
INF5830 – 2017 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 3, 4.9

1

Today
2

 Recap

 Naive Bayes

 Bernoulli

 Multinomial for text classification

 scikit representations

 Smoothing

 Tagged text

Classification

Experimental set-up

Evaluation

Recap3

Supervised classification

 A given set of classes, S={s1, s2, …, sk}

 A well defined class of objects, O

 Some features f1, f2, …, fn

 For each feature: a set of possible values V1, V2, …, Vn

 The set of feature vectors: V= V1 V2… Vn

 Each object in O is represented by some member of V:

 Written (v1, v2, …, vn), or

 (f1=v1, f2=v2, …, fn=vn)

 A classifier, , can be considered a mapping from V to S

NLTK: names
5

NLTK-example 2, names

In [56]: def gender_features2(name):

...: features = {}

...: features["first_letter"] = name[0].lower()

...: features["last_letter"] = name[-1].lower()

...: for letter in 'abcdefghijklmnopqrstuvwxyz':

...: features["count({})".format(letter)] = name.lower().count(letter)

...: features["has({})".format(letter)] = (letter in name.lower())

...: return features

6

first letter last letter count(X)

X: a-z

has(X)

X: a-z

total

Number of

features

1 1 26, 26 54

a-z a-z 0, 1, 2, … True, False

Possible

values for

each feat.

26 26 infinite 2

Movie reviews, eample 3
7

 Two classes: ‘neg’, ‘pos’

 Features’:

 2000 most frequent words in corpus

 Values: True/False

 Don't count number of occs in each document

 All features (words) not in document gets value ‘’False’’

Set-up for experiments

 Before you start: split into
development set and test set.

 Hide the test set

 Split development set into
Training and Development-
Test set

 Use training set for training a
learner

 Use Dev(-Test) for repeated
evaluation in the test phase

 Finally test on the test set!

8

Crossvalidation

5. september 2017

9

 But take away a final test set first!

Evaluation
10

5. september 2017  𝐹1 =
2𝑃𝑅

𝑃+𝑅

Naive Bayes11

Naive Bayes: Decision
12

 Given an object



 Consider

 for each class sm

 Choose the class with the largest value, in symbols

 i.e. choose the class for which the observations are
most likely

nn vfvfvf  ,...,, 2211

 nnm vfvfvfsP  ,...,,| 2211

 nnm
Ss

vfvfvfsP
m




,...,,|maxarg 2211

Naive Bayes: Model
13

 Bayes formula



 Sparse data, we may not even have seen



 We assume (wrongly) independence



 Putting together

    



n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

 
 

 nn

mmnn

nnm
vfvfvfP

sPsvfvfvfP
vfvfvfsP






,...,,

)(|,...,,
,...,,|

2211

2211

2211

   



n

i

miimnn svfPsvfvfvfP
1

2211 ||,...,,

nn vfvfvf  ,...,, 2211

Naive Bayes: Calculation
14



 For calculations

 avoid underflow, use logarithms



   



n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

 

 

  














































n

i

miim
Ss

n

i

miim
Ss

n

i

miim
Ss

svfPsP

svfPsP

svfPsP

m

m

m

1

1

1

)|log())(log(maxarg

|)(logmaxarg

|)(maxarg  

  






























n

i

miim
Ss

n

i

miim
Ss

svfPsP

svfPsP

m

m

1

1

|)(logmaxarg

|)(maxarg

Naive Bayes, Training 1
15

 Maximum Likelihood



 where C(sm, o) are the number of occurrences of objects o in

class sm

 Observe what we are doing in statistical terms:

 We want to estimate the true probability 𝑃(𝑠𝑚) from a set

of observations

 This is similar to estimating properties (parameters) of a

population from a sample.

 
)(

),(ˆ
oC

osC
sP m

m 

Naive Bayes (Bernoulli): Training 2
16

 Maximum Likelihood



 where C(fi=vi, sm) is the number of occurrences of
objects o

 where the object o belongs to class sm

 and the feature fi takes the value vi

 C(sm) is the number of occurrences belonging to class sm

 
)(

),(
|ˆ

m

mii
mii

sC

svfC
svfP




The two models
17

 Bernoulli

 the standard form of NB

 NLTK book, Sec. 6.1, 6.2, 6.5

 Jurafsky and Martin, 2.ed, sec. 20.2, WSD

 Multinomial model

 For text classification

 Related to n-gram models

 Jurafsky and Martin, 3.ed, sec. 7.1, Sentiment analysis

 Both

 Manning, Raghavan, Schütze, Introduction to Information Retrieval, Sec.

13.0-13.3

Multinomial text classification
18

 Build a language model for each class

 Score the document according to the different

classes

 Choose the class with the best score

Multinomial NB: Decision
19

 In the multinomial model

 fi refers to position i in the text

 vi refers to the word occurring in this position

 We model the probability of the full texts given the class sm

 Then we make a simplifying assumption:

 We assume a word to be equally likely in all positions:

   



n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

   



n

i

mim
Ss

n

i

miim
Ss

svPsPsvfPsP
mm 11

|)(maxarg|)(maxarg

Multinomial NB: Training
20



 where C(sm, o) is the number of occurrences of objects o in class sm



 where C(wi, sm) is the number of occurrences of word wi in all texts in
class sm

 is the total number of words in all texts in class sm

 Bernoulli counts the number of objects/texts where wi occurs

 Multinomial counts the number of occurrences of wi.

 
)(

),(ˆ
oC

osC
sP m

m 

 




j

mj

mi
mi

swC

swC
swP

),(

),(
|ˆ


j

mj swC),(

Comparison

 Registers whether a

term is present or not

 Considers both

 The present terms

 The absent terms

 Suitable for various

tasks

 Counts how many times

a term is present

 Considers

 only the present terms

 Ignores absent terms

 Tailor-made for text

classification

21

Bernoulli Multinomial

Implementation22

Doing it ourselves
23

 Possible to implement Naive Bayes classifiers

ourselves

 (That's not the case for all classifiers)

 Efficiency (and memory space) may be challenging

 Many available implementations. More efficient.

 E.g. scikit-learn

Available learners

 Bernoulli NB

 Decision trees

 (Python inefficient)

 Bernoulli NB

 Multinomial NB

 and many, many more

 Much more efficient

24

NLTK Scikit-learn

Data-representation

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

X_train:

array([[1., 0., 0., 0., 1., 1., 5.],

[0., 1., 0., 0., 1., 0., 2.],

[0., 0., 1., 1., 0., 0., 4.]])

train_target: ['class_1', 'class_2', 'class_1']

25

4 features

scikit

NLTK

7 features

class

classes

3 training

instances

3 training

instances

One-hot encoding

X_train:

array([[1., 0., 0., 0., 1., 1., 5.],

[0., 1., 0., 0., 1., 0., 2.],

[0., 0., 1., 1., 0., 0., 4.]])

train_target: ['class_1', 'class_2', 'class_1']

26

scikit

7 features

classes

feature 1 feature 2

a b c x y

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

3 training

instances

Converting dictionary

 We can construct the data to scikit directly

 Scikit has methods for converting Python-dictionaries/NLTK-format
to arrays

» train_data = [inst[0] for inst in train]

» train_target = [inst[1] for inst in train]

» v = DictVectorizer()

» X_train=v.fit_transform(train_data)

» X_test=v.transform(test_data)

27

1. Constructs (=fit)

repr. format

2. Transform

Transform

Use same v as

for train

Multinomial NB in scikit

 We can construct the data to scikit directly

 Scikit has methods for converting text to bag of words arrays

» train_data=["en rose er en rose",
"anta en rose er en fiol"]

» v = CountVectorizer()

» X_train=v.fit_transform(train_data)

» print(X_train.toarray())
[[0 2 1 0 2]
[1 2 1 1 1]]

28

Smoothing29

Naive Bayes: Calculation
30

 When using maximum likelihood estimation

 may become 0

 Then the whole

 becomes 0

 Goal to avoid 0-probabilities

   



n

i

miim
Ss

nnm
Ss

svfPsPvfvfvfsP
mm 1

2211 |)(maxarg,...,,|maxarg

 
)(

),(
|ˆ

m

mii
mii

sC

svfC
svfP




31

Laplace Smoothing

 Also called add-one smoothing

 Just add one to all the counts!

 Very simple

 MLE estimate:

 Laplace estimate:

 Lidstone smoothing: add k: ෠𝑃 𝑤𝑖 =
𝑐𝑖+𝑘

𝑁+𝑘𝑉

 NLTK Naïve Bayes: add 0.5

Smoothing contd.
32

 Example names, suffixes of 3 letters

 7944 names

 17576 possible suffixes

 1538 of them seen

 Trigrams of words, e.g. Brown

 Words: 1,161,192

 Vocabulary: 56,057

 Possible trigrams: 176,152,802,017,193

 Seen trigrams: 907,494

 Add 1 gives away too much probablity mass

More advanced smoothing
33

 There are more advanced methods taking the

actual distributions into consideration

 Presented in chapter om language models which we

will not consider

Working with texts

From bits to meaningful units

34

Tagged text
35

 [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something',

'NN'), ('completely', 'RB'), ('different', 'JJ')]

 Each token in the text is assigned a part of speech

(POS) tag

 There is a finite defined set of tags

 A tagger is a process which assigns tags to the

words in the text

Universal POS tag set (NLTK)
36

Tag Meaning English Examples

ADJ adjective new, good, high, special, big, local

ADP adposition on, of, at, with, by, into, under

ADV adverb really, already, still, early, now

CONJ conjunction and, or, but, if, while, although

DET determiner, article the, a, some, most, every, no, which

NOUN noun year, home, costs, time, Africa

NUM numeral twenty-four, fourth, 1991, 14:24

PRT particle at, on, out, over per, that, up, with

PRON pronoun he, their, her, its, my, I, us

VERB verb is, say, told, given, playing, would

. punctuation marks . , ; !

X other ersatz, esprit, dunno, gr8, univeristy

Distribution of universal POS in Brown

Cat Freq

ADV 56 239

NOUN 275 244

ADP 144 766

NUM 14 874

DET 137 019

. 147 565

PRT 29 829

VERB 182 750

X 1 700

CONJ 38 151

PRON 49 334

ADJ 83 721

Various POS tag set
38

 NLTK:

 Universal POS Tagset, 12 tags, (see 2.ed of the book)

 Simplified POS tagset, 19 tags, (1.ed, defunct)

 Brown tagset:

 Original: 87 tags

 Versions with extended tags <original>-<more>

 Penn treebank tags: 35+9 punctuation tags

Nouns
39

Penn treebank

Brown

Verbs
40

Penn treebank

Brown

Adjectives + Prepositions
41

Brown

Ambiguity…
42

 …is what makes natural language processing…

 …hard/fun

 POS:

 noun or verb: eats shoots and leaves

 verb or preposition: like

 Word sense:

 bank, file, …

 Structural:

 She saw a man with binoculars.

 Sounds

POS ambiguity
43

 The most frequent word forms are most ambiguous

 Even though most word types are unambiguous,

more than 50 % of the tokens in a corpus may be

ambiguous.

 The degree of ambiguity depends on the tag set.

Tagged corpora
44

 In a tagged corpora the word occurrences are
disambiguated

 Possible to explore the occurrences of the word with the
tag, e.g.

 How often is ``likes’’ used as a noun compared to 20 years
ago?

 Explore the frequency and positions of tags:

 When does a determiner occur in front of a verb?

 Good data for training various machine learning tasks:

 The tags make useful features

Summary
45

 Naive Bayes

 Bernoulli

 Multinomial for text classification

 scikit representations

 Smoothing

 Tagged text

