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Today

Linear classifiers
Naive Bayes is log linear
Logistic Regression

Multinomial Logistic Regression =
Maximum Entropy Classifiers

Comparing Naive Bayes and Logistic regression



Geometry: lines
N

1 Descartes
1 (1596-1650)
-1 Line:
Jax +by+c=0
o If b #O0O:
Z2y=mx +n

on=-c¢c/bis
the intercept with the y-
axis

o m = -a/b is the slope

0 A point =
intersection of two lines




Normal vector of a line
S

1 cos(m/2) =0 ,A

o If P passes through b e
(0,0) there is an n = -~ ]
(Xn, yn) S.t. —— "“‘"- ‘*:x_:_: xp-

7 (x,y) is on P iff b e
o (xy) ®(x,y,) =0

Vector (2,5) is normal to the line y=-2x/5

OX XX =-Y XYy,
alf (a,b) #(0,0) is on P:

wn =s X(b, -a) for some
S

Example:
y = -2x/5

2x + 5y =0
(x,y) ®(2,5) =0




Lines not through (0,0)

1
0y=-2x+5
0 2x+y=-5=0
0o(xy)e(2,1)=5
o ((x,y)-(2.5,0) e (2,1) =0
7 ((x,y)-(0,5)) # (2,1) =0

[ ((XIY)-(XOI YO)) o (2,]) =0

For any (xq, Yo) on the line



Geometry: planes

o Plane:
0 ax +tby+tcecz+d=0

If ¢ # O:
2 z=mx +ny +n

0 Aline is
the intersection of two planes

3x+2y—=z+2=0
z=3x+ 2y + 2

http:/ /www.univie.ac.at/future.media /mo
e/galerie/geom2/geom?2.himl#eb



Normal vector of a plane

All points (x,y,z) where
((XIYIZ)-(XOIYOIZO)).(quIC) =0
(x,7,z) ® (a,b,c) =d

(d = a xptb y,tc z,)

Hyperplane
Wotw X;+wWox, +ooo +w x =0
(W1 Wopeee,W,) (X, Xo,ee X, )=-W,
Sometimes (n+1 dimensions):

(WoW 1 WopeeeyW, ) (1,5, X5,...% )= 0




Hyperplanes

Generalizes to higher dimensions

In n-dimensional space (x;, x5, ..., X_):
Points satisfying:

Wo T Wix; T wox, +ooo +wx, =0

for any choice of wg, w;, wy,... W

n

where not all of w,, w,,... w. =0
is called a hyper-plane

(In machine learning) the same as the intersection of two
hyper-planes in n+1 dimensional space:
WoXg T Wix; T wox, tooo + w o x

Xg =1



Linear classifiers

Assume: e
-
All features are numerical | ,." “l
(including Boolean) Ll {;‘.,;'1___._‘
B R
Two classes IR . T o M
. :"-:.':.";-..f.f"-‘:: 'i&"‘ L
The two classes are o {,g-"ﬁé%_i‘f"“ ‘
. . . - ':.'J -:...“-.l n.
linearly separable if they of CoERL T
can be separated by a )
hyperplane

In 2 dimensions that is a
line:
ax + by < c for red points
ax + by > c for blue points




Linear classifiers

pl}

A linear classifier )
infroduces a hyperplane | e M
o fo °r .uﬁ'.; ....‘ '-.:
and classifies .-,:...??‘;'}2,, i
.o L AL S -
dinal e ".'.'.‘L ,'-%.f';':"'f"u"' o
accordaingly RN XS Tt &{g‘_ .
SRR T J.-".'-.:" tt
If the data aren'’t 1 TR
linearly separable, the I

classifier will make
mistakes.

Then: goal to make as
few mistakes as possible




Linear classifiers — general case

Try to separate the classes
by a hyperplane

M
D> wix =6
i=1
(equivalently ye5- iwixi 0
i=0

taking w,=-0 and x,=1)
The object represented by

(X1 Xy yeeey X ) y
is in C if and only if ZWiXi >0
i=1

M
and in —C if ZWiXi <0
i-1
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Towards logistic regression

Two ways to approach logistic regressions

Start with linear classifier and try to derive
probabilistic classifier (e.g., J&M)

Start with NB and show that it is log-linear
Consider log.reg. as a generalization

We choose alt. 2 to supplement J&M, and because

the reasons for choosing the logistic function in (1)
are not obvious.



Naive Bayes is a log linear classifier

We start with a binary classifier, with classes: C,, C,= not C,
For a given feature vector f, we choose C;:
it: P(C,|f) > P(=Ci|f) = P(G,|f)
iff: P(cl)ﬁ P(f,|c)> P(cz)ﬁ P(f;|c,) (by NB assumption)
=1 j-1

Iff (by Bayes' formula):

log P(c, | f)—logP(c, | f) =log P(c,) + > log P(f, | c,)~log P(c,) + > log P(f,|c2) > 0
=1 j=1

which is a linear expressions



Naive Bayes is a log linear classifier

How does this linear expression
log P(c, | f)—log P(c, | f) =log P(c,) + > log P(f, | c,)~log P(c,) + > log P(f,|c2) > 0
j=1 j=1

correspond to a linear classifier?

iwixi >0
i=1

What in the NB-classifier corresponds to w; and x; in the linear
classifier?



> wx =6 log P(c,)+ > log P(f;|c,)—logP(c,)+ > logP(f;|c2)>0
i j=1 j=1

Example 1 (gender of names, NLTK),
the only feature registers the last letter of the name
Original view:
One (categorical) feature f1

26 possible different values: a, b, ¢, ...,z



Indicator variables

Example 1 Current view:
52 different features x1, x2, ..., x52
Each corresponds to a pair of last letter and class, e.g.

x1=f1(letter|class) = 1 if letter="a' and class='fem'

O otherwise

x2=f31(letter | class) = 1 if letter='e' and class='masc'

O otherwise
W31 = P(laSt = e|C'2)
Exactly two of these xi-s will equall, the rest equals O

In addition, two features, x;=x5,=1, w:,=P(C,), w:,=P(C,)



Example 2: Bernoulli text classif.

log P(c1)+znllog P(f;|c,)—log P(cz)+zn:log P(f;[c2)>0 ZWX =

=1 =
Original view: one feature f, for a term t:
f. =1 if t. is present, f, = O if t. isn’t present
Current view
Four features x1, x2, ..., x4 corresponding to
w; = P(contains('bob") = TRUE|'pos’)
w, = P(contains('bob") = FALSE|'pos")
= P(contains('bob’) = TRUE|'neg")
w, = P(contains('bob") = FALSE|'neg")

Two xi-s will be 1 (w1, w3 or w2, w4) and two will be O



Example 3: the multinomial model

n n M
logP(c,)+ > logP(f;|c,)—logP(c,)+ > logP(f;|c2)>0 > wx =6
=1 =1

Original view: one feature for each term e.g. f1
for 'alice’ and f2 for 'bob’.

Here two values for each term,
w; = P('alice’|'pos’)
w, = P('alice’|'neg")
ws = P('bob’|'pos’)
w, = P('bob’|'neg")
x1=x2=3, if alice occurs 3 times

x3=x4=0, if bob occurs O times
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NB and logistic regression

The NB uses a linear expression to decide

P, f) Pc, | f) ) e TS
IOg[l—P(cllf)j Ig[ o, |f)J logP(c, | f)—logP(c, | f) = e §WXi>O

Where the w.-s are determined by estimating probabilities
of the type

P(C,) , the class probability, and

P(file)qnd the probability of seeing a feature for the given
class

Are these the best choices for the w;s?
Logistic regression instead faces the question directly:

Which WS make the best classifier of the form above?



Logistic regression — learning

Conditional maximum likelihood estimation:
Choose the model that fits the training data best!

W=argmax [ [P(c, | f')=argmax> logP(c, | f")
k; ki
w i=0 w i=0

where:
There are m many training instances
The feature vector for observation iis: fi=(f/ f/ ..f}

Ck, is the class of observation i, i.e. ¢; or c,.



Furthermore

To estimate
W=argmax [ [P(c, | f')=argmax > logP(c, | f')
W i=0 W i=0

we must find the relationship between w and P(c'| f)

m| PGl | _gef H

1-P(c, | )

P, | ) _ s
1-P(c,| ) o>

N ew-F
P(c,| f)= —

@ID=——

| N | |

- 1 -6 -4 -2 0 2 4 6

P(c,| f)= -

1+e™


//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

Logistic function

R evT/of
P(c,| F)=——
' 1+e"f
~ 1 0.5
P, f)=———
' 1+e "

Takes values between O and 1

Can express probabilities.

Useful for transforming discrete values to probs.

Used e.g. in "deep learning”

Mathematically "well-behaved"

Used to model population growth, disease spreading etc.


//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

Learning algorithms

There is no analytic solution to
1

—Ve f

W=argmax » logP(c'| f')  where  P(c] F):l+e
w i=1

Use some iterative algorithm:

start with an initial value for W and step by step try better candidates

The problem is convex: There is a global optimum and we will not be
caught in local — non-global — optima.

Possible algorithms
(Hill climbing: optimize for one w;after the other)

Some sort of gradient ascent: use derivatives to find optimal direction



Convex Gradient ascent
6

local min local max saddle point

* N
.:w, ‘ﬁf’t ‘::‘;: X

convex



Learning
N

NLTK: Some iterative optimization techniques are much
faster than others.

When training Maximum Entropy models, avoid the use of

Generalized lterative Scaling (GIS) or

Improved lterative Scaling (lIS),

which are both considerably slower than the
Conjugate Gradient (CG) and
the BFGS optimization methods.




Regularization

There is a tendency to overfitting, hence
regularization

W=argmax »_log P(c'| f') —aR(w)
wo o

The regularization punishes large weights

Most common is L2-regularization R(W) = 701Wl_2

Alternative: L1-regularization R(W) = )7 |w;|



scikit-learn — LogisticRegression

LogisticRegression(penalty="12", ..,
C=1.0, ..)
Uses L2-regularization as default

Obligatory assignment 2.4:
Without regularization (C=10000), you loose ca 0.05

With C=0.1, | gained ca 0.005 on accuracy
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A slight reformulation

We have formulated

P(c, | f)>P(c, | f
(c,| f)>P(c,| ) as

<

logP(c, | f)—logP(c, | f)=e f = wa >0
0

But we could have stuc k t _’rhe inequali’ry and

wa—

||
Mz

formulated is as &

<

_"l

where log P(c, | F):Wlo F:Z\Nilxi log P(c, | f) Z _

i=0

(where we collect the indicator variables of the form f(Cy, ...)
to the left and they of the form f(C,, ...) to the right)



Reformulation, contd.

R M _ M L
1 logP(c,| f)=w"e f => wx and logP(c,| f)=> w'x, =W e f
i=0 i=0

-1 in this notation

P |f) "

P | )= _ S —
@l Pc,| F)+P(c,| f) e"+e™

o and similarly for P(c, |f)



Multinomial logistic regression

We may generalize this to more than two classes
For each class ¢ for j = 1,..,k

a linear expression N <
wW!ef :ZW. X.
i=0

and the probability of belonging to class ci:

P(Cj | F):%exp(wj o f’):%ewi& :%eZwﬂfi :%H(ewij) :%Haifi

K . —
where £ = ;eXp(WJ ° f)

y
and a, = e"



Footnote: Alternative formulation

(In case you read other presentations, like Mitchell or Hastie et. al.:

They use a slightly different formulation, corresponding to

where fori =1, 2,..., k-1:

iy 1 _iozy 1o 1 >win 1 ] ’ 1 -
P(C | f)=2exp<w ® f):Ze f :Zezj f :ZH(eWJj :ZHaij
J

j

k-1 ~ ~
But Z:1+Zexp(wi-f) and  P(C*| f)=—13
i=1

The two formulations are equivalent though:
In the J&M formulation, divide the numerator and denominator in each P(c'| f)

with exp (V_Vk . 1?)

and you get this formulation (with adjustments to Z and w.)



Examples — J&M

We would like to know whether to assign the class VB to race (or instead assign
some other class like NV). One useful feature. we’ll call it fi. would be the fact that the
current word is race. We can thus add a binary feature which is true if this is the case:

1 if word; = “race” & c¢=NN
0 otherwise

fitew) = {

Another feature would be whether the previous word has the tag T7O:

1 ift5,1=TO & ¢=VB
0 otherwise

fles) = {

Two more part-of-speech tagging features might focus on aspects of a word’s spelling
and case:

| 1 if suffix(word;) =*“ing” & c¢=VBG
filex) = { 0 otherwise



Why called "maximum entropy™?

NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ..

| 1 1 1

45 45 45 45

AU e
45 45 45 45

P(NN)+P(JJ)+P(NNS)+P(VB)=1

NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ..

L |
i 4 4 1

0 0O O

P(NN)+P(NNS)=0.8

NN JJ NNS VB NNP ..

4 1 4 |

10 10 1

=

P(VB)=1/20
NN JJ NNS VB

A 3 4 1

1 20 1 20

See NLTK book for a
further example




Why called "maximum entropy’?

-1 The multinomial logistic regression yields the
probability distribution which
Gives the maximum entropy

Given our training data
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Comparing NB and LogReg

NB is a generative classifier:
It has a model of how the data are generated

P(C)P(f|C) = P(f, C)
LogReg is a discriminative classifier

It only considers the conditional probability P(C|f)
NB is an instance of LogReg,

i.e. one possible choice of weights

LogReg will always do at least as well as NB on the
training data




Comparing NB and LogReg

LogReg will always do at least as well as NB on the
training data

When the independence assumptions of NB holds,
NB will do as well as LogReg

When the independence assumptions does not hold,
NB may put too much weight on some features

LogReg will not do this: If we add features that
depend on other features, LogReg will put less
weight on them



LogReg

LogReg is prone to overfitting to the training data:
Use regularization.

Adding more features will not disturb LogReg (on
the training data.)

To see which features are important for LogReg, use
ablation:

Throw in all

Remove one after the other

But you may remove f1 or f2 but not both of f1 and f2



