
INF5830 – 2017 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 2, 29.8

1

Today - Classification

 Motivation

 Classification of classification

 Some simple examples

 Set-up of experiments

 Evaluation

 Naive Bayes classifier (Bernoulli)

2

Motivation3

Classification

 Jurafsky og Martin, 3.ed. Ch. 6

Naive Bayes Classification and Sentiment

 slides 1-7

 NLTK book, Ch. 6

4

Classification5

Classification

 Can be rule-based, but mostly machine learned

 Text classification is a sub-class

 Text classification
examples:

 Spam detection

 Genre classification

 Language classification

 Sentiment analysis:
 Positive-negative

6

 Other types of

classification:

 Word sense

disambiguation

 Sentence splitting

Machine learning

1. Supervised

1. Classification

1. Naive Bayes

2. Many more

2. Regression

2. Unsupervised

1. Clustering

2. …

3. Semi-supervised

4. Reinforcement learning

 Supervised:

 Given classes

 Given examples of
correct classes

 Unsupervised:

 Construct classes

7

} INF4820
 k-Nearest Neighbors

 Rocchio

 Decision Trees

 Naive Bayes

 Maximum entropy (Logistic regression)

 Support Vector Machines

 (INF4490)

 and more

A variety of ML classifiers
8

Classification
9

Supervised classification

 Given

 a well-defined set of objects, O

 a given set of classes, S={s1, s2, …, sk}

 Goal: a classifier, , a mapping from O to S

 For supervised training one needs a set of pairs from OxS

Task O S

Spam classification E-mails Spam, no-spam

Language clssification Pieces of text Arabian, Chinese, English,

Norwegian, …

Word sense disambiguation Occurrences of ”bass” Sense1, …, sense8

10

Features

 To represent the objects in O, extract a set of features

Be explicit:

 Which features

 For each feature

 The type

 Categorical

 Numeric (Discrete/Continuous)

 The value space

 Cf. First lecture

Object: person

Features:

• height

• weight

• hair color

• eye color

• …

Object: email

Features:

• length

• sender

• contained words

• language

•…

11

Supervised classification

 A given set of classes, S={s1, s2, …, sk}

 A well defined class of objects, O

 Some features f1, f2, …, fn

 For each feature: a set of possible values V1, V2, …, Vn

 The set of feature vectors: V= V1 V2… Vn

 Each object in O is represented by some member of V:

 Written (v1, v2, …, vn), or

 (f1=v1, f2=v2, …, fn=vn)

 A classifier, , can be considered a mapping from V to S

Examples

 C = {English, Norwegian,…}

 O is the set of strings of
letters

 f1 is last letter of o

 V1= {a, b, c,…, å}

 f2 is the last two letters

 V2 is all two letter
combinations

 f3 is the length of o,

 V3 is 1, 2, 3, 4, …

 C = {fish, music}

 O: all occurrences of ”bass”

 fi= fwi: word wi occurs in same
sentence as ”bass”, where

 w1 = fishing, w2 = big, …,

 w11 = guitar, w12 = band

 V1=V2=…=V12={1,0}

 Example:

 o = (0,0,0,1,0,0,0,0,0,0,1,0)

 o = (ffishing=0, …,
fguitar=1, fband=0)

Language classifier Word sense disambiguation

Simple examples from NLTK14

NLTK-example 1: names

In [2]: def gender_features(word):

...: return {'last letter': word[-1]}

In [3]: gender_features('Shrek')

Out[3]: {'last letter': 'k'}

In [4]: from nltk.corpus import names

In [5]: labeled_names =
([(name, 'male') for name in names.words('male.txt')] +

[(name, 'female') for name in names.words('female.txt')])

15

NLTK: names
16

NLTK-example 1, contd.

In [6]: import random

In [8]: random.shuffle(labeled_names)

In [9]: featuresets = [(gender_features(n), gender)

for (n, gender) in labeled_names]

In [10]: train_set, test_set =

featuresets[500:], featuresets[:500]

17

When you conduct several experiments,

use the same split so you can compare

the results.

Split before you

extract features

NLTK-example1, contd.

In [11]: classifier = nltk.NaiveBayesClassifier.train(train_set)

In [12]: classifier.classify(gender_features('Neo'))

Out[12]: 'male'

In [13]: classifier.classify(gender_features('Ada'))

Out[13]: 'female'

In [31]: print(nltk.classify.accuracy(classifier, test_set))

0.79

18

Why do I get 0.79 and the book 0.75?

Example 1 ctd.
 A given set of classes, S={s1, s2, …, sk} = {‘male’, ‘female’}

 A well defined class of objects, O = {‘Ada’, ‘Albert’, …} =
all strings of letters

 Some features f1, f2, …, fn, only f1 ‘last_letter’

 For each feature: a set of possible values V1, V2, …, Vn
V1 ={a, b, c, …., z}

 The set of feature vectors: V= V1 V2… Vn

 Each object in O is represented by some member of V:

 Written (v1, v2, …, vn), or (e.g. ‘u’)

 (f1=v1, f2=v2, …, fn=vn) (e.g. last_letter: ‘u’)

 A classifier, , can be considered a mapping from V to S

NLTK-eksempel 2

In [56]: def gender_features2(name):

...: features = {}

...: features["first_letter"] = name[0].lower()

...: features["last_letter"] = name[-1].lower()

...: for letter in 'abcdefghijklmnopqrstuvwxyz':

...: features["count({})".format(letter)] = name.lower().count(letter)

...: features["has({})".format(letter)] = (letter in name.lower())

...: return features

In [59]: featuresets2 = [(gender_features2(n), gender) for (n, gender) in labeled_names]

In [60]: train_set2, test_set2 = featuresets2[500:], featuresets2[:500]

In [61]: classifier2 = nltk.NaiveBayesClassifier.train(train_set2)

In [62]: print(nltk.classify.accuracy(classifier2, test_set2))

0.78

20

NLTK-example 2

In [56]: def gender_features2(name):

...: features = {}

...: features["first_letter"] = name[0].lower()

...: features["last_letter"] = name[-1].lower()

...: for letter in 'abcdefghijklmnopqrstuvwxyz':

...: features["count({})".format(letter)] = name.lower().count(letter)

...: features["has({})".format(letter)] = (letter in name.lower())

...: return features

21

What are the features here?

• How many?

• What are their resp. value spaces?

Comparing features

 NLTK-boook printed:

 gender_features (gf1) yields acc 0.758

 gender_features2 (gf2) yields acc 0.748

 Indicates

 More features aren't always better

 Danger that gender_features2 ‘’is overfitting’’:
 Adapt itself too much to the training set

 Web edition: gf1_acc: 0.77, gf2_acc: 0.768

 We: gf1_acc: 0.79, gf2_acc: 0.78

22

28. august 2017

A more complex picture

 10 experiments

 Do not draw hasty

conclusions from small

differences

 Variation

 We will later consider

how statistics may tell

us which differences

are significant

 Accuracy:

 Exp.no gf1 gf2

 1 0.760 0.756

 2 0.770 0.784

 3 0.782 0.774

 4 0.772 0.796

 5 0.744 0.744

 6 0.760 0.792

 7 0.776 0.754

 8 0.782 0.784

 9 0.774 0.774

 10 0.772 0.794

28. august 2017

23

NLTK-book's best shot

def feat_suff_1_2(word):

return {'suffix1': word[-1], 'suffix2': word[-2:]}

Exp.no gf1 gf2 feat_suff_1_2

1 0.764 0.778 0.766

2 0.760 0.748 0.772

3 0.758 0.764 0.772

4 0.772 0.786 0.800

5 0.748 0.766 0.752

6 0.742 0.792 0.768

7 0.758 0.766 0.784

8 0.752 0.788 0.774

9 0.752 0.756 0.778

10 0.744 0.778 0.776

24

Beware:

def feat_suff_1_2(word):

return {'suffix1': word[-1],

'suffix2': word[-2:]}

=/=

def feat_two_last(word):

return {'suffix1': word[-1],

'suffix2': word[-2]}

 Accuracy:

 Exp.no f_suff_1_2 f_two_last

 1 0.792 0.786

 2 0.754 0.746

 3 0.792 0.780

 4 0.768 0.772

 5 0.786 0.784

 6 0.782 0.762

 7 0.798 0.792

 8 0.812 0.784

 9 0.794 0.770

 10 0.774 0.766

28. august 2017

25

Movie reviews 1

> from nltk.corpus import movie_reviews

> documents = [(list(movie_reviews.words(fileid)), category)

for category in movie_reviews.categories()

for fileid in movie_reviews.fileids(category)]

> random.shuffle(documents)

> all_words = nltk.FreqDist(w.lower() for w in
movie_reviews.words())

> word_features = [w for (w,_) in all_words.most_common(2000)]

> wrong_features = list(all_words)[:2000] #Wrong (earlier version)

26

28. august 2017

Movie reviews 2

> def document_features(word_features, document):

document_words = set(document)

features = {}

for word in word_features:

features['contains({})'.format(word)] =
(word in document_words) #True or False

return features

> featuresets = [(document_features(word_features, d), c)
for (d,c) in documents]

> train_set, test_set = featuresets[100:], featuresets[:100]

> classifier = nltk.NaiveBayesClassifier.train(train_set)

> print(nltk.classify.accuracy(classifier, test_set))

0.83

27

28. august 2017

Movie reviews 3

Peoperties

 Two classes: ‘neg’, ‘pos’

 Features’:

 2000 most frequent
words in corpus

 Values: True/False

 Don't count number of
occs in each corpus

 All features (words) not
in corpus gets value
‘’False’’

Comments

 Strictly speaking, the

"most frequent" should

be counted from

training data only

28

Set-up for experiments
29

Set-up for experiments

 Before you start: split into
development set and test set.

 Hide the test set

 Split development set into
Training and Development-
Test set

 Use training set for training a
learner

 Use Dev(-Test) for repeated
evaluation in the test phase

 Finally test on the test set!

30

Procedure

1. Train classifier on training set

2. Test it on dev-test set

3. Compare to earlier runs, is this better?

4. Error analysis: What are the mistakes (on dev-test set)

5. Make changes to the classifier

6. Repeat from 1

==================

 When you have run empty on ideas, test on test set.

Stop!

31

Cross-validation

 Small test sets Large variation in results

 N-fold cross-validation:

 Split the development set into n equally sized bins

 (e.g. n = 10)

 Conduct n many experiments:

 In experiment m, use part m as test set and the n-1 other
parts as training set.

 This yields n many results:

 We can consider the mean of the results

 We can consider the variation between the results.

 Statistics!

32

33

28. august 2017

 But take away a final test set first!

Evaluation34

Evaluation measure: Accuracy
35

 What does accuracy 0.81 tell us?

 Given a test set of 500 sentences:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg

But
36

 For some tasks the classes aren't equally important

 Worse too loose an important mail than to receive yet

another spam mail

 For some tasks the different classes have different

sizes.

Information retrieval (IR)
37

 Traditional IR, e.g. a library

 Goal: Find all the (5) documents on a particular topic out of
100 000 documents

 The system delivers 5 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned

IR - evaluation
38

Confusion matrix
39

28. august 2017

 Beware what the rows and columns are:

 NLTKs ConfusionMatrix swaps them compared to this table

Evaluation measures

 𝐹1 =
2𝑃

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

 𝛼 determines the weighting
of P vs. R

40

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 ‘’Recall’’ (gjenfinning):
tp/(tp+fn)

 F-score kombinerer recall
og precision

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

More than 2 classes

 Accuracy:
8+60+200

8+10+1+5+60+50+3+30+200
=

268

367

 Precision, recall and f-score can be calculated for
each class against the rest

28. august 2017

41

Naive Bayes42

Naive Bayes: Decision
43

 Given an object

 Consider

 for each class sm

 Choose the class with the largest value, in symbols

 i.e. choose the class for which the observations are
most likely

nn vfvfvf ,...,, 2211

 nnm vfvfvfsP ,...,,| 2211

 nnm
Ss

vfvfvfsP
m

,...,,|maxarg 2211

Naive Bayes: Model
44

 Bayes formula

 Sparse data, we may not even have seen

 We assume (wrongly) independence

 Putting together

n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

 nn

mmnn

nnm
vfvfvfP

sPsvfvfvfP
vfvfvfsP

,...,,

)(|,...,,
,...,,|

2211

2211

2211

n

i

miimnn svfPsvfvfvfP
1

2211 ||,...,,

nn vfvfvf ,...,, 2211

Naive Bayes: Calculation
45

 For calculations

 avoid underflow, use logarithms

n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

n

i

miim
Ss

n

i

miim
Ss

n

i

miim
Ss

svfPsP

svfPsP

svfPsP

m

m

m

1

1

1

)|log())(log(maxarg

|)(logmaxarg

|)(maxarg

n

i

miim
Ss

n

i

miim
Ss

svfPsP

svfPsP

m

m

1

1

|)(logmaxarg

|)(maxarg

Naive Bayes, Training 1
46

 Maximum Likelihood

 where C(sm, o) are the number of occurrences of objects o in

class sm

 Observe what we are doing in statistical terms:

 We want to estimate the true probability 𝑃(𝑠𝑚) from a set

of observations

 This is similar to estimating properties (parameters) of a

population from a sample.

)(

),(ˆ
oC

osC
sP m

m

Naive Bayes (Bernoulli): Training 2
47

 Maximum Likelihood

 where C(fi=vi, sm) is the number of occurrences of
objects o

 where the object o belongs to class sm

 and the feature fi takes the value vi

 C(sm) is the number of occurrences belonging to class sm

)(

),(
|ˆ

m

mii
mii

sC

svfC
svfP

The two models
48

 Bernoulli

 the standard form of NB

 NLTK book, Sec. 6.1, 6.2, 6.5

 Jurafsky and Martin, 2.ed, sec. 20.2, WSD

 Multinomial model

 For text classification

 Related to n-gram models

 Jurafsky and Martin, 3.ed, sec. 7.1, Sentiment analysis

 Both

 Manning, Raghavan, Schütze, Introduction to Information Retrieval, Sec.

13.0-13.3

