thematic categories

SRL and parsing

- Syntactic analysis helps identify semantic roles by exploiting generalizations from syntax-semantics linking
 - agent is usually subject
- Needed to identify the true subject
 - ► The girl with the dog ate the cookie
 - "The girl" is the agent, not "the dog"
- ► Gildea & Jurafsky use constituent parses

SRL as constituent classification

- ► Treat task as a classification of parse tree nodes
 - ► For each predicate (verb), label each node in the parse tree as either not a role or one of the semantic roles
- ► Any machine learning algorithm may be employed
- The real work is in the feature engineering!
- ► This was the largest contribution of [Gildea and Jurafsky 2002]

Features for SRL

- ► Three general types of features in SRL [Màrquez et al. 2008]:
 - features that characterize the candidate argument and its context
 - 2. features that characterize the verb predicate and its context
 - 3. features that capture the relation (syntactic or semantic) between the candidate and the predicate

Features for SRL

- Phrase type: The syntactic label of the candidate role filler, e.g., NP
 - Different roles tend to be realized by different syntactic categories
- Parse tree path: The path in the parse tree between predicate and candidate role filler
 - captures the syntactic relation of a constituent to the rest of the sentence
 - ▶ $V \uparrow VP \uparrow S \downarrow NP$
 - $\blacktriangleright \ \ \mathsf{V} \uparrow \mathsf{VP} \uparrow \mathsf{S} \downarrow \mathsf{NP} \downarrow \mathsf{PP} \downarrow \mathsf{NP}$

Features for SRL

- ► **Position:** Records whether the candidate role filler precedes or follows the predicate
 - ► The girl ate the cookie
- ➤ Voice: Records whether the predicate is in active or passive voice
 - ► The cookie was eaten by the girl
- ▶ Head word: records the head word of the candidate role filler
 - ▶ G&J use head finding rules
 - dependency analysis?
- Governing category: applied to NPs only, two possible values: S (subjects) or VP (objects)

Probability estimation

- G&J used simple Bayesian method with smoothing to classify parse nodes
- ▶ 80% training set, 10% test set, 10% tuning set
- ▶ Probability of a semantic role r given the features h (head), pt (phrase type), gov, position, voice, t (predicate):

$$P(r|h, pt, gov, position, voice, t) = \frac{\#(r, h, pt, gov, position, voice, t)}{\#(h, pt, gov, position, voice, t)}$$

- Sparse data
 - condition on subsets of the features

Other techniques

- ► Collapsing roles into 18 abstract thematic roles
- Additional features for subcategorization frame
- Abstraction over lexical heads: clustering, WordNet, bootstrapping from (automatically) annotated corpus data

- ► CoNLL04, CoNLL05
- Task:
 - identifying arguments of verbs in a sentence
 - labeling the arguments with their semantic roles
- ► Gold standard data set: PropBank
- ► Data:
 - training data: train systems
 - development data: tune systems
 - test data: calculate precision, recall, f-score (correct argument requires correct span and role)
 - ▶ Precision: (# roles correctly assigned) / (# roles assigned)
 - ▶ Recall: (# roles correctly assigned) / (total # of roles)
 - F-score: harmonic mean of precision and recall

- CoNLL05: a wide variety of learning approaches
 - Maximum entropy (8 teams)
 - Support Vector Machines (7 teams)
 - SNoW (1 team) (ensemble of enhanced Perceptrons)
 - Decision trees (1 team)
 - AdaBoost (2 teams) (ensemble of decision trees)
 - Nearest neighbour (2 teams)
 - Combination of approaches (2 teams)

Best results:

'	WSJ tes	t	Brown test			
Р	R	F	Р	R	F	
82.28	76.78	79.44	73.38	62.93	67.75	

Issues in SRL

- ► How to integrate syntactic parsing, WSD, and role assignment so they all aid eachother
- ▶ How to use SRL in down-stream applications
 - ► Q&A
 - ► Machine Translation
 - ► Text Mining

CoNLL08, CoNLL09 shared tasks

- Addresses the integration of syntactic and semantic information
- Syntactic and semantic parsing of English (2008) and several other languages (2009)
- Dependency representations
 - constituent-to-dependency conversion
 - PropBank and NomBank
 - common representation for syntactic and semantic information

- ► Semantic dependencies: semantic role assigned to syntactic head of constituent
- ► Heads have already been recognized (syntax)
 - "the head of a semantic argument is assigned to the token inside the argument boundaries whose head is a token outside the argument boundaries"
 - ightharpoonup Example: $[P_{red}$ sold] $[A_{rg1}$ 1214 cars] $[A_{rgM-LOC}$ in the U.S.]

- Data format (extended CoNLL-format)
 - sentences separated by blank line
 - one token per line
 - ▶ at least 11 fields, separated by whitespace

Number	Name	Description
1	ID	token counter
2	FORM	(unsplit) word form
3	LEMMA	lemma of form
4	GPOS	gold PoS-tag
5	PPOS	predicted PoS-tag
6	SFORM	tokens split at hyphens
7	SLEMMA	lemma of split forms
8	PPOSS	predicted PoS of split forms
9	HEAD	syntactic head
10	DEPREL	syntactic dependency relation
11	PRED	semantic predicate
12	ARG	columns with argument labels

- Data format (extended CoNLL-format)
- variable towards the end with columns for argument labels for each semantic predicate following textual order

ID	FORM	 HEAD	DEPREL	PRED	ARG	ARG
2	sold	 0	ROOT	sold.01	_	
3	1214	 4	NMOD	_	_	_
4	cars	 2	OBJ	_	A1	_
5	in	 2	ADV	_	AM-LOC	_
6	the	 7	DET	_	_	_
7	U.S.	 5	PMOD	_	_	_
8	and	 2	CONJ	_	_	_
9	they	 5	PMOD	_	_	A0
10	made	 5	PMOD	make.01	_	_

- Data format (extended CoNLL-format)
- ► Extra rows for tokens split on hyphens

ID	FORM	 SLEMMA	 HEAD	DEPREL	PRED	ARG
3	second	 second	 8	NMOD	_	_
4	daily	 daily	 8	NMOD	_	AM-TMP
5	Chicago-Paris	 chicago	 7	NAME	_	A4
6	_	 -	 7	HYPH	_	_
7	_	 paris	 8	NMOD	_	A3
8	flight	 flight	 2	OBJ	flight.01	_

CoNLL08 shared task: example system

[Johansson and Nugues 2008]:

- syntactic and semantic subcomponents
- ► Semantic model: pipeline of classifiers
 - predicate identification
 - predicate disambiguation
 - argument identification
 - argument classification
- nouns and verbs treated separately

CoNLL08 shared task: example system

[Johansson and Nugues 2008]:

- ► Features: dependency formulations of phrase-structure features ++
 - features that characterize the candidate argument and its context: ArgPos, ArgWord, LeftWord, LeftPos, RightWord, RightPos, Function, etc.
 - 2. features that characterize the verb predicate and its context: PredLemmaSense, PredPos, PredWord
 - 3. features that capture the relation (syntactic or semantic) between the candidate and the predicate RelPath, PosPath, e.g., *I want him to sleep*: IM↑OPRD↑OBJ↓

Project B

- ► CoNLL08 data set
 - train open and closed
 - devel open and closed
 - test open and closed
- Data licensing
- Scikit learn: machine learning in Python
- Focus on the task of argument classification, i.e. assume gold standard argument identification
- Main components:
 - feature extraction
 - classification
 - ▶ evaluation

Project B

- Data processing:
 - extract semantic arguments
 - extract features for these arguments
 - output correct format
- Baseline system: classifier that uses the following features (taken from the Johansson & Nugues article). You may restrict yourself to verbal predicates:

PredLemmaSense The lemma and sense number of the predicate, e.g., give.01

ArgPos The (predicted) PoS-tag of the argument PredPos The (predicted) PoS-tag of the predicate Function The grammatical function of the argument

Project B

- ► Feature engineering
 - ▶ take inspiration from the literature
 - add at least 4 new features
 - evaluate
- Choose between one of the following two Machine learning algorithm Nominal predicates
- Final testing on held-out data

- David Dowty. 1991.
 Thematic proto-roles and argument selection. Langauge, 67(3):547–619.
- Charles Fillmore. 1968.
 The case for case. In E. Bach and R. Harms, editors, *Universals in Linguistic Theory*. Holt, Rinehard and Winston, New York.
- Charles Fillmore. 1977.
 The case for case reopened. In Syntax and Semantics, volume 8.
- Daniel Gildea and Daniel Jurafsky. 2002.
 Automatic labeling of semantic roles. Computational Linguistics, 28:245–288.
- Richard Johansson and Pierre Nugues. 2008.
 Dependency-based syntactic-semantic analysis with propbank and nombank. In Proceedings of the Twelfth Conference on Computational Natural Language Learning, CoNLL '08, pages 183–187.
- Lluís Màrquez, Xavier Carreras, Kenneth C. Litkowski, and Suzanne Stevenson. 2008.
 Semantic role labeling: an introduction to the special issue. Computational Linguistics, 34:145–159.
- S Narayanan and S Harabagiu. 2004. Question answering based on semantic structures. In *In Proceedings of COLING* 2004.

- Dan Shen and Mirella Lapata. 2007.
 Using semantic role to improve question answering. In In Proceedings of EMNLP 2007.
- M Surdeanu, S Harabagiu, J Williams, and P Aarseth. 2003.
 Using predicate-argument structures for information extraction. In In Proceedings of ACI