INF5830 – 2017 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 5, 19.9

- Estimation
 - general case
 - for a proportion
- Comparing two independent
 - populations
 - proportions
- Paired data
 - Sign test, McNemara's test
 - Paired t-test

Last week: Why statistics in evaluation?

Task1: Completed last week

- You know the best classifier on a task has 0.8 (80%) accuracy (baseline).
- You have made a classifier which classify 85 items correctly on a test set of 100 items.
- Can you conclude your classifier is better than the baseline?

Task 2: Remains

- You have made a classifier. You test it on 500 items. It classifies 375 correctly.
- What is the accuracy of your classifier?

Why? (this week)

□ Task 3:

- You have two different classifiers, one with accuracy
 0.89 and one with accuracy 0.91 on 1000 test items.
- Can you conclude that one is better than the other?
- Task 4:
 - The two classifiers from task 3 agree on 870 items.
 - One is doing better on 20 items, the other is doing better on 40 items.
 - Can we draw conclusions from this?

The task

Last week:

Given:

- A population P with known distribution
 (B(n,p) or N(μ, σ))
 A SRS X
- Q: How probable is it that X could have been drawn from P?
 - What is the p-value?

Now:

- Given:
 - \blacksquare A SRS X, with a mean \overline{X}
 - A p-value: p
- Q: From which populations P could X have been drawn with prob. p?
- Q: In part. what is the mean, μ, for such a P?

Example

- Assume a population P2 and an SRS of 100 indiv.s from P2 with $\bar{x} = 179$
- \Box What is μ for P2?
- □ Goal: find an e such that *P*(179 − e < µ < 179 + e) < p
 for some level p, e.g. 0.05
- Observe that $P(179 - e < \mu < 179 + e)$ $=P(\mu - e < 179 < \mu + e)$
- If we know the standard deviation, ...

- ... we could have calculate this simlarly to before
 - Find the z-value z corresp. to p

•
$$e = z \frac{\sigma}{\sqrt{n}} \left(= z \frac{\sigma}{\sqrt{100}} \right)$$

Estimation

- □ How to estimate the true mean μ if the standard deviation σ of the population is unknown?
- $\Box \text{ All we have is a sample } X = \{x_1, x_2, ..., x_n\}$
- The sample mean \overline{x} is still the best point estimate of the pop. mean μ

Estimation

- To approximate the true standard deviation:
- We use the standard deviation of the sample X,

□
$$s^2 = ((x1 - \overline{x})^2 + (x2 - \overline{x})^2 + ... + (xn - \overline{x})^2)/(n - 1)$$

- Observe (n-1) and not n
- **The** (n-1) is to compensate for using \overline{x} instead of μ in the formula
- S is sometimes called standard error

s is a random variable (like \overline{X}) over all SRS of size n s is an unbiased estimator for σ : E(s)= σ

Estimation

- In addition we do not use the standard Zdistribution but the t-distribution for n-1.
- □ Then the level C confidence interval for μ is □ [x̄ - e, x̄ + e]

• Where $e = t * \frac{s}{\sqrt{n}}$

 \square and t^* is the value from the t(n-1) density curve for C

The t-distribution is similar to the z-distribution for large n. But t^* is larger than z for same p when n is small

Example

- □ Assume we do not know the st.dev. 18 ys old men from Finmark
- Pick a random sample of 9 men:

$$\overline{x} = 177, s = 5$$

Estimate the average height for this population
 Choose confidence level 0.95

Table, or

In [78]: stats.t.ppf(.025,8) Out[79]: -2.3060041350333709

$$\bar{x} \pm t * \frac{s}{\sqrt{n}} = 177 \pm 2.306 \frac{5}{\sqrt{9}} = 177 \pm 3.843$$

Since n=9, we use the t(8)density curve Jargon: There are 8 degrees of freedom

- □ The 95% confidence interval for μ : [173.1, 180.9]
- Exact for normal distribution
- Approximation for large n otherwise

What would be different if we used normal distribution?

Estimation with proportion

- □ Task 2:
 - You have made a classifier. You test it on 500 items. It classifies 375 correctly.
 - What is the accuracy of your classifier?

Proportion

□ The best estimate we have for p is $\hat{p} = \frac{375}{500} = 0.75$

The best estimate we have for the standard deviation is

$$SE(\hat{p}) = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \left(= \sqrt{\frac{0.75(1-0.75)}{500}} = 0.01934 \right)$$

Using normal distribution approximation:

In [284]: stats.norm.ppf([0.025, 0.975],0.75, np.sqrt(0.75*0.25/500))

Out[284]: array([0.71204546, 0.78795454])

Using binomial distribution:
 In [288]: stats.binom.ppf([0.025, 0.975],500, 0.75)/500
 Out[288]: array([0.712, 0.788])

Why? (this week)

□ Task 3:

You have two different classifiers, one with accuracy
 0.89 and one with accuracy 0.91 on 1000 test items.

Can you conclude that one is better than the other?

The general case

- You have two populations P1 and P2, say Swedish and Italian 18 ys old men.
- You want to compare a variable between the populations, say height:
 - Either one-sided: Are men in P1 taller than men in P2?
 - Or two-sided: Have men in P1 different average height than men in P2?
- You don't know the true mean or st.dev of P1 nor of P2.

T-test for differences

Procedure:

- Draw a SRS from P1 with
 - n₁ individuals

• mean \overline{x}_1

- sample s.d. s₁
- Similarly for P2

- □ Find *p* from the t(m)-density curve
 - What is m?

$$\blacksquare m = \min(n_1, n_2)$$

Scikit uses $m = n_1 + n_2$

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{{S_1}^2}{n_1} - \frac{{S_2}^2}{n_2}}}$$

Comparing proportions

19

- Task: compare two proportions:
 - Could they be SRS from the same population?
- □ Sample 1: n items, k successes $\hat{p} = {}^k/_n$ and $s^2 = \hat{p}(1 \hat{p})$
- Sample 2: m items, h successes

 \$\heta_2\$ = \$\heta_1/m\$ and \$s_2^2\$ = \$\heta_2\$ (1 \$\heta_2\$)
 Calculate the score \$z = \$\frac{\heta_2}{\sqrt{\heta_1-\heta_2}/m}\$

Use the z-density curve to find p-value

- □ Two classifiers:
- □ C1 has accuracy 0.876 on 500 items
- □ C2 has accuracy 0.896 on 500 items

Comparing accuracy

21

$$\Box \quad z = \frac{\hat{p} - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})}/n} , \text{ use the z-density curve}$$

$$\hat{p} = 0.896$$
, $\widehat{p_2} = 0.876$, n=m=500

$$z = \frac{0.896 - 0.876}{\sqrt{0.896 (1 - 0.896)}/_{500} + \frac{0.876 (1 - 0.876)}{_{500}}} = 0.9995$$

 \square p-value = 0.16

Example contd.

		Classifier 2	
		correct	incorrect
	correct	435	13
Classifier 1	incorrect	3	49

- It turns out the two classifiers were tested on the same 500 items
- We can record for each item whether each classifier is correct or not
- □ We expect them to be equally good

		Classifier 2	
		correct	incorrect
	correct	435	13
Classifier 1	incorrect	3	49

- □ We can focus on the items were they disagree.
- We expect (C1-correct & C2-incorrect) and (C2correct and C1-incorrect) to be equally likely
- How unlikely is it that from the 16 items where they disagree, C1 wins 3 (or fewer) times?

Sign test

25

In [468]: stats.binom.cdf(3,16,0.5)*2 ~ Out[468]: 0.021270751953125

If it is twosided

- This test is called the sign-test
- Can be used to numerical data
- When used on Boolean values, {0, 1}, often called McNemar's test

Paired t-test

$$\Box X = \{x_1, ..., x_n\}, Y = \{y_1, ..., y_n\}$$

- x_k and y_k are observations of the same individual,
 e.g. before and after treatment
 Classifier_x and classifier_y's result on item k
 Let z_k = y_k x_k and perform a one-sample t-test on
 - Z ={z₁, ..., z_n}, comparing to $\mu = 0$.
- This test can also be applied to proportions when the sample is big.

Paired t-test example

28

In SciPy

- □ In [479]: Y = [1]*(435+13) + [0]*(3+49)
- $\square \qquad \dots X = [1]^* 435 + [0]^* 13 + [1]^* 3 + 49^* [0]$
- $\Box \qquad \dots Z = [y x \text{ for } (y,x) \text{ in } zip(Y,X)]$
- stats.ttest_rel(Y,X)
- Out[480]: Ttest_relResult(statistic=2.5132559949600304, pvalue=0.012276223171277646)
- In [4]: stats.ttest_1samp(Z,0)
- Out[4]: Ttest_1sampResult(statistic=2.5132559949600304, pvalue=0.012276223171277646)

Paired data

- □ The sign test is non-parametric
- The paired t-test assumes (nearly) normal distributions (OK for proportions with large n (>25))
- The paired t-test yields better numbers.

What we have done

- How likely is a sample given a known population?
 How good is a classifier compared to a baseline?
- 2. From a sample, estimate an interval for the true mean value.
- 3. Comparing two independently drawn samples.
- 4. Comparing paired data.