INF5830 – 2017 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 4, 11.9

Motivation

- Evaluating a binary classifier against a baseline
- Normal distribution (recap)
- Samples
- Hypothesis testing, general case
- Estimation, general case
- Estimation for a proportion

Why statistics in evaluation?

Task1:

- You know the best classifier on a task has 0.8 (80%) accuracy (baseline).
- You have made a classifier which classify 85 items correctly on a test set of 100 items.
- Can you conclude your classifier is better than the baseline?

Task 2:

- You have made a classifier. You test it on 500 items. It classifies 375 correctly.
- What is the accuracy of your classifier?

Why? (next week)

□ Task 3:

- You have two different classifiers, one with accuracy
 0.89 and one with accuracy 0.91 on 1000 test items.
- Can you conclude that one is better than the other?
- Task 4:
 - The two classifiers from task 3 agree on 870 items.
 - One is doing better on 20 items, the other is doing better on 40 items.
 - Can we draw conclusions from this?

Why?

- Two parts to evaluation:
 The device to be evaluated
 The test items
- In choosing our test items there is an element of randomness, like
 - Flipping a coin, or
 - Drawing balls from an (infinite) urn

Vancouver Sun, «IKEA ballroom»

Flipping a coin 10-times

- Your friend has a coin.
- You suspect it is unfair and shows too many heads
- To test, you flip it 10 times

How many heads should come up to confirm your hypothesis?

6 heads?	7 heads?	8 heads?	9 heads?	10 heads

Flipping more times

- What if you instead flip it 100 times?

 - **0**70?
- What if you flip it 1000 times?
- 10,000 times?
- We expect the proportion to approach 0.5 as n gets bigger
 - But how fast?

Flipping a coin 10-times

- □ Here is a way to check what to expect for 10 flips.
- Take a coin you know is fair:
 - (Because you have flipped it 10,000 times)
 - Flip it 10 times and record the numer of heads.
 - Do this over again n many times, and collect the recorded number of heads for each 10 flips, and inspect the numbers.
 - The number of heads is a random variable X.
 - As n grows, the distribution of X approaches the binomial distribution B(10, 0.5)

10 flips, n many times

Use of the binomial distribution

- From the binomial distribution, we can see how likely it is to get 10 heads, 9 heads, 8 heads, etc. (= the pmf, probability mass function)
- And how likely it is to get at least 9 or at least 8 heads, etc:
 - $P(X \ge 8) = p(8)+p(9)+p(10)=F(10)-F(7)=1-F(7)$ (F is the cdf, cumulative density function)

Tossing a fair(?) coin

 The cumulative distribution function:
 ``How likely is it to get N or fewer tails?''

Ν	pmf(N)	cdf(N)
0	0.001	0.001
1	0.010	0.011
2	0.044	0.055
3	0.117	0.172
4	0.205	0.377
5	0.246	0.623
6	0.205	0.828
7	0.117	0.945
8	0.044	0.989
9	0.010	0.999
10	0.001	1.000

What is the propbaility of getting 8 or more heads?

What is unusual?

- What is unusual?
 - □ 25%?
 - □ 10%?
 - □ 5%?
 - □ 1%?
 - □ 0.1%?

- In statistical tests, one normally uses 5%
- With this number we will draw wrong conclusions 1 out of 20 times.
- Sometimes 10, 1,
 0.1% are used.

SciPy

- import scipy
- □ from scipy import stats
- □ bin10 = stats.binom(10, 0.5) # N=10, p=0.5
- bin10.pmf(3) # probability mass of 3
- □ bin10.cdf(3) # cumulative distribution function at 3
- bin10.var() # variance
- bin10.std() # standard deviation
- In [169]: bin10.cdf(10)-bin10.cdf(7)
- □ Out[169]: 0.0546875
- □ In [170]: bin10.ppf(.95)
- Out[170]: 8.0

Formulate the 10 flips as a test

Alternativ hypothesis

Ha: "Jim's coin comes up heads more than 50%"

- Null hypothesis
 H0: "Jim's coin does not come up heads more than 50%"
- If Jim's coin comes up heads n times in 10 throws, and the probability of getting n or more heads is less than p=0.05, we can reject the null hypothesis

100 flips

- What if we instead use 100 flips?
- The procedure is the same. But this time we can reject the null hypothesis if we get 59 or more heads.
- In [172]: stats.binom.ppf(.95, 100, 0.5)
 Out[172]: 58.0
- In [173]: stats.binom.ppf(.95, 1000, 0.5)
- □ Out[173]: 526.0
- □ In [174]: stats.binom.ppf(.95, 10000, 0.5)
- □ Out[174]: 5082.0

Applying to evaluation

- How does this apply to evaluation?
- If the baseline classifier has 0.5 accuracy and we test our own classifier on 100 items, we need at least 59 correctly classified to conclude anything.
- What we can conclude is that the new classifier is better than baseline – not that its accuracy is 0.59

Larger numbers

- What if the baseline is 0.8, still 100 test items?
- What if the baseline is 0.8 and 1000 test items?
- What if the baseline is 0.8 and 10000 test items?
- In [175]: stats.binom.ppf(.95, 100, 0.8)
 Out[175]: 86.0

Sample size	100	1000	10000	
Number of correct items to beat baseline	87	822	8067	
Recorded accuracy to beat baseline	0.87	0.822	0.8067	

Normal distribution

(Recap)

Normal distribution

- For our purposes, we can mainly survive with the binomial distribution and proportions.
- We will bring in the normal distribution to see:
 Standard statistical tests
 - Relationships between binomial and normal distrbs.
 - You only need one table for normal distributions
 - Compared to one for each pair n,p for B(n, p)

The normal distribution - Continuous

Example height (contd.)

□ Tallness of Norwegian young men (rough numbers): □ Normal distribution, $\mu = 180$ cm, $\sigma = 6$ cm

□ How many are taller than 190cm?

 □ First calculate the z-score (how many standard deviations is this?)
 ¬ = ^{x - μ}/₂ = ¹⁹⁰⁻¹⁸⁰/₂ = 1.67

$$z = \frac{1}{\sigma} = \frac{1}{6} = 1.6$$

Use software, calculator or table to find the corresponding probability p.

Here p=0.0475

Look up

Statistical table

<u>course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf</u>

SciPy

- >>>import scipy
- >>> from scipy import stats
- \square >>> stats.norm.cdf(10/6)
- 0.9522096477271853
- $\square >>> 1$ -stats.norm.cdf(10/6)
- 0.047790352272814696
- >>> stats.norm.cdf(190,180,6)
- 0.9522096477271853

Table

Given probability p, for which h is P(X>h) < p?

• Standardize, calculate the Z-score: $z = \frac{x-\mu}{\sigma}$

$$\square P(X > h) = P(\frac{X-\mu}{\sigma} > \frac{h-\mu}{\sigma}) = P(Z > \frac{h-\mu}{\sigma})$$

- Use table or software to look up z
- Conversely, for given h, we may find corresponding z and look up p.

Probability p-value	z-score	centimeters	height
0.1	1.28	7.68	187.68
0.05	1.645	9.87	189.87
0.01	2.326	14	194
0.001	3.091	18.5	198.5

Sampling distribution

Utvalgsfordeling

Sampling - empirically

Goal:

- make assertions about a whole population
- from observations of a sample (utvalg)
- □ A simple random sample (SRS) (tilfeldig utvalg):
 - Each individual has equal chance of being chosen (unbiased/forventningsrett)
 - 2. Selection of the various individuals are independent

Binomial distribution

26

- Flipping the coin 10 times is a sample of coin flips:
 - The probability is the same
 - The flips are independent
- Selection of test items is nearly* a SRS of Bernoulli trials

* "Nearly" because of lack of replacement. Close enough if sample is small

compared to population

Vancouver Sun**,** «IKEA ballroom»

Sampling in Language Technology

- You want to take a simple random sample of words from a corpus?
 - Can you use the *n* first sentences?
 - Can you use a random sample of n sentences?
- How can you build a corpus (sample) which gives a random sample of Norwegian texts?

Sampling distributions – Example

Height: X

- assume N(180, 6)
- $(\mu = 180, \sigma = 6, Var(X) = 36)$
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - $Exp(S) = n^*\mu = 18000 \text{ (cm)}$
 - Var(S) = 100*Var(X) = 3600

$$\sigma_S = 10 \times \sigma_X = 60 \ (cm)$$

Source: Wikipedia

Sampling distributions – Example

Height: X

- assume N(180, 6)
- $(\mu = 180, \sigma = 6, Var(X) = 36)$
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - $Exp(S) = n^*\mu = 18000 \text{ (cm)}$
 - Var(S) = 100*Var(X) = 3600

$$\sigma_S = 10 \times \sigma_X = 60 \ (cm)$$

- □ The mean of the samples:
 - $\overline{X} = S/n$
- A new random variable (all means of samples of 100)
 E(X
) = µX
 = µX
 = 180 (cm)
 σ<sub>X
 = 1
 100
 × σ_S = 0.6 (cm)
 σ<sub>X
 = 1
 100
 × σ_X × √100 = σ<sub>X
 √100

 </sub></sub></sub>

Sampling distributions

Let X be a random variable for a population with exp: μ, std: σ Let S = X₁ + X₂ + ... + X_n, i.e. each X_i equals X Let : X̄ = S/n

$$E(S) = n^{*}\mu$$

$$E(\overline{X}) = \mu$$

$$Var(S) = \sigma_{S}^{2} = n \times Var(X) = n \times \sigma_{X}^{2}$$

$$Var(\overline{X}) = \sigma_{\overline{X}}^{2} = \frac{1}{n^{2}} \times Var(S) = \frac{1}{n} \times \sigma_{X}^{2}$$

$$\sigma_{\overline{X}} = \frac{1}{\sqrt{n}} \times \sigma_{X}$$

The form of the distribution

- If the Xi-s are independent and normally distributed, then X is normally distributed (as expected)
- (More surprisingly) Even though the Xi-s themselves are not normally distributed: for large n-s, X is approximately normally distributed
 - = Central Limit Theorem

Example: throwing the dice until a 6

Number of samples: 1000

Binomial distribution $b(k;n,p) = \binom{n}{k} p^k (1-p)^{(n-k)}$

Population: all Bernoulli trials with probability p.

Sample: *n* such trials

Example: Throwing a dice n times, counting the number of 6-s (success)

- Number of successes: X
- Random variable over all series of n trials
- Binomial distribution (binomisk fordeling): B(n,p)
- □ E(X)= np
- $\Box \quad Var(X) = np(1-p)$

$$\sigma_X = \sqrt{np(1-p)}$$

□ Approximated by N(*np*, $\sqrt{np(1-p)}$) for large n

Rule of thumb: np>10 and n(1-p)>10 Proportion of success:
$$\hat{p} = X/n$$

 $E(\hat{p}) = E(X/n) = np/n = p$
 $Var(\hat{p}) = \sigma_X^2/n^2 =$
 $np(1-p)/n^2 = p(1-p)/n$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \frac{\sigma_{Y}}{\sqrt{n}}$$

Approximated by N(p, $\sqrt{p(1-p)/n}$) for large n

Binomial vs normal approximation

- In [175]: stats.binom.ppf(.95, 100, 0.8)
- Out[175]: 86.0
- In [201]: stats.norm.ppf(.95, 80, np.sqrt((1-0.8)*(0.8)*100))
- Out[201]: 86.579414507805893
- For binomial distributions, the traditional statistics used
 - Binomial distributions for small n
 - Normal approximation to binomials/proportions
 - Because of the (non) availability of tables for all (k,n,p)-s
- With computers, we can use the binomial distributions directly

Rule of thumb:

np>10 and

n(1-p)>10

Hypothesis testing

- \square Assume P is known with the distribution N(180, 6)
- \Box A population P2, could be:
 - Norw. males 50ys olds in 2007
 - Norw. females 18ys olds in 2007
 - Swe. males 18 ys olds in 2007
- □ Q1: Are the individuals in P2 shorter than they in P?
- □ Pick a random sample $\{x_1, x_2, ..., x_n\}$ from P2
 - **D** Null hypothesis, $H_0: \mu_{P2} = \mu$
 - **D** Hypothesis, $H_a: \mu_{P2} < \mu$
 - Q2: What is the chance {x₁, x₂, ..., x_n} could have been a SRS from P?

Example

□ For example, if we take a SRS from P2 of

n=100 individuals, and we find

 $\bar{x} = 178.5$

•
$$\sigma_{\bar{X}} = \frac{1}{100} \times \sigma_S = \frac{1}{\sqrt{100}} \times \sigma_X = 0.6 \ (cm)$$

• $z = \frac{\bar{x} - \mu}{\sigma_{\bar{X}}} = \frac{178.5 - 180}{0.6} = -2.5$

we can conclude (alternative formulations:)

\square there is less than 0.01 chance that $\{x_1, x_2, \dots, x_n\}$ is a s.r.s. from P

- If P and P2 had been equal (w.r.t. height), there is less than 1% chance that we would have chosen such a SRS
- The p-value is less than 0.01

Evaluation

Observe that this is similar to what we did in the coin flipping and evaluation using binomial distribution

Recipe (with normal distribution)

- \Box Formulate H_a and H_0
- $\Box H_0: \mu_2 = \mu$
- Sample an appropriate SRS of size n and find its mean value, \bar{x}
- Calculate the z-score: $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$
- $\Box H_{a}: \mu_{P2} < \mu \text{ is } P(X < z)$
- \Box > similarly:
- $\Box \ \ H_{a}: \mu_{P2} = /= \mu \text{ is } 2 \times P(X > |z|)$

Remarks

		Truth	
		НО	На
Decision	Not rejecting H0		Type II error
	Reject HO	Type I error Prob. p-value	

- There is a chance of probability p that we erroneously reject H0 (Type I error)
- □ The test does not estimate type II error
- Says nothing about how much the difference is between P2 and P
- Many possible banana skins: E.g. is the sample really random?

Example

- Assume a population P2 and an SRS of 100 individuals from P2 with $\bar{x} = 179$
- \Box What is μ for P2?
- □ Goal: find an e such that *P*(179 − e < µ < 179 + e) < p
 for some level p, e.g. 0.05
- Observe that $P(179 - e < \mu < 179 + e)$ $=P(\mu - e < 179 < \mu + e)$
- If we had known the standard deviation, we could calculate this like we have done so far.

Estimation

- □ How to estimate the true mean μ of a sample if the standard deviation σ of the population is unknown?
- $\Box \text{ All we have is a sample } X = \{x_1, x_2, ..., x_n\}$
- □ The sample mean x is still the best estimate of the pop. mean µ
- How good an estimate is this?

Estimation

- To determine this, we try to estimate the true standard deviation of the population.
- □ We use the standard deviation of the sample X, = $x^2 = (1x^2 + x^2)^2 + (x^2 - x^2)^2 + (x - x^2)^2$

$$s^{2} = ((x1 - \overline{x})^{2} + (x2 - \overline{x})^{2} + ... + (xn - \overline{x})^{2})/(n - 1)$$

- Observe (n-1) and not n
- That is to compensate for using x instead of µ in the formula

s is a random variable (like \overline{X}) over all s.r.samples of size n s is an unbiased estimator for σ : E(s)= σ

Estimation

- In addition we do not use the standard Zdistribution but the t-distribution for n-1.
- □ Then the level C confidence interval for μ is □ [x̄ - e, x̄ + e]

• Where $e = t * \frac{s}{\sqrt{n}}$

 \square and t^* is the value from the t(n-1) density curve for C

The t-distribution is similar to the z-distribution for large n. But is more picky when t is small

Example

- □ Assume we do not know the st.dev. 18 ys old men from Finmark
- Pick a random sample of 9 men:
 - **a** $\overline{x} = 177, s = 5$
- □ Estimate the average height for this population
 - Choose confidence level 0.95

Table, or

In [78]: stats.t.ppf(.025,8) Out[79]: -2.3060041350333709

$$\bar{x} \pm t * \frac{s}{\sqrt{n}} = 177 \pm 2.306 \frac{5}{\sqrt{9}} = 177 \pm 3.843$$

What would be different if we used normal distribution?

- □ The 95% confidence interval for μ : [173.1, 180.9]
- Exact for normal distribution
- Approximation for large n otherwise

Estimation with proportion

- □ Task 2:
 - You have made a classifier. You test it on 500 items. It classifies 375 correctly.
 - What is the accuracy of your classifier?

Proportion

□ The best estimate we have for p is $\hat{p} = \frac{375}{500} = 0.75$

The best estimate we have for the standard

deviation is
$$SE(\hat{p}) = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \left(=\right)$$

Proportion

□ The best estimate we have for p is \$\heta\$ = \frac{375}{500}\$ = 0.75
 □ The best estimate we have for the standard deviation is SE(\$\heta\$) = \frac{\sqrt{\heta}(1-\heta)}{\sqrt{n}}\$

Example

- Estimated accuracy is 375/500=0.75
- The standard deviation of the sample is $\sqrt{p(1-p)/n} = \sqrt{0.75(1-0.75)/500} = 0.0194$
- Using normal distribution approximation:
 - In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75*0.25/500))
 - Out[284]: array([0.71204546, 0.78795454])
- Using binomial distribution:
 - In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500
 - Out[288]: array([0.712, 0.788])

Take home

- Two parts to evaluation:
 The device to be evaluated
 The test items
- In choosing our test items there is an element of randomness, like
 - Flipping a coin, or
 - Drawing balls from an (infinite) urn

Vancouver Sun, «IKEA ballroom»