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Today

Motivation

Evaluating a binary classifier against a baseline
Normal distribution (recap)

Samples

Hypothesis testing, general case

Estimation, general case

Estimation for a proportion



Why statistics in evaluation?

Task1:

You know the best classifier on a task has 0.8 (80%)
accuracy (baseline).

You have made a classifier which classify 85 items correctly
on a test set of 100 items.

Can you conclude your classifier is better than the baseline?

Task 2:

You have made a classifier. You test it on 500 items. It
classifies 375 correctly.

What is the accuracy of your classifier?



Why? (next week)

Task 3:

You have two different classifiers, one with accuracy
0.89 and one with accuracy 0.91on 1000 test items.

Can you conclude that one is better than the other?

Task 4:

The two classifiers from task 3 agree on 870 items.

One is doing better on 20 items, the other is doing
better on 40 items.

Can we draw conclusions from this?



Why?
5
1 Two parts to evaluation:

The device to be evaluated

The test items

71 In choosing our test items o
there is an element of £ ‘fﬁ.‘z " i,f’ﬂ'w?nf?::é_""
randomness, like

Flipping a coin, or

Drawing balls from an
(infinite) urn




Flipping a coin 10-times

Your friend has a coin.

You suspect it is unfair and
shows too many heads

To test, you flip it 10 times

How many heads should come up to confirm your
hypothesis?



Flipping more times

What if you instead flip it 100 times?
602
702

What if you flip it 1000 times?

10,000 times?

We expect the proportion to approach 0.5 as n
gets bigger
But how fast?



Flipping a coin 10-times

Here is a way to check what to expect for10 flips.

Take a coin you know is fair:
(Because you have flipped it 10,000 times)
Flip it 10 times and record the numer of heads.

Do this over again n many times, and collect the
recorded number of heads for each 10 flips, and
inspect the numbers.

The number of heads is a random variable X.

As n grows, the distribution of X approaches the
binomial distribution B(10, 0.5)



10 flips, n many times
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Use of the binomial distribution

From the binomial distribution, we can see how
likely it is to get 10 heads, 2 heads, 8 heads, etc.
(= the pmf, probability mass function)

And how likely it is to get at least 9 or at least 8
heads, etc:
P(X=>8) = p(8)+p(?)+p(10)=F(10)-F(7)=1-F(7)

(F is the cdf, cumulative density function)



Tossing a fair(?) coin

The cumulative

distribution function: N pmf(N)  cdf(N)
. . . 0 0.001  0.001
How likely is it to get ] 0010  0.011
N or fewer tailse”’ 2 0.044  0.055
3 0.117 0.172

4 0.205 0.377

5 0.246  0.623

6 0.205 0.828

7 0.117  0.945

8 0.044  0.989

10: 9 0.010  0.999
10 0.001  1.000




What is unusual?¢

What is unusual?
25%7°
10%72
5%:2
1%:2
0.1%:2

In statistical tests, one
normally uses 5%

With this number we
will draw wrong
conclusions 1 out of 20
times.

Sometimes 10, 1,
0.1% are used.



SciPy

import scipy

from scipy import stats

bin10 = stats.binom(10, 0.5) # N=10, p=0.5
bin10.pmf(3) # probability mass of 3

bin10.cdf(3) # cumulative distribution function at 3
bin10.var() # variance

bin10.std()  # standard deviation

In [169]: bin10.cdf(10)-bin10.cdf(7)
Out[169]: 0.0546875

In [170]: bin10.ppf(.925)

Out[170]: 8.0



Formulate the 10 flips as a test

Alternativ hypothesis

Ha: "Jim's coin comes up heads more than 50%"

Null hypothesis

HO: "Jim's coin does not come up heads more than 50%"

If Jim's coin comes up heads n times in 10 throws, and the

probability of getting n or more heads is less than p=0.05,
we can reject the null hypothesis



100 flips

What if we instead use 100 flips?

The procedure is the same. But this time we can reject the null hypothesis if
we get 59 or more heads.

In [172]: stats.binom.ppf(.25, 100, 0.5)
Out[172]: 58.0

In [173]: stats.binom.ppf(.25, 1000, 0.5)
Out[173]: 526.0

In [174]: stats.binom.ppf(.25, 10000, 0.5)
Out[174]: 5082.0



Applying to evaluation

How does this apply to evaluation?

If the baseline classifier has 0.5 accuracy and we
test our own classifier on 100 items, we need at
least 59 correctly classified to conclude anything.

What we can conclude is that the new classifier is
better than baseline — not that its accuracy is 0.59



Larger numbers

What if the baseline is 0.8, still 100 test items?
What if the baseline is 0.8 and 1000 test items?
What if the baseline is 0.8 and 10000 test items?

In [175]: stats.binom.ppf(.25, 100, 0.8)
Out[175]: 86.0

Number of correct items to beat baseline 87 822 8067
Recorded accuracy to beat baseline 0.87 0.822 0.8067



- Normal distribution

(Recap)



Normal distribution

For our purposes, we can mainly survive with the
binomial distribution and proportions.
We will bring in the normal distribution to see:
Standard statistical tests
Relationships between binomial and normal distrbs.

You only need one table for normal distributions

Compared to one for each pair n,p for B(n, p)



The normal distribution - Continuous

Normal,
Bell-shaped Curve

I
I
Percentage of :

cases in 8 portions 13.59%| 34.13% | 34.13% |(13.59%
of the curve
Standard Deviations -40 -30 -20 -10 0 +10 +20 +30 +40
Cumulative ' I ' I ! ' '
Percentages 0. 1|% 2.I 3% 1 5|.9% 50:’/0 84i 1% 97.]?% 991.9%
[ 1 1 | L L O I I I L I [
Percentiles 1 5 10 20 30 40 50 60 70 80 90 95 99
Z scores -4.0 -3:.0 -2:.0 -1:.0 (:J +1;0 +2:.0 +3:.0 +4.0
T scores 2:0 3:0 c:lo 5:0 6:0 7c:1 B:D
Standard Nine 1 2 31| 4 5| 6 7 | 8 9
(Stanines)
Percentage 4%, 7% | 12% | 17% | 20% | 17% | 12% | 7% 4%

in Stanine



Example height (contd.)

Tallness of Norwegian young men (rough numbers):
Normal distribution, L = 180 cm, 6 = 6cm

How many are taller than 190cm?

First calculate the z-score
(how many standard deviations is this?)
- 190—180
7= —F = — = 1.67

o

Use software, calculator or table to find the
corresponding probability p.

Here p=0.0475



Look up

Statistical table

SciPy
>>>import scipy
>>> from scipy import stats

>>> stats.norm.cdf(10/6)
0.9522096477271853
>>> 1-stats.norm.cdf(10/6)
0.047790352272814696

>>> stats.norm.cdf(190,180,6)
0.9522096477271853


http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf

Table

Given probability p, for which h is P(X>h) < p?
XK

Standardize, calculate the Z-score: z= -

P(X >h) =P(=E>2E = pz>=-
Use table or software to look up z

Conversely, for given h, we may find corresponding z
and look up p.

0.1 1.28 7.68 187.68
0.05 1.645 9.87 189.87
0.01 2.326 14 194

0.001 3.091 18.5 198.5



Utvalgsfordeling



Sampling - empirically

Goal:

-1 make assertions about a whole population
-1 from observations of a sample (utvalg)

0 A simple random sample (SRS) (tilfeldig utvalg):

Each individual has equal chance of being chosen
(unbiased /forventningsrett)

Selection of the various individuals are independent




Binomial distribution

Flipping the coin 10 times
is a sample of coin flips:
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The flips are independent
Selection of test items is
nearly® a SRS of Bernoulli

trials

* "Nearly" because of lack of

replacement.
Close enough if sample is small
compared to population




Sampling in Language Technology

You want to take a simple random sample of words
from a corpus?

Can you use the n first sentences?
Can you use a random sample of n sentences?

How can you build a corpus (sample) which gives a
random sample of Norwegian texts?



Sampling distributions — Example

Height: X

assume N(180, 6)

(u =180,0 = 6,Var(X) = 36)
Randomly choose 100.
Add their heights:

S =X;+ X,+...+ X_
A new random variable
(all such samples)

Exp(S) = n*u= 18000 (cm)

Var(S) = 100*Var(X) = 3600

os = 10 X gy = 60 (cm)




Sampling distributions — Example

Height: X The mean of the samples:

assume N(180, 6) X =S/n

=il = & leme) = S8 A new random variable
Randomly choose 100. (all means of samples of 100)
Add their heights: E()?) = Uz = Uy = 180 (cm)
S=X+ X,+...+ X 1

og = — X og = 0.6 (cm)

A new random variable 1(1)0 -
(all such samples) 0% = 750 X 9x X V100 = \/1%0

Exp(S) = n*u= 18000 (cm)
Var(S) = 100*Var(X) = 3600
Og = 10 x Oy = 60 (Cm)



Sampling distributions

Let
X be a random variable for a population with exp: |, std:
Let S = X+ X,+...+ X, i.e. each X, equals X

Let : X =S/n
Then:
E(S) = n*p.
E(X) = p
Var(S) = o =nxVar(X)=nxo%
Var(X)=o: =i2><Var(S) =1xa§
n n
1
O = XGX



The form of the distribution

If the Xi-s are independent and normally
distributed, then X is normally distributed (as
expected)

(More surprisingly) Even though the Xi-s themselves
are not normally distributed: for large n-s, Xis
approximately normally distributed

= Central Limit Theorem



Example: throwing the dice until a 6

Number of samples: 1000




Binomial distribution bk;n,p)= E p“(L-p)" Y

Population: all Bernoulli trials with probability p.
Sample: n such trials
Example: Throwing a dice n times, counting the number of 6-s (success)

Number of successes: X Proportion of success: p=X/n
Random variable over all series of n E(p) = E(X/n) =np/n=p
trials
A 2 /A2

Binomial distribution Var(p) = oy /n =
(binomisk fordeling): B(n,p) 2

_ np(L- p)/n* = p(L- p)/n
E(X)= np
Var(X)= np(1-

(X) p(1-p) o p(l—p)_GY

5 = —

Ox = \/np(l_ P) 4 Vn
Approximated by N(np, vVNPA—P) ) .
for large n Approximated by N(p,/p(l—p)/n )

Rule of thumb: for large n

np>10 and

n(1-p)>10



Binomial vs normal approximation

In [175]: stats.binom.ppf(.25, 100, 0.8)
Out[175]: 86.0

In [201]: stats.norm.ppf(.25, 80,
np.sqrt((1-0.8)*(0.8)*100))

Out[201]: 86.579414507805893

For binomial distributions, the traditional statistics used

Binomial distributions for small n

Rule of thumb:
np>10 and

Normal approximation to binomials/proportions
n(1-p)>10

Because of the (non) availability of tables for all (k,n,p)-s

With computers, we can use the binomial distributions directly



- Hypothesis testing



Hypothesis testing

Assume P is known with the distribution N(180, 6)

A population P2, could be:
Norw. males 50ys olds in 2007
Norw. females 18ys olds in 2007
Swe. males 18 ys olds in 2007

Q1: Are the individuals in P2 shorter than they in P2

Pick a random sample {x;, x,, ..., x_} from P2
Null hypothesis, Hy: Loy = 1
Hypothesis, H : 1, < U

Q2: What is the chance {x;, x,, ..., x_} could have been a
SRS from P?



Example

For example, if we take a SRS from P2 of

n=100 individuals, and we find

x =178.5

1
c = —— X = —— X = .

0% = To0 X 05 = J55 X Ox 0.6 (cm)

£ _ 1785-180 _ ¢

ox 0.6

77—

we can conclude (alternative formulations:)

there is less than 0.01 chance that {x;, x,, ..., x_} is a s.r.s. from P

If P and P2 had been equal (w.r.t. height), there is less than 1%
chance that we would have chosen such a SRS

The p-value is less than 0.01



Evaluation

Observe that this is similar to what we did in the
coin flipping and evaluation using binomial
distribution



Recipe (with normal distribution)

]
o1 Formulate H, and H,
0 Ho:ppy =
7 Sample an appropriate SRS of size n and find its mean value, X
X—u
0 Calculate the z-score: z = -
/\m

0 Hg: ey < pis P(X < z)
o > similarly:
0 Hgt Hpp =/= pis 2xP(X > [z])



Remarks

Not rejecting Type Il error
Decision HO
Reject HO Type | error
Prob. p-value

01 There is a chance of probability p that we erroneously reject
HO (Type | error)

11 The test does not estimate type Il error

1 Says nothing about how much the difference is between P2
and P

1 Many possible banana skins: E.g. is the sample really random?



oo



Example

Assume a population P2 and an SRS
of 100 individuals from P2 with x =
179

What is i for P22

Goal: find an e such that

P(179 —e<u<179+e)<p
for some level p, e.g. 0.05
Observe that

P(179 —e<u <179 + e)
=P(u—e <179 < u+e)

If we had known the standard
deviation, we could calculate this like
we have done so far.

0.6

0.5 4

0.4 4

0.3 4

0.2 4

0.1+

0.0

T T T T T T
177 178 179 180 181 182




Estimation

How to estimate the true mean U of a sample if the
standard deviation ¢ of the population is unknown?

All we have is a sample X= {x;, X5, ..., x_}

The sample mean x is still the best estimate of the
pop. mean [

How good an estimate is this?



Estimation
N

11 To determine this, we try to estimate the true
standard deviation of the population.

1 We use the standard deviation of the sample X,
as2=((x1 =x)2 + (x2=X)2 + .ot (xn =%)2)/(n=1)
o1 Observe (n-1) and not n

o That is to compensate for using x instead of [ in the
formula

s is a random variable (like X) over all s.r.samples of size n

s is an unbiased estimator for &: E(s)= ©




Estimation

1 In addition we do not use the standard Z-
distribution but the t-distribution for n-1.

1 Then the level C confidence interval for U is
O[x-e x+ e]
2 Where (xS

R

o and t* is the value from the t(n-1) density curve for C

The t-distribution is similar to the z-distribution for large n.

But is more picky when 1 is small




Example
—

1 Assume we do not know the st.dev. 18 ys old men from Finmark

71 Pick a random sample of @ men:
0 x =177,s=5
o1 Estimate the average height for this population

1 Choose confidence level 0.95
What would be

Table. or In [78]: stats.t.ppf(.025,8) different if we
‘ Out[79]: -2.3060041350333709 used normal

S 5
Xtt*—=177+2.306—==177+3.843
Jn Jo

0 The 95% confidence interval for u: [173.1, 180.9]
1 Exact for normal distribution

distribution?

1 Approximation for large n otherwise



Estimation with proportion

o
- Task 2:

You have made a classifier. You test it on 500 items. It
classifies 375 correctly.

What is the accuracy of your classifier?



Proportion

A 375

The best estimate we have for p is p = 00 0.75

The best estimate we have for the standard
VPa-D) [ _
Jn

deviation is SE(p) =



Proportion

A 375

The best estimate we have for p is p = 00 0.75

The best estimate we have for the standard
JP(1—P)
Jn

deviation is SE(p) =



Example

Estimated accuracy is 375/500=0.75

The standard deviation of the sample is

Jp(1 —p)/n =,/0.75(1 — 0.75)/500 = 0.0194

Using normal distribution approximation:
In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75%0.25 /500))
Out[284]: array([ 0.71204546, 0.78795454))

Using binomial distribution:
In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75) /500
Out[288]: array([ 0.712, 0.788])



Take home
S

1 Two parts to evaluation:
The device to be evaluated

The test items

71 In choosing our test items
there is an element of
randomness, like

Flipping a coin, or

Drawing balls from an
(infinite) urn




