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Today

 Motivation

 Evaluating a binary classifier against a baseline

 Normal distribution (recap)

 Samples

 Hypothesis testing, general case

 Estimation, general case

 Estimation for a proportion



Why statistics in evaluation?

 Task1:

 You know the best classifier on a task has 0.8 (80%) 

accuracy (baseline).

 You have made a classifier which classify 85 items correctly

on a test set of 100 items. 

 Can you conclude your classifier is better than the baseline?

 Task 2:

 You have made a classifier. You test it on 500 items. It 

classifies 375 correctly.

 What is the accuracy of your classifier?



Why? (next week)

 Task 3:

 You have two different classifiers, one with accuracy

0.89 and one with accuracy 0.91on 1000 test items. 

 Can you conclude that one is better than the other?

 Task 4: 

 The two classifiers from task 3 agree on 870 items. 

 One is doing better on 20 items, the other is doing

better on 40 items. 

 Can we draw conclusions from this?



Why?
5

 Two parts to evaluation:

 The device to be evaluated

 The test items

 In choosing our test items

there is an element of

randomness, like

 Flipping a coin, or

 Drawing balls from an 

(infinite) urn

Vancouver Sun, «IKEA ballroom»



Flipping a coin 10-times

 Your friend has a coin.

 You suspect it is unfair and 
shows too many heads

 To test, you flip it 10 times

 How many heads should come up to confirm your
hypothesis?

6 heads? 7 heads? 8 heads? 9 heads? 10 heads



Flipping more times

 What if you instead flip it 100 times?

 60?

 70?

 What if you flip it 1000 times?

 10,000 times?

 We expect the proportion to approach 0.5 as n 

gets bigger

 But how fast?



Flipping a coin 10-times

 Here is a way to check what to expect for10 flips.

 Take a coin you know is fair:

 (Because you have flipped it 10,000 times)

 Flip it 10 times and record the numer of heads.

 Do this over again n many times, and collect the
recorded number of heads for each 10 flips, and 
inspect the numbers.

 The number of heads is a random variable X.

 As n grows, the distribution of X approaches the
binomial distribution B(10, 0.5)



10 flips, n many times

n=10,000

n=100 n=1000

binom.pmf



Use of the binomial distribution

 From the binomial distribution, we can see how

likely it is to get 10 heads, 9 heads, 8 heads, etc.

(= the pmf, probability mass function)

 And how likely it is to get at least 9 or at least 8 

heads, etc:

 P(X>8) = p(8)+p(9)+p(10)=F(10)-F(7)=1-F(7)

(F is the cdf, cumulative density function)



Tossing a fair(?) coin

 The cumulative

distribution function: 

``How likely is it to get

N or fewer tails?´´

N pmf(N) cdf(N)

0 0.001 0.001

1 0.010 0.011

2 0.044 0.055

3 0.117 0.172

4 0.205 0.377

5 0.246 0.623

6 0.205 0.828

7 0.117 0.945

8 0.044 0.989

9 0.010 0.999

10 0.001 1.000

10:

What is the propbaility of

getting 8 or more heads?



What is unusual?

 What is unusual?

 25%?

 10%?

 5%?

 1%?

 0.1%?

 In statistical tests, one

normally uses 5%

 With this number we

will draw wrong

conclusions 1 out of 20 

times.

 Sometimes 10, 1, 

0.1% are used.



SciPy

 import scipy

 from scipy import stats

 bin10 = stats.binom(10, 0.5) # N=10, p=0.5

 bin10.pmf(3)  # probability mass of 3

 bin10.cdf(3)   # cumulative distribution function at 3

 bin10.var()     # variance

 bin10.std()      # standard deviation

 In [169]: bin10.cdf(10)-bin10.cdf(7)

 Out[169]: 0.0546875

 In [170]: bin10.ppf(.95)

 Out[170]: 8.0



Formulate the 10 flips as a test

 Alternativ hypothesis

Ha: "Jim's coin comes up heads more than 50%"

 Null hypothesis

H0: "Jim's coin does not come up heads more than 50%"

 If Jim's coin comes up heads n times in 10 throws, and the

probability of getting n or more heads is less than p=0.05, 

we can reject the null hypothesis



100 flips

 What if we instead use 100 flips?

 The procedure is the same. But this time we can reject the null hypothesis if
we get 59 or more heads.

 In [172]: stats.binom.ppf(.95, 100, 0.5)

 Out[172]: 58.0

 In [173]: stats.binom.ppf(.95, 1000, 0.5)

 Out[173]: 526.0

 In [174]: stats.binom.ppf(.95, 10000, 0.5)

 Out[174]: 5082.0



Applying to evaluation

 How does this apply to evaluation?

 If the baseline classifier has 0.5 accuracy and we

test our own classifier on 100 items, we need at 

least 59 correctly classified to conclude anything.

 What we can conclude is that the new classifier is 

better than baseline – not that its accuracy is 0.59



Larger numbers

 What if the baseline is 0.8, still 100 test items?

 What if the baseline is 0.8 and 1000 test items?

 What if the baseline is 0.8 and 10000 test items?

 In [175]: stats.binom.ppf(.95, 100, 0.8)

 Out[175]: 86.0

Sample size 100 1000 10000

Number of correct items to beat baseline 87 822 8067

Recorded accuracy to beat baseline 0.87 0.822 0.8067



Normal distribution

(Recap)



Normal distribution

 For our purposes, we can mainly survive with the

binomial distribution and proportions.

 We will bring in the normal distribution to see:

 Standard statistical tests

 Relationships between binomial and normal distrbs.

 You only need one table for normal distributions

 Compared to one for each pair n,p for B(n, p)



The normal distribution - Continuous



Example height (contd.)

 Tallness of Norwegian young men (rough numbers):

 Normal distribution,  = 180 cm,  = 6cm

 How many are taller than 190cm?

 First calculate the z-score 
(how many standard deviations is this?)

 z=
𝑥−𝜇

𝜎
=

190−180

6
= 1.67

 Use software, calculator or table to find the 
corresponding probability p.

 Here p=0.0475 



Look up

 Statistical table

 course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf

 SciPy

 >>>import scipy

 >>> from scipy import stats

 >>> stats.norm.cdf(10/6)

 0.9522096477271853

 >>> 1-stats.norm.cdf(10/6)

 0.047790352272814696

 >>> stats.norm.cdf(190,180,6)

 0.9522096477271853

http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf


Table

 Given probability p, for which h is P(X>h) < p?

 Standardize,  calculate the Z-score: z=
𝑥−𝜇

𝜎

 𝑃 𝑋 > ℎ = 𝑃(
𝑋−𝜇

𝜎
>

ℎ−𝜇

𝜎
) = 𝑃(𝑍 >

ℎ−𝜇

𝜎
)

 Use table or software to look up z

 Conversely, for given h, we may find corresponding z 
and look up p.
Probability

p-value

z-score centimeters height

0.1 1.28 7.68 187.68

0.05 1.645 9.87 189.87

0.01 2.326 14 194

0.001 3.091 18.5 198.5



Sampling distribution

Utvalgsfordeling



Sampling - empirically

Goal: 

 make assertions about a whole population

 from observations of a sample (utvalg)

 A simple random sample (SRS) (tilfeldig utvalg):

1. Each individual has equal chance of being chosen 
(unbiased/forventningsrett)

2. Selection of the various individuals are independent



Binomial distribution
26

 Flipping the coin 10 times 

is a sample of coin flips:

 The probability is the same

 The flips are independent

 Selection of test items is 

nearly* a SRS of Bernoulli

trials

Vancouver Sun, «IKEA ballroom»
* "Nearly" because of lack of

replacement.

Close enough if sample is small

compared to population



Sampling in Language Technology

 You want to take a simple random sample of words

from a corpus?

 Can you use the n first sentences?

 Can you use a random sample of n sentences?

 How can you build a corpus (sample) which gives a 

random sample of Norwegian texts?

27



Sampling distributions – Example 

 Height: X

 assume N(180, 6)

 (𝜇 = 180, 𝜎 = 6, 𝑉𝑎𝑟(𝑋) = 36)

 Randomly choose 100.

 Add their heights: 

S = X1+ X2+…+ Xn

 A new random variable 

(all such samples)

 Exp(S) = n*= 18000 (cm)

 Var(S) = 100*Var(X) = 3600

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑚)

Source: Wikipedia



Sampling distributions – Example 

 Height: X

 assume N(180, 6)

 (𝜇 = 180, 𝜎 = 6, 𝑉𝑎𝑟(𝑋) = 36)

 Randomly choose 100.

 Add their heights: 

S = X1+ X2+…+ Xn

 A new random variable 

(all such samples)

 Exp(S) = n*= 18000 (cm)

 Var(S) = 100*Var(X) = 3600

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑚)

 The mean of the samples: 

X̄ =S/n

 A new random variable 

(all means of samples of 100)

 𝐸 ത𝑋 = 𝜇 ത𝑋 = 𝜇𝑋 = 180 (cm)

 𝜎 ത𝑋 =
1

100
× 𝜎𝑆 = 0.6 (𝑐𝑚)

 𝜎 ത𝑋 =
1

100
× 𝜎𝑋 × 100 =

𝜎𝑋

100



Sampling distributions 

 Let 

 X be a random variable for a population with exp: , std: 

 Let S = X1+ X2+…+ Xn, i.e. each Xi equals X

 Let : X̄ =S/n

 Then:

 E(S) = n*

 E(X̄) = 
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The form of the distribution

 If the Xi-s are independent and normally 

distributed, then X̄ is normally distributed (as 

expected)

 (More surprisingly) Even though the Xi-s themselves 

are not normally distributed: for large n-s,  X̄ is 

approximately normally distributed

= Central Limit Theorem



Example: throwing the dice until a 6

Sample size

1

4

10

100

Number of samples: 1000

𝐸 ത𝑋 = 𝐸 𝑋 = 𝜇 = 6

𝜎 ത𝑋 =
𝜎

𝑛
=

6 × 5

𝑛



Binomial distribution

 Number of successes: X

 Random variable over all series of n
trials

 Binomial distribution 
(binomisk fordeling): B(n,p)

 E(X)= np

 Var(X)= np(1-p)



 Approximated by N(np,                 ) 
for large n

 Proportion of success: p^ =X/n

 E(p^ ) = E(X/n) = np/n = p





 Approximated by N(p,                  ) 
for large n

Population: all Bernoulli trials with probability p.

Sample: n such trials

Example: Throwing a dice n times, counting the number of 6-s (success)
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Rule of thumb:

np>10 and 

n(1-p)>10



Binomial vs normal approximation

 In [175]: stats.binom.ppf(.95, 100, 0.8)

 Out[175]: 86.0

 In [201]: stats.norm.ppf(.95, 80, 
np.sqrt((1-0.8)*(0.8)*100))

 Out[201]: 86.579414507805893

 For binomial distributions, the traditional statistics used 

 Binomial distributions for small n

 Normal approximation to binomials/proportions

 Because of the (non) availability of tables for all (k,n,p)-s

 With computers, we can use the binomial distributions directly

Rule of thumb:

np>10 and 

n(1-p)>10



Hypothesis testing



Hypothesis testing

 Assume P is known with the distribution N(180, 6)

 A population P2, could be:
 Norw. males 50ys olds in 2007

 Norw. females 18ys olds in 2007

 Swe. males 18 ys olds in 2007

 Q1: Are the individuals in P2 shorter than they in P?

 Pick a random sample {x1, x2, …, xn} from P2

 Null hypothesis, H0 : P2 = 

 Hypothesis, Ha : P2 < 

 Q2: What is the chance {x1, x2, …, xn} could have been a 
SRS from P?



Example

 For example, if we take a SRS from P2 of 

 n=100 individuals, and we find 

 ҧ𝑥 = 178.5

 𝜎 ത𝑋 =
1

100
× 𝜎𝑆 =

1

100
× 𝜎𝑋 = 0.6 (𝑐𝑚)

 z=
ҧ𝑥−𝜇

𝜎ഥ𝑋
=

178.5−180

0.6
= −2.5

 we can conclude (alternative formulations:)

 there is less than 0.01 chance that {x1, x2, …, xn} is a s.r.s. from P

 If P and P2 had been equal (w.r.t. height), there is less than 1% 
chance that we would have chosen such a SRS

 The p-value is less than 0.01



Evaluation

 Observe that this is similar to what we did in the

coin flipping and evaluation using binomial 

distribution



Recipe (with normal distribution)

 Formulate Ha and H0

 𝐻0: 𝜇2 = 𝜇

 Sample an appropriate SRS of size n and find its mean value, ҧ𝑥

 Calculate the z-score: 𝑧 =
ҧ𝑥−𝜇

ൗ
𝜎

𝑛

 Ha: P2 <  is P(X < z)

 > similarly: 

 Ha: P2 =/=  is 2P(X > |z|)



Remarks

Truth

H0 Ha

Decision

Not rejecting

H0

Type II error

Reject H0 Type I error

Prob. p-value

 There is a chance of probability p that we erroneously reject 
H0 (Type I error)

 The test does not estimate type II error

 Says nothing about how much the difference is between P2 
and P

 Many possible banana skins: E.g. is the sample really random?



Estimation



Example

 Assume a population P2 and an SRS 

of 100 individuals from P2 with ҧ𝑥 =
179

 What is 𝜇 for P2?

 Goal: find an e such that

𝑃 179 − 𝑒 < 𝜇 < 179 + 𝑒 < 𝑝
for some level p, e.g. 0.05

 Observe that

𝑃 179 − 𝑒 < 𝜇 < 179 + 𝑒
=𝑃 𝜇 − 𝑒 < 179 < 𝜇 + 𝑒

 If we had known the standard 

deviation, we could calculate this like 

we have done so far.



Estimation

 How to estimate the true mean µ of a sample if the

standard deviation  of the population is unknown?

 All we have is a sample X= {x1, x2, …, xn}

 The sample mean x̄ is still the best estimate of the 

pop. mean µ

 How good an estimate is this?



Estimation

 To determine this, we try to estimate the true 

standard deviation of the population.

 We use the standard deviation of the sample X, 

 s2 = ((x1 – x̄)2 + (x2 – x̄)2 + …+ (xn  – x̄)2 )/(n – 1)

 Observe (n-1) and not n

 That is to compensate for using x̄ instead of µ in the 

formula

s is a random variable (like X̄) over all s.r.samples of size n

s is an unbiased estimator for : E(s)= 



Estimation

 In addition we do not use the standard Z-
distribution but the t-distribution for n-1.

 Then the level C confidence interval for  is

 [x̄ - e, x̄ + e] 

 Where

 and t* is the value from the t(n-1) density curve for C

n

s
te *

The t-distribution is similar to the z-distribution for large n.

But is more picky when t is small



Example

 Assume we do not know the st.dev. 18 ys old men from Finmark

 Pick a random sample of 9 men:

 x̄ = 177, s = 5

 Estimate the average height for this population

 Choose confidence level 0.95

 The 95% confidence interval for : [173.1, 180.9]

 Exact for normal distribution

 Approximation for large n otherwise

Table, or

843.3177
9

5
306.2177* 

n

s
tx

In   [78]: stats.t.ppf(.025,8)

Out[79]: -2.3060041350333709

What would be 

different if we

used normal 

distribution?



Estimation with proportion

 Task 2:

 You have made a classifier. You test it on 500 items. It 

classifies 375 correctly.

 What is the accuracy of your classifier?



Proportion

 The best estimate we have for p is Ƹ𝑝 =
375

500
= 0.75

 The best estimate we have for the standard 

deviation is SE Ƹ𝑝 =
ො𝑝(1− ො𝑝)

𝑛
ቆ=



Proportion

 The best estimate we have for p is Ƹ𝑝 =
375

500
= 0.75

 The best estimate we have for the standard 

deviation is SE Ƹ𝑝 =
ො𝑝(1− ො𝑝)

𝑛



Example

 Estimated accuracy is 375/500=0.75

 The standard deviation of the sample is

𝑝 1 − 𝑝 /𝑛 = 0.75(1 − 0.75)/500 = 0.0194

 Using normal distribution approximation:

 In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75*0.25/500))

 Out[284]: array([ 0.71204546,  0.78795454])

 Using binomial distribution:

 In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500

 Out[288]: array([ 0.712,  0.788])



Take home
51

 Two parts to evaluation:

 The device to be evaluated

 The test items

 In choosing our test items

there is an element of

randomness, like

 Flipping a coin, or

 Drawing balls from an 

(infinite) urn

Vancouver Sun, «IKEA ballroom»


