INF5830 – 2017 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 4, 11.9

□ Motivation

- □ Evaluating a binary classifier against a baseline
- □ Normal distribution (recap)
- □ Samples
- □ Hypothesis testing, general case
- **Estimation, general case**
- □ Estimation for a proportion

Why statistics in evaluation?

Task1:

- You know the best classifier on a task has 0.8 (80%) accuracy (baseline).
- You have made a classifier which classify 85 items correctly on a test set of 100 items.
- Can you conclude your classifier is better than the baseline?

 \Box Task 2:

- You have made a classifier. You test it on 500 items. It classifies 375 correctly.
- What is the accuracy of your classifier?

Why? (next week)

□ Task 3:

- You have two different classifiers, one with accuracy 0.89 and one with accuracy 0.91on 1000 test items.
- Can you conclude that one is better than the other?
- \Box Task 4:
	- **□** The two classifiers from task 3 agree on 870 items.
	- **□ One is doing better on 20 items, the other is doing** better on 40 items.
	- **□ Can we draw conclusions from this?**

Why?

- □ Two parts to evaluation: **The device to be evaluated** \blacksquare The test items
- \Box In choosing our test items there is an element of randomness, like
	- \blacksquare Flipping a coin, or
	- **D** Drawing balls from an (infinite) urn

Vancouver Sun, «IKEA ballroom»

Flipping a coin 10-times

- □ Your friend has a coin.
- □ You suspect it is unfair and shows too many heads

 \Box How many heads should come up to confirm your hypothesis?

Flipping more times

- What if you instead flip it 100 times?
	- **E** 90₅
	- **□** 20\$
- □ What if you flip it 1000 times?
- □ 10,000 times?
- \square We expect the proportion to approach 0.5 as n gets bigger
	- **But how fast?**

Flipping a coin 10-times

- \Box Here is a way to check what to expect for 10 flips.
- \Box Take a coin you know is fair:
	- (Because you have flipped it 10,000 times)
	- **<u>E</u>** Flip it 10 times and record the numer of heads.
	- **□** Do this over again **n** many times, and collect the recorded number of heads for each 10 flips, and inspect the numbers.
	- \blacksquare The number of heads is a random variable X.
	- **□ As n grows, the distribution of X approaches the** binomial distribution B(10, 0.5)

10 flips, n many times

Use of the binomial distribution

- \Box From the binomial distribution, we can see how likely it is to get 10 heads, 9 heads, 8 heads, etc. $(=$ the pmf, probability mass function)
- □ And how likely it is to get at least 9 or at least 8 heads, etc:
	- \blacksquare P(X \geq 8) = p(8)+p(9)+p(10)=F(10)-F(7)=1-F(7) (F is the cdf, cumulative density function)

Tossing a fair(?) coin

 \Box The cumulative distribution function: ``How likely is it to get N or fewer tails?''

What is the propbaility of getting 8 or more heads?

What is unusual?

- □ What is unusual?
	- \Box 25%?
	- \Box 10%?
	- \Box 5%?
	- \Box 1%?
	- \Box 0.1%?
- \Box In statistical tests, one normally uses 5%
- **D** With this number we will draw wrong conclusions 1 out of 20 times.
- □ Sometimes 10, 1, 0.1% are used.

SciPy

- \Box import scipy
- \Box from scipy import stats
- □ bin10 = stats.binom(10, 0.5) # $N=10$, p=0.5
- \Box bin10.pmf(3) # probability mass of 3
- \Box bin10.cdf(3) # cumulative distribution function at 3
- \Box bin10.var() # variance
- \Box bin10.std() # standard deviation
- \Box In [169]: bin10.cdf(10)-bin10.cdf(7)
- \Box Out[169]: 0.0546875
- \Box In [170]: bin10.ppf(.95)
- Out[170]: 8.0

Formulate the 10 flips as a test

□ Alternativ hypothesis

Ha: "Jim's coin comes up heads more than 50%"

- **D** Null hypothesis H0: "Jim's coin does not come up heads more than 50%"
- □ If Jim's coin comes up heads *n* times in 10 throws, and the probability of getting *n* or more heads is less than p=0.05, we can reject the null hypothesis

100 flips

- What if we instead use 100 flips?
- \Box The procedure is the same. But this time we can reject the null hypothesis if we get 59 or more heads.
- \Box In [172]: stats.binom.ppf(.95, 100, 0.5) \Box Out[172]: 58.0
- \Box In [173]: stats.binom.ppf(.95, 1000, 0.5)
- \Box Out[173]: 526.0
- \Box In [174]: stats.binom.ppf(.95, 10000, 0.5)
- \Box Out[174]: 5082.0

Applying to evaluation

- \Box How does this apply to evaluation?
- \Box If the baseline classifier has 0.5 accuracy and we test our own classifier on 100 items, we need at least 59 correctly classified to conclude anything.
- \Box What we can conclude is that the new classifier is better than baseline – not that its accuracy is 0.59

Larger numbers

- \Box What if the baseline is 0.8, still 100 test items?
- □ What if the baseline is 0.8 and 1000 test items?
- What if the baseline is 0.8 and 10000 test items?
- \Box In [175]: stats.binom.ppf(.95, 100, 0.8) □ Out[175]: 86.0

Normal distribution

(Recap)

Normal distribution

- \Box For our purposes, we can mainly survive with the binomial distribution and proportions.
- \Box We will bring in the normal distribution to see: **E** Standard statistical tests
	- **Relationships between binomial and normal distrbs.**
	- You only need one table for normal distributions
		- Compared to one for each pair n,p for B(n, p)

The normal distribution - Continuous

Example height (contd.)

□ Tallness of Norwegian young men (rough numbers): \blacksquare Normal distribution, $\mu = 180$ cm, $\sigma = 6$ cm

□ How many are taller than 190cm?

First calculate the z-score (how many standard deviations is this?) $\chi - \mu$ 190−180

$$
\sigma z = \frac{x - \mu}{\sigma} = \frac{190 - 100}{6} = 1.67
$$

□ Use software, calculator or table to find the corresponding probability *p*.

 \blacksquare Here p=0.0475

Look up

Statistical table

[course.shufe.edu.cn/jpkc/jrjlx/ref/Sta](http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf)Table.pdf

SciPy

- \Box >>>import scipy
- \Box >>> from scipy import stats
- \Box >>> stats.norm.cdf(10/6)
- \Box 0.9522096477271853
- \Box >>> 1-stats.norm.cdf(10/6)
- 0.047790352272814696
- \Box >>> stats.norm.cdf(190,180,6)
- \Box 0.9522096477271853

Table

Given probability p, for which h is $P(X>h) < p$? Standardize, calculate the Z-score: z= $x-\mu$ σ $P(X > h) = P($ $X-\mu$ σ > $h-\mu$ σ $) = P(Z >$ $h-\mu$ σ)

u Use table or software to look up z

□ Conversely, for given h, we may find corresponding z and look up *p*.

Sampling distribution

Utvalgsfordeling

Sampling - empirically

Goal:

- \Box make assertions about a whole population
- □ from observations of a sample (utvalg)
- □ A simple random sample (SRS) (tilfeldig utvalg):
	- 1. Each individual has equal chance of being chosen (unbiased/forventningsrett)
	- 2. Selection of the various individuals are independent

Binomial distribution

26

- \Box Flipping the coin 10 times is a sample of coin flips:
	- \blacksquare The probability is the same
	- \blacksquare The flips are independent
- \square Selection of test items is nearly* a SRS of Bernoulli trials

* "Nearly" because of lack of replacement. Close enough if sample is small compared to population

Vancouver Sun, «IKEA ballroom»

Sampling in Language Technology

- □ You want to take a simple random sample of words from a corpus?
	- Can you use the *n* first sentences?
	- Can you use a random sample of *n* sentences?
- □ How can you build a corpus (sample) which gives a random sample of Norwegian texts?

Sampling distributions – Example

□ Height: X

- \blacksquare assume N(180, 6)
- \Box ($\mu = 180, \sigma = 6, Var(X) = 36$)
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
	- \Box Exp(S) = n^{*} μ = 18000 (cm)
	- \Box Var(S) = 100*Var(X) = 3600
	- $\sigma_{\rm s} = 10 \times \sigma_{\rm x} = 60$ (cm)

Sampling distributions – Example

□ Height: X

- **a** assume $N(180, 6)$
- $\mu = 180, \sigma = 6, Var(X) = 36$
- Randomly choose 100.
- \Box Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
	- \Box Exp(S) = n^{*} μ = 18000 (cm)
	- \Box Var(S) = 100*Var(X) = 3600

$$
\sigma_S = 10 \times \sigma_X = 60 \ (cm)
$$

- \Box The mean of the samples:
	- $\overline{X} = S/n$
- A new random variable (all means of samples of 100) $E(X) = \mu_{\bar{X}} = \mu_X = 180$ (cm) $\sigma_{\bar{X}} = \frac{1}{10}$ $\frac{1}{100} \times \sigma_S = 0.6$ (cm) $\sigma_{\bar{X}} = \frac{1}{10}$ $\frac{1}{100} \times \sigma_X \times \sqrt{100} = \frac{\sigma_X}{\sqrt{10}}$ 100

Sampling distributions

Let \Box X be a random variable for a population with exp: μ , std: σ \blacksquare Let $S = X_1 + X_2 + ... + X_n$, i.e. each X_i equals X Let : $\overline{X} = S/n$

D Then:

O

$$
\mathbf{E}(S) = n^* \mu
$$

$$
E(\overline{X}) = \mu
$$

$$
Var(S) = \sigma_S^2 = n \times Var(X) = n \times \sigma_X^2
$$

$$
Var(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{1}{n^2} \times Var(S) = \frac{1}{n} \times \sigma_X^2
$$

$$
\sigma_{\overline{X}} = \frac{1}{\sqrt{n}} \times \sigma_{X}
$$

The form of the distribution

- \Box If the Xi-s are independent and normally distributed, then \overline{X} is normally distributed (as expected)
- \Box (More surprisingly) Even though the Xi-s themselves are not normally distributed: for large n-s, \overline{X} is approximately normally distributed
	- = Central Limit Theorem

Example: throwing the dice until a 6

Number of samples: 1000

Binomial distribution

Population: all Bernoulli trials with probability *p*.

Sample: *n* such trials

Example: Throwing a dice *n* times, counting the number of 6-s (success)

- □ Number of successes: X
- Random variable over all series of *n* trials
- □ Binomial distribution (binomisk fordeling): B(n,p)
- E(X)= *np*
- Var(X)= *np(1-p)*

$$
\sigma_X = \sqrt{np(1-p)}
$$

n Approximated by N(np, $\sqrt{np(1-p)}$) for large n

> Rule of thumb: np>10 and $n(1-p)$ > 10

 \Box

 \Box Proportion of success: $\hat{p}=X/n$ $E(\hat{p}) = E(X/n) = np/n = p$ \Box $np(1-p)/n^2 = p(1-p)/n$ $Var(\hat{p}) = \sigma_X^2/n^2 =$

 $(k; n, p) = \binom{n}{k} p^k (1-p)^{(n-k)}$

 $\left.\rule{0pt}{10pt}\right.$

 \int

k

 $b(k; n, p) = \binom{n}{k} p^k (1-p)^{(n-k)}$

 $\overline{}$

 $=$

 $\bigg($

 \setminus

n

$$
= np(1-p)
$$
\n
$$
= \sqrt{np(1-p)}
$$
\n
$$
\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \frac{\sigma_{\hat{p}}}{\sqrt{n}}
$$

p Approximated by $N(p, \sqrt{p(1-p)/n})$ for large n

Binomial vs normal approximation

- \Box In [175]: stats.binom.ppf(.95, 100, 0.8)
- \Box Out[175]: 86.0
- \Box In [201]: stats.norm.ppf(.95, 80, np.sqrt((1-0.8)*(0.8)*100))
- \Box Out[201]: 86.579414507805893
- \Box For binomial distributions, the traditional statistics used
	- **□** Binomial distributions for small n
	- Normal approximation to binomials/proportions
		- Because of the (non) availability of tables for all (k,n,p)-s
- With computers, we can use the binomial distributions directly

Rule of thumb:

np>10 and

 $n(1-p)$ > 10

Hypothesis testing

- \Box Assume P is known with the distribution N(180, 6)
- □ A population P2, could be:
	- Norw. males 50ys olds in 2007
	- Norw. females 18ys olds in 2007
	- Swe. males 18 ys olds in 2007
- \Box Q1: Are the individuals in P2 shorter than they in P?
- \Box Pick a random sample $\{x_1, x_2, ..., x_n\}$ from P2
	- \Box Null hypothesis, H₀: $\mu_{P2} = \mu$
	- **H** Hypothesis, H_a : μ_{P2} $\lt \mu$
	- **Q**2: What is the chance $\{x_1, x_2, ..., x_n\}$ could have been a SRS from P?

Example

□ For example, if we take a SRS from P2 of

- n=100 individuals, and we find
- $\bar{x} = 178.5$

$$
\sigma_{\bar{X}} = \frac{1}{100} \times \sigma_{S} = \frac{1}{\sqrt{100}} \times \sigma_{X} = 0.6 \text{ (cm)}
$$

$$
\sigma_{\bar{X}} = \frac{\bar{x} - \mu}{\sigma_{\bar{X}}} = \frac{178.5 - 180}{0.6} = -2.5
$$

- □ we can conclude (alternative formulations:)
	- **n** there is less than 0.01 chance that $\{x_1, x_2, ..., x_n\}$ is a s.r.s. from P
	- \blacksquare If P and P2 had been equal (w.r.t. height), there is less than 1% chance that we would have chosen such a SRS
	- **The p-value is less than 0.01**

Evaluation

 \Box Observe that this is similar to what we did in the coin flipping and evaluation using binomial distribution

Recipe (with normal distribution)

- \Box Formulate H_a and H₀
- $H_0: \mu_2 = \mu$
- \Box Sample an appropriate SRS of size n and find its mean value, \bar{x}
- Galculate the z-score: $z =$ $\bar{x}-\mu$ $\sigma_{/}$ \overline{n}
- \Box H_a: $\mu_{P2} < \mu$ is P(X < z)
- \Box > similarly:
- \Box H_a: $\mu_{P2} = / = \mu$ is 2×P(X > |z|)

Remarks

- □ There is a chance of probability p that we erroneously reject H0 (Type I error)
- \Box The test does not estimate type II error
- \square Says nothing about how much the difference is between P2 and P
- □ Many possible banana skins: E.g. is the sample really random?

Example

- □ Assume a population P2 and an SRS of 100 individuals from P2 with $\bar{x} =$ 179
- \Box What is μ for P2?
- Goal: find an e such that $P(179 - e < \mu < 179 + e) < p$ for some level p, e.g. 0.05
- Observe that $P(179 - e < \mu < 179 + e)$ $= P(\mu - e < 179 < \mu + e)$
- \Box If we had known the standard deviation, we could calculate this like we have done so far.

Estimation

- \Box How to estimate the true mean μ of a sample if the standard deviation σ of the population is unknown?
- \Box All we have is a sample X= { $x_1, x_2, ..., x_n$ }
- \Box The sample mean \overline{x} is still the best estimate of the pop. mean µ
- \Box How good an estimate is this?

Estimation

- \Box To determine this, we try to estimate the true standard deviation of the population.
- □ We use the <u>standard deviation of the sample</u> X,

$$
s^{2} = ((x1 - \overline{x})^{2} + (x2 - \overline{x})^{2} + ... + (xn - \overline{x})^{2})/(n - 1)
$$

- **□ Observe (n-1) and not n**
- \blacksquare That is to compensate for using x instead of μ in the formula

s is a random variable (like \overline{X}) over all s.r.samples of size n s is an unbiased estimator for σ : E(s)= σ

Estimation

- \Box In addition we do not use the standard Zdistribution but the t-distribution for n-1.
- \Box Then the level C confidence interval for μ is \overline{a} [x - e, x + e]

$$
\blacksquare \text{ Where } e = t^* \frac{s}{\sqrt{n}}
$$

 \blacksquare and t^* is the value from the $t(n-1)$ density curve for C

The t-distribution is similar to the z-distribution for large n. But is more picky when t is small

Example

- Assume we do not know the st.dev. 18 ys old men from Finmark
- □ Pick a random sample of 9 men:
	- $\overline{x} = 177, s = 5$
- \Box Estimate the average height for this population
	- Choose confidence level 0.95

Table, or

In [78]: stats.t.ppf(.025,8) Out[79]: -2.3060041350333709

$$
\bar{x} \pm t^* \frac{s}{\sqrt{n}} = 177 \pm 2.306 \frac{5}{\sqrt{9}} = 177 \pm 3.843
$$

What would be different if we used normal distribution?

- The 95% confidence interval for μ : [173.1, 180.9]
- □ Exact for normal distribution
- **E** Approximation for large n otherwise

Estimation with proportion

- \square Task 2:
	- **D** You have made a classifier. You test it on 500 items. It classifies 375 correctly.
	- **D** What is the accuracy of your classifier?

Proportion

 \Box The best estimate we have for p is $\hat{p}=0$ 375 500 $= 0.75$

 \Box The best estimate we have for the standard

deviation is
$$
SE(\hat{p}) = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \left(=
$$

Proportion

 \Box The best estimate we have for p is $\hat{p}=0$ 375 500 $= 0.75$ \square The best estimate we have for the standard deviation is $SE(\hat{p}) =$ $\hat{p}(1-\hat{p})$ \overline{n}

Example

- Estimated accuracy is $375/500=0.75$
- \Box The standard deviation of the sample is $\sqrt{p(1-p)/n} = \sqrt{0.75(1-0.75)/500} = 0.0194$
- **Using normal distribution approximation:**
	- In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75*0.25/500))
	- Out[284]: array([0.71204546, 0.78795454])
- □ Using binomial distribution:
	- In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500
	- Out[288]: array([0.712, 0.788])

Take home

- □ Two parts to evaluation: **The device to be evaluated** \blacksquare The test items
- \Box In choosing our test items there is an element of randomness, like
	- \blacksquare Flipping a coin, or
	- **D** Drawing balls from an (infinite) urn

Vancouver Sun, «IKEA ballroom»