INF5830, Fall 2017
Assignment 3: Dependency Parsing (Project A)

Andrey Kutuzov
October 9, 2017

Deadline 27 Oct., at 18:00, to be delivered in Devilry

Goals

e Get familiar with the CoNLL-U dependency treebank format.

e Learn to train and evaluate dependency parsing models with one of the
mainstream parsers.

e Learn to change the training data according to your needs.

Introduction

Modern algorithms of dependency parsing (i.e., analyzing syntactic structure of
a sentence) serve as the building bricks for many automated systems dealing with
natural language. They provide the data necessary for further ‘understanding’
of text. The knowledge of how such algorithms work and what data is used to
train them is indispensable for any person studying computational linguistics.

It can be profitable to try to implement a parsing algorithm from scratch in
your favorite programming language (we encourage you to do this); however, in
real life tasks, it is usually much more convenient to employ already available
implementations and train your own models with them, or even re-use some of
the pre-trained models in your downstream tasks. Thus, the current assignment
aims to make you familiar with some of this software. We recommend Malt-
Parser and UDPipe, but you are free to use other existing tools: MS TParserEL
Stanford C’oreNLPEl, Spacyﬂ etc. Additionally, throughout the assignment the
Universal Dependencies treebanks will be used as the source of training and
testing data.

Please make sure you read through the entire assignment before you start. If
you have any questions, please email andreku@ifi.uio.no, and make sure to take
advantage of the group sessions. Solutions must be submitted through Devilryﬁ
by 18:00 on October 27. Please upload a single PDF file with your answers.

Thttps://sourceforge.net/projects/mstparser/
%https://stanfordnlp.github.io/CoreNLP/depparse.html
Shttp://spacy.io/

“https://devilry.ifi.uio.no/

https://sourceforge.net/projects/mstparser/
https://stanfordnlp.github.io/CoreNLP/depparse.html
http://spacy.io/
https://devilry.ifi.uio.no/

Your (heavily commented) code and data files should be available in a separate
private repository in the UiO in-house Git platfornﬂ Make the repository
private, but allow full access to me (https://github.uio.no/andreku). The
PDF in Devilry should contain a link to your repository.

Recommended reading

1. Speech and Language Processing. Daniel Jurafsky and James Martin.
3rd edition draft of August 28, 2017. Chapter 14, ‘Dependency parsingﬂ

2. Maltparser: A data-driven parser-generator for dependency pars-
ing. Nivre, Joachim, et al., 2006@

3. Universal Dependencies vl: A Multilingual Treebank Collection.
Nivre, Joachim, et al., 2016@

4. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with
UDPipe. Straka, M., Strakova, J., 2017ﬂ

5. http://www.maltparser.org/
http://ufal.mff.cuni.cz/udpipe

http://universaldependencies.org/

® N>

http://universaldependencies.org/conlll7/

1 Spreading the word

It seems that the Norwegian Wikipedia lacks an article describing data-driven
natural language dependency parsing (https://no.wikipedia.org/wiki/Parsing
is too general). Your task is to fix this.

This is a collective assignment: all Norwegian-speaking students in the group
should work on it. The outcome should be a separate Wikipedia page in Norwe-
gian (linked from https://no.wikipedia.org/wiki/Parsing) about natural
language dependency parsing, containing a brief gist of what you have learned
from this course. There are no restrictions on minimum or maximum size of this
article, but it should give an arbitrary reader an idea about what data-driven
parsing is.

It is your responsibility to organize and decide who writes which part of the
article. Once you are done with the text, you should create the corresponding
Wikipedia page. Then, each of you should log in under his/her Wikipedia
username and edit the page, adding his/her part. In the report file, you should
mention your Wikipedia username (different for each of you) and the address of
the newly created page (the same for all).

Shttps://github.uio.no/

Shttp://web.stanford.edu/" jurafsky/slp3/14.pdf
"http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf . pdf
8https://nlp.stanford.edu/pubs/nivre2016ud.pdf
9http://www.aclweb.org/anthology/K17-3009

https://github.uio.no/andreku
http://www.maltparser.org/
http://ufal.mff.cuni.cz/udpipe
http://universaldependencies.org/
http://universaldependencies.org/conll17/
https://no.wikipedia.org/wiki/Parsing
https://no.wikipedia.org/wiki/Parsing
https://github.uio.no/
http://web.stanford.edu/~jurafsky/slp3/14.pdf
http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf
https://nlp.stanford.edu/pubs/nivre2016ud.pdf
http://www.aclweb.org/anthology/K17-3009

In case you do not feel that your knowledge of Norwegian is good enough for
this task, you can create (or enrich if it already exists) an article about data-
driven natural language dependency parsing in your native language Wikipedia.
The size of one paragraph will be enough. Please do not update the English
Wikipedia, it already has much data on that topic.

Please take this task seriously and write responsibly: your text will be read
and used by many people. Don’t describe things about which you are unsure.
Support your text with references, as per Wikipedia guidelines.

2 Tracing non-projectivity

Discontinuous or non-projective dependency trees are trees which contain cross-
ing edges (arcs). In other words, it means that there exist patterns like (dydahyhs),
with d; denoting a dependent and h; denoting its head. In some languages, such
patterns are rare, while in others they abound.

Your task is to find out how widespread is non-projectivity in the languages
of the world. For this, we will use syntactically annotated corpora (treebanks)
from the Universal Dependencies project (UD).

1. Download the UD treebanks (http://hdl.handle.net/11234/1-1983,
you will need the first archive — ud-treebanks-v2.0.tgz);

2. Extract the files from the archive; there should be 70 treebanks for 50
languages;

3. Look through the files; you will need those from the train set (for exam-
ple, en-ud-train.conllu);

4. Implement a code in Python which takes as an input a treebank in CoNLL-
U format and outputs its non-projectivity statistics:
e What is the percentage of non-projective arcs?
e What is the percentage of non-projective sentences?

5. You can optionally make use of any of the tools developed by the UD
project (http://universaldependencies.org/tools.html).

6. Compute non-projectivity statistics for all the UD treebanks.
7. Can you see any patterns in these stats? Describe them.

8. Is there any correlation between the amount of non-projectivity in lan-
guages and the results that modern data-driven parsers are able to achieve
on these languages? You can use the Table 10 from Zeman, D. et al.
2017@ or the same data directly from http://universaldependencies.
org/conlll7/results-treebanks.html.

Your PDF report should contain detailed description of your experiments
and the tables with the stats you computed. The code developed by you should
be available at the UiO Github.

Ohttps://aclanthology.info/pdf/K/K17/K17-3001.pdf

http://hdl.handle.net/11234/1-1983
http://universaldependencies.org/tools.html
http://universaldependencies.org/conll17/results-treebanks.html
http://universaldependencies.org/conll17/results-treebanks.html
https://aclanthology.info/pdf/K/K17/K17-3001.pdf

3 Using parsers

In this task, you will train and evaluate basic dependency parsing models. You
can choose one or both of the following parsers:

1. MaltParserf]

2. UDpipeIE

MaltParser is a traditional transition-based dependency parser written in Java. UDpipe
is a more modern parser written in C+-. It is transition-based as well, but uses
artificial neural networks to train its oracle (guide). You are also free to use any

of other available parsers, if you want.

3.1 Training
1. Download the parser(s) of your choice.

2. Using it, train a model on any two languages of your choice from
the UD treebank collection. Use languages from different language groups
(not English).

e for MaltParser, a model can be trained with java -jar maltparser-
1.9.1.jar -c MY MODEL -i TRAINING _FILE -m learn

e for UDpipe, a parser model can be trained with udpipe —train MY MODEL
—tokenizer=none —tagger=none —parser use_ gold_tags=1 TRAIN-
ING_FILE

e Note that training a MaltParser model on a typical UD treebank
takes 2 or 3 minutes, while training a UDPipe model on the same
treebank can take 2 or 3 hours.

3. Read the documentation to the parser(s) you used. What features do they
use by default?
3.2 Evaluation
In order to evaluate your freshly trained models, we need some test data.
1. Download the UD test treebanks (http://hdl.handle.net/11234/1-2184).
2. Extract the files from the archive.

e The folder input/conlll7-ud-test-2017-05-09 contains test treebanks
with missing heads and dependency labels.

e The folder gold/conlll7-ud-test-2017-05-09 contains the same tree-
banks with the correct heads and dependency labels.

3. Employ your models to parse the corresponding test treebanks from the
input folder:

Hhttp://wuw.maltparser.org/
2http://ufal.mff.cuni.cz/udpipe

http://hdl.handle.net/11234/1-2184
http://www.maltparser.org/
http://ufal.mff.cuni.cz/udpipe

e for MaltParser, a CoNLL file can be parsed with java -jar maltparser-
1.9.1.jar -c MY MODEL -i TEST FILE -0 PARSED OUTPUT FILE
-m parse

e for UDpipe, a CoNLL file can be parsed with udpipe —parse MY MODEL
TEST FILE -outfile=PARSED OUTPUT _ FILE

4. Now you have the parsings produced by your models. You have to evaluate
them against gold parsing with the same evaluation script that was used
to find winners of the CoNLL 2017 Shared Task.

5. The script can be found in the UD test set archive which you have just
downloaded: evaluation_script/conlll7? ud_ eval.py.

6. You should use the corresponding treebanks from the gold folder as a gold
standard. Here is an example of running the evaluation script for English
with en.conllu as the gold file and file2test.conllu as the parsing produced
by the model we want to evaluate:

python conlll7_ud_eval.py en.conllu file2test.conllu -v

Metrics | Precision | Recall | F1 Score | AligndAcc
___________ P
Tokens | 98.86 | 98.48 | 98.67 |

Sentences | 81.39 | 66.54 | 73.22 |

Words | 98.86 | 98.48 | 98.67 |

UPOS | 93.29 | 92.94 | 93.11 | 94.37
XP0OS | 92.60 | 92.25 | 92.42 | 93.67
Feats | 94.15 | 93.80 | 93.97 | 95.24
All1Tags | 91.21 | 90.86 | 91.04 | 92.26
Lemmas | 95.79 | 95.43 | 95.61 | 96.90
UAS | 77.26 | 76.97 | 77.12 | 78.16
LAS | 74.12 | 73.84 | 73.98 | 74.98
CLAS | 69.15 | 68.56 | 68.85 | 69.65

Note that MaltParser can occasionally generate trees with multiple ROOT
nodes. This raises an error in the CoNLL17 evaluation script. Thus, if you
use MaltParser, you would probably want to comment out this check in the
evaluation script (around line 180).

Evaluate the models you trained on the corresponding gold data. Include
the values of UAS, LAS and CLAS in your PDF report. Which model was
better, and thus which language was easier for the parser? Give your opinion
on that.

e If you used more than one parser:
— describe the differences in their performance.
e If you used only one parser:

— try to change at least one training parameter of the parser (read the
documentation thoroughly) and train another set of models;

— describe how these two sets differ in performance and why, in your
opinion.

How far are your models below the state-of-the-art results for these languages
(as expressed in the reports from the CoNLL 2017 Shared Task)?

4 Parsing one language with another

The models you trained in the previous task made use of many features to
produce feasible dependency trees. However, sometimes one is interested in one
particular feature. Suppose you conduct a study on the interplay between parts
of speech (PoS) and dependency structures in different languages.

Intuitively, it is obvious that in many cases it is possible to infer a dependency
tree from the sequence of PoS tags only, without any notion of word forms or
semantics. For example, if we know that the language is English and we see
the sequence like ‘ADJ NOUN VERB ADJ NOUN’, it is very probable that the
corresponding dependency tree would be:

root obj

amod nsubj amod
il
<ROOT> ADJ NOUN VERB ADJ NOUN
0 1 2 3 4 5

Thus, one can train a dependency parser on PoS tags only. Its performance
will probably be lower than when training on the full set of features, but still bet-
ter than random. But what’s more interesting is that we can use this approach
to find out how similar different languages are with respect to the interaction
between PoS and dependency trees. As all the UD treebanks use one and the
same Universal PoS tagset, we are technically able to use a trained model
to parse a treebank in some language Lo different from the language L, of the
training treebank. Then we can check how accurate was this parsing, and in
this way — how similar is Lo to Ly in this respect.

Your task is to conduct such an experiment on any 8 languages of your choice
from the UD treebank and report the results. Once again you can use any of
the parsers we mentioned (or several parsers). The necessary steps can be the
following:

1. Choose the languages.
2. Choose the parser(s).

3. Train models for these languages using the UD treebanks as training data
and considering only PoS tags.

4. Evaluate the resulting models on the test treebank from the language it
was trained on and on the test treebanks from 7 other languages.

5. Describe the results and explain how they support (or undermine) the
known linguistic facts about genetic and typological similarities between
the languages you experiment wit

One of the simples way to train your model on PoS tags only is to pre-process
the training CoNLL file to ‘flatten’ all the other features: for example, replacing

13Seehttps://en.wikipedia.org/wiki/Genetic_relationship_(linguistics) and https:
//en.wikipedia.org/wiki/Linguistic_typology

https://en.wikipedia.org/wiki/Genetic_relationship_(linguistics)
https://en.wikipedia.org/wiki/Linguistic_typology
https://en.wikipedia.org/wiki/Linguistic_typology

them with ¢ ’. Your code performing this task should also be available in your
Git repository. Another option is to play with the parser settings. In this case,
you have to describe it in your PDF report.

The report should include the values of UAS, LAS and CLAS for all com-
binations of your training and testing data. It makes sense to represent it as
3 matrices/tables, with training languages as rows and testing languages as
columns. Any other good-looking visualizations of the results are encouraged.

Finally, compare the results of your models on the same language with all
the features and with only PoS tags. Rank the languages by the difference in
the performance of the full model and the PoS-only model. Does it correspond
to your intuition about the nature of these languages?

	Spreading the word
	Tracing non-projectivity
	Using parsers
	Training
	Evaluation

	Parsing one language with another

