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Today

 Motivation

 Evaluating a binary classifier against a baseline

 Normal distribution (recap)

 Samples

 Hypothesis testing, general case

 Estimation, general case

 Estimation for a proportion



Why statistics in evaluation?

 Task1:

 You know the best classifier on a task has 0.8 (80%) 

accuracy (baseline).

 You have made a classifier which classify 85 items correctly

on a test set of 100 items. 

 Can you conclude your classifier is better than the baseline?

 Task 2:

 You have made a classifier. You test it on 500 items. It 

classifies 375 correctly.

 What is the accuracy of your classifier?



Why? (next week)

 Task 3:

 You have two different classifiers, one with accuracy

0.89 and one with accuracy 0.91on 1000 test items. 

 Can you conclude that one is better than the other?

 Task 4: 

 The two classifiers from task 3 agree on 870 items. 

 One is doing better on 20 items, the other is doing

better on 40 items. 

 Can we draw conclusions from this?



Why?
5

 Two parts to evaluation:

 The device to be evaluated

 The test items

 In choosing our test items

there is an element of

randomness, like

 Flipping a coin, or

 Drawing balls from an 

(infinite) urn

Vancouver Sun, «IKEA ballroom»



Flipping a coin 10-times

 Your friend has a coin.

 You suspect it is unfair and 
shows too many heads

 To test, you flip it 10 times

 How many heads should come up to confirm your
hypothesis?

6 heads? 7 heads? 8 heads? 9 heads? 10 heads



Flipping more times

 What if you instead flip it 100 times?

 60?

 70?

 What if you flip it 1000 times?

 10,000 times?

 We expect the proportion to approach 0.5 as n 

gets bigger

 But how fast?



Flipping a coin 10-times

 Here is a way to check what to expect for10 flips.

 Take a coin you know is fair:

 (Because you have flipped it 10,000 times)

 Flip it 10 times and record the numer of heads.

 Do this over again n many times, and collect the
recorded number of heads for each 10 flips, and 
inspect the numbers.

 The number of heads is a random variable X.

 As n grows, the distribution of X approaches the
binomial distribution B(10, 0.5)



10 flips, n many times

n=10,000

n=100 n=1000

binom.pmf



Use of the binomial distribution

 From the binomial distribution, we can see how

likely it is to get 10 heads, 9 heads, 8 heads, etc.

(= the pmf, probability mass function)

 And how likely it is to get at least 9 or at least 8 

heads, etc:

 P(X>8) = p(8)+p(9)+p(10)=F(10)-F(7)=1-F(7)

(F is the cdf, cumulative density function)



Tossing a fair(?) coin

 The cumulative

distribution function: 

``How likely is it to get

N or fewer tails?´´

N pmf(N) cdf(N)

0 0.001 0.001

1 0.010 0.011

2 0.044 0.055

3 0.117 0.172

4 0.205 0.377

5 0.246 0.623

6 0.205 0.828

7 0.117 0.945

8 0.044 0.989

9 0.010 0.999

10 0.001 1.000

10:

What is the propbaility of

getting 8 or more heads?



What is unusual?

 What is unusual?

 25%?

 10%?

 5%?

 1%?

 0.1%?

 In statistical tests, one

normally uses 5%

 With this number we

will draw wrong

conclusions 1 out of 20 

times.

 Sometimes 10, 1, 

0.1% are used.



SciPy

 import scipy

 from scipy import stats

 bin10 = stats.binom(10, 0.5) # N=10, p=0.5

 bin10.pmf(3)  # probability mass of 3

 bin10.cdf(3)   # cumulative distribution function at 3

 bin10.var()     # variance

 bin10.std()      # standard deviation

 In [169]: bin10.cdf(10)-bin10.cdf(7)

 Out[169]: 0.0546875

 In [170]: bin10.ppf(.95)

 Out[170]: 8.0



Formulate the 10 flips as a test

 Alternativ hypothesis

Ha: "Jim's coin comes up heads more than 50%"

 Null hypothesis

H0: "Jim's coin does not come up heads more than 50%"

 If Jim's coin comes up heads n times in 10 throws, and the

probability of getting n or more heads is less than p=0.05, 

we can reject the null hypothesis



100 flips

 What if we instead use 100 flips?

 The procedure is the same. But this time we can reject the null hypothesis if
we get 59 or more heads.

 In [172]: stats.binom.ppf(.95, 100, 0.5)

 Out[172]: 58.0

 In [173]: stats.binom.ppf(.95, 1000, 0.5)

 Out[173]: 526.0

 In [174]: stats.binom.ppf(.95, 10000, 0.5)

 Out[174]: 5082.0



Applying to evaluation

 How does this apply to evaluation?

 If the baseline classifier has 0.5 accuracy and we

test our own classifier on 100 items, we need at 

least 59 correctly classified to conclude anything.

 What we can conclude is that the new classifier is 

better than baseline – not that its accuracy is 0.59



Larger numbers

 What if the baseline is 0.8, still 100 test items?

 What if the baseline is 0.8 and 1000 test items?

 What if the baseline is 0.8 and 10000 test items?

 In [175]: stats.binom.ppf(.95, 100, 0.8)

 Out[175]: 86.0

Sample size 100 1000 10000

Number of correct items to beat baseline 87 822 8067

Recorded accuracy to beat baseline 0.87 0.822 0.8067



Normal distribution

(Recap)



Normal distribution

 For our purposes, we can mainly survive with the

binomial distribution and proportions.

 We will bring in the normal distribution to see:

 Standard statistical tests

 Relationships between binomial and normal distrbs.

 You only need one table for normal distributions

 Compared to one for each pair n,p for B(n, p)



The normal distribution - Continuous



Example height (contd.)

 Tallness of Norwegian young men (rough numbers):

 Normal distribution,  = 180 cm,  = 6cm

 How many are taller than 190cm?

 First calculate the z-score 
(how many standard deviations is this?)

 z=
𝑥−𝜇

𝜎
=

190−180

6
= 1.67

 Use software, calculator or table to find the 
corresponding probability p.

 Here p=0.0475 



Look up

 Statistical table

 course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf

 SciPy

 >>>import scipy

 >>> from scipy import stats

 >>> stats.norm.cdf(10/6)

 0.9522096477271853

 >>> 1-stats.norm.cdf(10/6)

 0.047790352272814696

 >>> stats.norm.cdf(190,180,6)

 0.9522096477271853

http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf


Table

 Given probability p, for which h is P(X>h) < p?

 Standardize,  calculate the Z-score: z=
𝑥−𝜇

𝜎

 𝑃 𝑋 > ℎ = 𝑃(
𝑋−𝜇

𝜎
>

ℎ−𝜇

𝜎
) = 𝑃(𝑍 >

ℎ−𝜇

𝜎
)

 Use table or software to look up z

 Conversely, for given h, we may find corresponding z 
and look up p.
Probability

p-value

z-score centimeters height

0.1 1.28 7.68 187.68

0.05 1.645 9.87 189.87

0.01 2.326 14 194

0.001 3.091 18.5 198.5



Sampling distribution

Utvalgsfordeling



Sampling - empirically

Goal: 

 make assertions about a whole population

 from observations of a sample (utvalg)

 A simple random sample (SRS) (tilfeldig utvalg):

1. Each individual has equal chance of being chosen 
(unbiased/forventningsrett)

2. Selection of the various individuals are independent



Binomial distribution
26

 Flipping the coin 10 times 

is a sample of coin flips:

 The probability is the same

 The flips are independent

 Selection of test items is 

nearly* a SRS of Bernoulli

trials

Vancouver Sun, «IKEA ballroom»
* "Nearly" because of lack of

replacement.

Close enough if sample is small

compared to population



Sampling in Language Technology

 You want to take a simple random sample of words

from a corpus?

 Can you use the n first sentences?

 Can you use a random sample of n sentences?

 How can you build a corpus (sample) which gives a 

random sample of Norwegian texts?

27



Sampling distributions – Example 

 Height: X

 assume N(180, 6)

 (𝜇 = 180, 𝜎 = 6, 𝑉𝑎𝑟(𝑋) = 36)

 Randomly choose 100.

 Add their heights: 

S = X1+ X2+…+ Xn

 A new random variable 

(all such samples)

 Exp(S) = n*= 18000 (cm)

 Var(S) = 100*Var(X) = 3600

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑚)

Source: Wikipedia



Sampling distributions – Example 

 Height: X

 assume N(180, 6)

 (𝜇 = 180, 𝜎 = 6, 𝑉𝑎𝑟(𝑋) = 36)

 Randomly choose 100.

 Add their heights: 

S = X1+ X2+…+ Xn

 A new random variable 

(all such samples)

 Exp(S) = n*= 18000 (cm)

 Var(S) = 100*Var(X) = 3600

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑚)

 The mean of the samples: 

X̄ =S/n

 A new random variable 

(all means of samples of 100)

 𝐸 ത𝑋 = 𝜇 ത𝑋 = 𝜇𝑋 = 180 (cm)

 𝜎 ത𝑋 =
1

100
× 𝜎𝑆 = 0.6 (𝑐𝑚)

 𝜎 ത𝑋 =
1

100
× 𝜎𝑋 × 100 =

𝜎𝑋

100



Sampling distributions 

 Let 

 X be a random variable for a population with exp: , std: 

 Let S = X1+ X2+…+ Xn, i.e. each Xi equals X

 Let : X̄ =S/n

 Then:

 E(S) = n*

 E(X̄) = 






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The form of the distribution

 If the Xi-s are independent and normally 

distributed, then X̄ is normally distributed (as 

expected)

 (More surprisingly) Even though the Xi-s themselves 

are not normally distributed: for large n-s,  X̄ is 

approximately normally distributed

= Central Limit Theorem



Example: throwing the dice until a 6

Sample size

1

4

10

100

Number of samples: 1000

𝐸 ത𝑋 = 𝐸 𝑋 = 𝜇 = 6

𝜎 ത𝑋 =
𝜎

𝑛
=

6 × 5

𝑛



Binomial distribution

 Number of successes: X

 Random variable over all series of n
trials

 Binomial distribution 
(binomisk fordeling): B(n,p)

 E(X)= np

 Var(X)= np(1-p)



 Approximated by N(np,                 ) 
for large n

 Proportion of success: p^ =X/n

 E(p^ ) = E(X/n) = np/n = p





 Approximated by N(p,                  ) 
for large n

Population: all Bernoulli trials with probability p.

Sample: n such trials

Example: Throwing a dice n times, counting the number of 6-s (success)
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Rule of thumb:

np>10 and 

n(1-p)>10



Binomial vs normal approximation

 In [175]: stats.binom.ppf(.95, 100, 0.8)

 Out[175]: 86.0

 In [201]: stats.norm.ppf(.95, 80, 
np.sqrt((1-0.8)*(0.8)*100))

 Out[201]: 86.579414507805893

 For binomial distributions, the traditional statistics used 

 Binomial distributions for small n

 Normal approximation to binomials/proportions

 Because of the (non) availability of tables for all (k,n,p)-s

 With computers, we can use the binomial distributions directly

Rule of thumb:

np>10 and 

n(1-p)>10



Hypothesis testing



Hypothesis testing

 Assume P is known with the distribution N(180, 6)

 A population P2, could be:
 Norw. males 50ys olds in 2007

 Norw. females 18ys olds in 2007

 Swe. males 18 ys olds in 2007

 Q1: Are the individuals in P2 shorter than they in P?

 Pick a random sample {x1, x2, …, xn} from P2

 Null hypothesis, H0 : P2 = 

 Hypothesis, Ha : P2 < 

 Q2: What is the chance {x1, x2, …, xn} could have been a 
SRS from P?



Example

 For example, if we take a SRS from P2 of 

 n=100 individuals, and we find 

 ҧ𝑥 = 178.5

 𝜎 ത𝑋 =
1

100
× 𝜎𝑆 =

1

100
× 𝜎𝑋 = 0.6 (𝑐𝑚)

 z=
ҧ𝑥−𝜇

𝜎ഥ𝑋
=

178.5−180

0.6
= −2.5

 we can conclude (alternative formulations:)

 there is less than 0.01 chance that {x1, x2, …, xn} is a s.r.s. from P

 If P and P2 had been equal (w.r.t. height), there is less than 1% 
chance that we would have chosen such a SRS

 The p-value is less than 0.01



Evaluation

 Observe that this is similar to what we did in the

coin flipping and evaluation using binomial 

distribution



Recipe (with normal distribution)

 Formulate Ha and H0

 𝐻0: 𝜇2 = 𝜇

 Sample an appropriate SRS of size n and find its mean value, ҧ𝑥

 Calculate the z-score: 𝑧 =
ҧ𝑥−𝜇

ൗ
𝜎

𝑛

 Ha: P2 <  is P(X < z)

 > similarly: 

 Ha: P2 =/=  is 2P(X > |z|)



Remarks

Truth

H0 Ha

Decision

Not rejecting

H0

Type II error

Reject H0 Type I error

Prob. p-value

 There is a chance of probability p that we erroneously reject 
H0 (Type I error)

 The test does not estimate type II error

 Says nothing about how much the difference is between P2 
and P

 Many possible banana skins: E.g. is the sample really random?



Estimation



Example

 Assume a population P2 and an SRS 

of 100 individuals from P2 with ҧ𝑥 =
179

 What is 𝜇 for P2?

 Goal: find an e such that

𝑃 179 − 𝑒 < 𝜇 < 179 + 𝑒 < 𝑝
for some level p, e.g. 0.05

 Observe that

𝑃 179 − 𝑒 < 𝜇 < 179 + 𝑒
=𝑃 𝜇 − 𝑒 < 179 < 𝜇 + 𝑒

 If we had known the standard 

deviation, we could calculate this like 

we have done so far.



Estimation

 How to estimate the true mean µ of a sample if the

standard deviation  of the population is unknown?

 All we have is a sample X= {x1, x2, …, xn}

 The sample mean x̄ is still the best estimate of the 

pop. mean µ

 How good an estimate is this?



Estimation

 To determine this, we try to estimate the true 

standard deviation of the population.

 We use the standard deviation of the sample X, 

 s2 = ((x1 – x̄)2 + (x2 – x̄)2 + …+ (xn  – x̄)2 )/(n – 1)

 Observe (n-1) and not n

 That is to compensate for using x̄ instead of µ in the 

formula

s is a random variable (like X̄) over all s.r.samples of size n

s is an unbiased estimator for : E(s)= 



Estimation

 In addition we do not use the standard Z-
distribution but the t-distribution for n-1.

 Then the level C confidence interval for  is

 [x̄ - e, x̄ + e] 

 Where

 and t* is the value from the t(n-1) density curve for C

n

s
te *

The t-distribution is similar to the z-distribution for large n.

But is more picky when t is small



Example

 Assume we do not know the st.dev. 18 ys old men from Finmark

 Pick a random sample of 9 men:

 x̄ = 177, s = 5

 Estimate the average height for this population

 Choose confidence level 0.95

 The 95% confidence interval for : [173.1, 180.9]

 Exact for normal distribution

 Approximation for large n otherwise

Table, or

843.3177
9

5
306.2177* 

n

s
tx

In   [78]: stats.t.ppf(.025,8)

Out[79]: -2.3060041350333709

What would be 

different if we

used normal 

distribution?



Estimation with proportion

 Task 2:

 You have made a classifier. You test it on 500 items. It 

classifies 375 correctly.

 What is the accuracy of your classifier?



Proportion

 The best estimate we have for p is Ƹ𝑝 =
375

500
= 0.75

 The best estimate we have for the standard 

deviation is SE Ƹ𝑝 =
ො𝑝(1− ො𝑝)

𝑛
ቆ=



Proportion

 The best estimate we have for p is Ƹ𝑝 =
375

500
= 0.75

 The best estimate we have for the standard 

deviation is SE Ƹ𝑝 =
ො𝑝(1− ො𝑝)

𝑛



Example

 Estimated accuracy is 375/500=0.75

 The standard deviation of the sample is

𝑝 1 − 𝑝 /𝑛 = 0.75(1 − 0.75)/500 = 0.0194

 Using normal distribution approximation:

 In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75*0.25/500))

 Out[284]: array([ 0.71204546,  0.78795454])

 Using binomial distribution:

 In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500

 Out[288]: array([ 0.712,  0.788])



Take home
51

 Two parts to evaluation:

 The device to be evaluated

 The test items

 In choosing our test items

there is an element of

randomness, like

 Flipping a coin, or

 Drawing balls from an 

(infinite) urn

Vancouver Sun, «IKEA ballroom»


