INF5830 – 2017 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 5, 19.9

- **□ Estimation**
	- **g** general case
	- **n** for a proportion
- □ Comparing two independent
	- populations
	- **proportions**
- □ Paired data
	- **B** Sign test, McNemara's test
	- **Paired t-test**

Last week: Why statistics in evaluation?

□ Task1: Completed last week

- You know the best classifier on a task has 0.8 (80%) accuracy (baseline).
- You have made a classifier which classify 85 items correctly on a test set of 100 items.
- Can you conclude your classifier is better than the baseline?

\Box Task 2: Remains

- You have made a classifier. You test it on 500 items. It classifies 375 correctly.
- What is the accuracy of your classifier?

Why? (this week)

□ Task 3:

- **n** You have two different classifiers, one with accuracy 0.89 and one with accuracy 0.91on 1000 test items.
- Can you conclude that one is better than the other?
- \Box Task 4:
	- **□** The two classifiers from task 3 agree on 870 items.
	- **□ One is doing better on 20 items, the other is doing** better on 40 items.
	- **□ Can we draw conclusions from this?**

The task

Last week: Now: Now:

Given:

- **E** A population P with known distribution $(B(n,p)$ or $N(\mu, \sigma)$) **D** A SRS X
- Q: How probable is it that X could have been drawn from P?
	- What is the p-value?

- Given:
	- \Box A SRS X, with a mean X
	- A p-value: p
- □ Q: From which populations P could X have been drawn with prob. p?
- \Box Q: In part. what is the mean, μ , for such a P?

Example

- □ Assume a population P2 and an SRS of 100 indiv.s from P2 with $\bar{x} = 179$
- \Box What is μ for P2?
- Goal: find an e such that $P(179 - e < \mu < 179 + e) < p$ for some level p, e.g. 0.05
- Observe that $P(179 - e < \mu < 179 + e)$ $= P(\mu - e < 179 < \mu + e)$
- \Box If we know the standard deviation, …

- □ ... we could have calculate this simlarly to before
	- Find the z-value z corresp. to p

$$
e = z \frac{\sigma}{\sqrt{n}} \left(= z \frac{\sigma}{\sqrt{100}} \right)
$$

Estimation

- \Box How to estimate the true mean μ if the standard deviation σ of the population is unknown?
- \Box All we have is a sample X= { $x_1, x_2, ..., x_n$ }
- \Box The sample mean \overline{x} is still the best point estimate of the pop. mean µ

Estimation

- To approximate the true standard deviation:
- We use the standard deviation of the sample X,

$$
s^{2} = ((x1 - \overline{x})^{2} + (x2 - \overline{x})^{2} + ... + (xn - \overline{x})^{2})/(n - 1)
$$

- **□** Observe (n-1) and not n
- \blacksquare The (n-1) is to compensate for using \overline{x} instead of μ in the formula
- \Box S is sometimes called standard error

s is a random variable (like \overline{X}) over all SRS of size n s is an unbiased estimator for σ : E(s)= σ

Estimation

- \Box In addition we do not use the standard Zdistribution but the t-distribution for n-1.
- \Box Then the level C confidence interval for μ is \overline{a} [x - e, x + e]

■ Where *n s* $e = t^*$

 \blacksquare and t^* is the value from the $t(n-1)$ density curve for C

The t-distribution is similar to the z-distribution for large n. But t^* is larger than z for same p when n is small

Example

- Assume we do not know the st.dev. 18 ys old men from Finmark
- □ Pick a random sample of 9 men:

$$
\bar{x} = 177, s = 5
$$

 \Box Estimate the average height for this population Choose confidence level 0.95

Table, or

In [78]: stats.t.ppf(.025,8) Out[79]: -2.3060041350333709

$$
\bar{x} \pm t^* \frac{s}{\sqrt{n}} = 177 \pm 2.306 \frac{5}{\sqrt{9}} = 177 \pm 3.843
$$

Since n=9, we use the $t(8)$ density curve Jargon: There are 8 degrees of freedom

- The 95% confidence interval for μ : [173.1, 180.9]
- Exact for normal distribution
- **E** Approximation for large n otherwise

What would be different if we used normal distribution?

Estimation with proportion

- \square Task 2:
	- **D** You have made a classifier. You test it on 500 items. It classifies 375 correctly.
	- **D** What is the accuracy of your classifier?

Proportion

 \Box The best estimate we have for p is $\hat{p}=0$ 375 500 $= 0.75$

 \Box The best estimate we have for the standard deviation is

$$
SE(\hat{p}) = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \left(= \sqrt{\frac{0.75(1-0.75)}{500}} = 0.01934 \right)
$$

□ Using normal distribution approximation:

 \blacksquare In [284]: stats.norm.ppf($[0.025, 0.975]$, 0.75 , np.sqrt(0.75*0.25/500))

Out[284]: array([0.71204546, 0.78795454])

□ Using binomial distribution: \blacksquare In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500 Out[288]: array([0.712, 0.788])

Why? (this week)

- \square Task 3:
	- You have two different classifiers, one with accuracy 0.89 and one with accuracy 0.91on 1000 test items.
	- Can you conclude that one is better than the other?

The general case

- □ You have two populations P1 and P2, say Swedish and Italian 18 ys old men.
- □ You want to compare a variable between the populations, say height:
	- Either one-sided: Are men in P1 taller than men in P2?
	- Or two-sided: Have men in P1 different average height than men in P2?
- □ You don't know the true mean or st.dev of P1 nor of P2.

T-test for differences

□ Procedure:

- **□** Draw a SRS from P1 with
	- \blacksquare n₁ individuals

nean \overline{x}_1

- sample s.d. s_1
- **□** Similarly for P2
- □ Calculate the t-score
- □ Find *p* from the t(m)-density curve
	- What is *m*?
		- $m = \min(n_1, n_2)$
		- Scikit uses $m = n_1 + n_2$

$$
t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} - \frac{S_2^2}{n_2}}}
$$

Comparing proportions

19

- □ Task: compare two proportions:
	- **□ Could they be SRS from the same population?**
- □ Sample 1: n items, k successes $\hat{p} = {}^k \!/_{n}$ and $s^2 = \hat{p}(1 - \hat{p})$
- Sample2: *m* items, *h* successes $\widehat{p_2} = {^h}/m$ and $s_2^2 = \widehat{p_2}(1-\widehat{p_2})$ \Box Calculate the score $z = -\frac{1}{x}$ $\widehat{p}-\widehat{p_2}$ $\widehat{p}(1-\widehat{p})/$ $n + \frac{\widehat{p_2}(1-\widehat{p_2})}{2}$ \overline{m}

,

□ Use the z-density curve to find p-value

- □ Two classifiers:
- □ C1 has accuracy 0.876 on 500 items
- □ C2 has accuracy 0.896 on 500 items

Comparing accuracy

21

$$
z = \frac{\hat{p} - \widehat{p_2}}{\sqrt{\hat{p}(1-\hat{p})/n + \hat{p_2}(1-\hat{p_2})/m}}
$$
, use the z-density curve

$$
p = 0.896, p2 = 0.876, n = m = 500
$$

$$
z = \frac{0.896 - 0.876}{\sqrt{0.896 (1 - 0.896) /_{500} + \frac{0.876 (1 - 0.876)}{500} /_{500}}}
$$
 = 0.9995

 p -value = 0.16

Example contd.

- \Box It turns out the two classifiers were tested on the same 500 items
- □ We can record for each item whether each classifier is correct or not
- □ We expect them to be equally good

- \Box We can focus on the items were they disagree.
- □ We expect (C1-correct & C2-incorrect) and (C2correct and C1-incorrect) to be equally likely
- \Box How unlikely is it that from the 16 items where they disagree, C1 wins 3 (or fewer) times?

Sign test

25

In $[468]$: stats.binom.cdf(3,16,0.5)*2 Out [468]: 0.021270751953125 If it is two-

sided

- \Box This test is called the sign-test
- □ Can be used to numerical data
- \Box When used on Boolean values, $\{0, 1\}$, often called McNemar's test

Paired t-test

$$
\Box X = \{x_1, ..., x_n\}, Y = \{y_1, ..., y_n\}
$$

- \Box x_k and y_k are observations of the same individual, \blacksquare e.g. before and after treatment Classifier_x and classifier_y's result on item *k* \Box Let $z_k = y_k - x_k$ and perform a one-sample t -test on
	- $Z = {z_1, ..., z_n}$, comparing to $\mu = 0$.
- \Box This test can also be applied to proportions when the sample is big.

Paired t-test example

In SciPy

- \Box In [479]: Y = [1]*(435+13) + [0]*(3+49)
- \Box ...: $X = [1]^*435 + [0]^*13 + [1]^*3 + 49^*[0]$
- \Box ...: $Z = [y x \text{ for } (y, x) \text{ in } zip(Y, X)]$
- stats.ttest_rel(Y,X)
- Out[480]: Ttest_relResult(statistic=2.5132559949600304, pvalue=0.012276223171277646)
- \Box In [4]: stats.ttest_1samp(Z,O)
- □ Out[4]: Ttest_1sampResult(statistic=2.5132559949600304, pvalue=0.012276223171277646)

Paired data

- \Box The sign test is non-parametric
- \Box The paired t-test assumes (nearly) normal distributions (OK for proportions with large *n* (>25))
- \Box The paired t-test yields better numbers.

What we have done

- 1. How likely is a sample given a known population? How good is a classifier compared to a baseline?
- 2. From a sample, estimate an interval for the true mean value.
- 3. Comparing two independently drawn samples.
- 4. Comparing paired data.