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Today

 Linear classifiers

 Naive Bayes is log linear

 Logistic Regression

 Multinomial Logistic Regression = 

Maximum Entropy Classifiers

 Comparing Naïve Bayes and Logistic regression
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Geometry: lines

 Descartes 

 (1596-1650)

 Line:

 ax + by + c = 0

 If b ≠ 0: 

 y= mx + n

 n = - c/b is 
the intercept with the y-
axis

 m = -a/b is the slope

 A point = 
intersection of two lines

 y = - 2x + 5

 4x + 2y – 10 = 0



Normal vector of a line

 cos(π/2) = 0

 If P passes through 
(0,0) there is an n = 
(xn, yn) s.t.

 (x,y) is on P iff 

 (x,y)  (xn, yn) = 0

 x  xn = - y  yn

 If (a,b) ≠ (0,0) is on P:

 n = s (b, -a) for some 
s

 Example:

 y = -2x/5

 2x + 5y = 0

 (x,y)  (2,5) = 0



Lines not through (0,0)

 y = - 2x + 5

 2x + y – 5 = 0

 (x,y)  (2,1) = 5

 ((x,y)-(2.5, 0)  (2,1) = 0

 ((x,y)-(0,5))  (2,1) = 0

 ((x,y)-(x0, y0))  (2,1) = 0

 For any (x0, y0) on the line



Geometry: planes

 Plane:

 ax + by + cz + d = 0

 If c ≠ 0: 

 z= mx + ny + n

 A line is 
the intersection of two planes

 3x + 2y –z +2 = 0

 z = 3x + 2y + 2

http://www.univie.ac.at/future.media/mo

e/galerie/geom2/geom2.html#eb



Normal vector of a plane

 All points (x,y,z) where

 ((x,y,z)-(x0,y0,z0))(a,b,c) =0

 (x,y,z)  (a,b,c) = d

 (d = a x0+b y0+c z0)

 Hyperplane 

 w0+w1x1+w2x2 +… +wnxn = 0

 (w1,w2,…,wn) (x1, x2,…xn)=-w0

 Sometimes (n+1 dimensions):

 (w0,w1,w2,…,wn) (1,x1, x2,…xn)= 0



Hyperplanes

 Generalizes to higher dimensions

 In n-dimensional space (x1, x2, …, xn):
 Points satisfying:

 w0 + w1x1 + w2x2 +… + wnxn = 0
 for any choice of w0, w1, w2,… wn

 where not all of w1, w2,… wn = 0 

 is called a hyper-plane

 (In machine learning) the same as the intersection of two 
hyper-planes in n+1 dimensional space:

 w0x0 + w1x1 + w2x2 +… + wnxn

 x0 = 1



Linear classifiers

 Assume: 

 All features are numerical 
(including Boolean)

 Two classes

 The two classes are 
linearly separable if they 
can be separated by a 
hyperplane

 In 2 dimensions that is a 
line:

 ax + by < c for red points

 ax + by > c for blue points
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Linear classifiers

 A linear classifier 

introduces a hyperplane 

and classifies 

accordingly

 If the data aren’t 

linearly separable, the 

classifier will make 

mistakes.

 Then: goal to make as 

few mistakes as possible

10



Linear classifiers – general case

 Try to separate the classes 
by a hyperplane

 (equivalently               

 taking w0=- and x0=1)

 The object represented by

 is in C if and only if

 and in –C if
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Today

 Linear classifiers

 Naive Bayes is log linear

 Logistic Regression

 Multinomial Logistic Regression = 

Maximum Entropy Classifiers

 Comparing Naïve Bayes and Logistic regression
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Towards logistic regression
13

 Two ways to approach logistic regressions

1. Start with linear classifier and try to derive 
probabilistic classifier (e.g., J&M)

2. Start with NB and show that it is log-linear
Consider log.reg. as a generalization

 We choose alt. 2 to supplement J&M, and because

 the reasons for choosing the logistic function in (1) 
are not obvious.



Naive Bayes is a log linear classifier
14

 We start with a binary classifier, with classes: C1, C2= not C1

 For a given feature vector Ԧ𝑓, we choose C1: 

 iff:  𝑃 𝐶1 Ԧ𝑓 > 𝑃 −𝐶1 Ԧ𝑓 = 𝑃 𝐶2 Ԧ𝑓

 iff:                                                         (by NB assumption)    

 Iff (by Bayes' formula): 

 which is a linear expressions
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Naive Bayes is a log linear classifier
15

 How does this linear expression 

correspond to a linear classifier?

 What in the NB-classifier corresponds to wi and xi in the linear 

classifier?
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Example 1 (gender of names, NLTK), 

the only feature registers the last letter of the name

 Original view:

 One (categorical) feature f1

 26 possible different values: a, b, c, …,z
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Indicator variables
17

Example 1 Current view:

 52 different features x1, x2, …, x52

 Each corresponds to a pair of last letter and class, e.g.

 x1=f1(letter|class) = 1 if letter='a' and class='fem'

 0 otherwise

 x2=f31(letter|class) = 1 if letter='e' and class='masc'

 0 otherwise

 𝑤31 = 𝑃(𝑙𝑎𝑠𝑡 = 𝑒|𝐶2)

 Exactly two of these xi-s will equal1, the rest equals 0

 In addition, two features, x53=x54=1, w53=P(C1), w54=P(C2)



Example 2: Bernoulli text classif.
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 Original view: one feature fi for a term ti:

 fi = 1 if ti is present, fi = 0 if ti isn’t present

 Current view

 Four features x1, x2, …, x4 corresponding to

 𝑤1 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝑇𝑅𝑈𝐸|′𝑝𝑜𝑠′)

 𝑤2 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝐹𝐴𝐿𝑆𝐸|′𝑝𝑜𝑠′)

 𝑤3 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝑇𝑅𝑈𝐸|′𝑛𝑒𝑔′)

 𝑤4 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝐹𝐴𝐿𝑆𝐸|′𝑛𝑒𝑔′)

 Two xi-s will be 1 (w1, w3 or w2, w4) and two will be 0
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Example 3: the multinomial model
19

 Original view: one feature for each term e.g. f1 
for 'alice' and f2 for 'bob'. 

 Here two values for each term, 

𝑤1 = 𝑃(′𝑎𝑙𝑖𝑐𝑒′|′𝑝𝑜𝑠′)

𝑤2 = 𝑃(′𝑎𝑙𝑖𝑐𝑒′|′𝑛𝑒𝑔′)

𝑤3 = 𝑃(′𝑏𝑜𝑏′|′𝑝𝑜𝑠′)

𝑤4 = 𝑃(′𝑏𝑜𝑏′|′𝑛𝑒𝑔′)

 x1=x2=3, if alice occurs 3 times

 x3=x4=0, if bob occurs 0 times
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Today

 Linear classifiers

 Naive Bayes is log linear

 Logistic Regression

 Multinomial Logistic Regression = 

Maximum Entropy Classifiers

 Comparing Naïve Bayes and Logistic regression
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NB and logistic regression

 The NB uses a linear expression to decide

 Where the wi-s are determined by estimating probabilities 
of the type

 𝑃(𝐶1) , the class probability, and 

 𝑃 𝑓𝑖 𝐶𝑗 and the probability of seeing a feature for the given 
class

 Are these the best choices for the wjs?

 Logistic regression instead faces the question directly:

 Which wjs make the best classifier of the form above?
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Logistic regression – learning 

 Conditional maximum likelihood estimation:

Choose the model that fits the training data best!

 where:

 There are m many training instances

 The feature vector for observation i is:

 𝑐𝑘𝑖 is the class of observation i, i.e. c1 or c2.
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Furthermore

 To estimate

 we must find the relationship between w and P(ci|fi)
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Logistic function

 Takes values between 0 and 1 

 Can express probabilities.

 Useful for transforming discrete values to probs.

 Used e.g. in "deep learning"

 Mathematically "well-behaved"

 Used to model population growth, disease spreading etc.
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 There is no analytic solution to

 Use some iterative algorithm:

 start with an initial value for 𝑤 and step by step try better candidates

 The problem is convex: There is a global optimum and we will not be 

caught in local – non-global – optima.

 Possible algorithms

 (Hill climbing: optimize for one 𝑤𝑖after the other)

 Some sort of gradient ascent: use derivatives to find optimal direction

Learning algorithms
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Convex Gradient ascent
26

convex



Learning

NLTK:  Some iterative optimization techniques are much 
faster than others. 

 When training Maximum Entropy models, avoid the use of 

 Generalized Iterative Scaling (GIS) or

 Improved Iterative Scaling (IIS), 

 which are both considerably slower than the

 Conjugate Gradient (CG) and 

 the BFGS optimization methods.
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 There is a tendency to overfitting, hence 

regularization

 The regularization punishes large weights

 Most common is L2-regularization 𝑅 𝑊 = σ0
𝑛𝑤𝑖

2

 Alternative: L1-regularization 𝑅 𝑊 = σ0
𝑛 |𝑤𝑖|

Regularization
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scikit-learn – LogisticRegression
29

 LogisticRegression(penalty=’l2’, …, 
C=1.0, …)

 Uses L2-regularization as default

 Obligatory assignment 2.4:

 Without regularization (C=10000), you loose ca 0.05

 With C=0.1, I gained ca 0.005 on accuracy



Today

 Linear classifiers

 Naive Bayes is log linear

 Logistic Regression

 Multinomial Logistic Regression = 

Maximum Entropy Classifiers

 Comparing Naïve Bayes and Logistic regression
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A slight reformulation

 We have formulated

 as 



 But we could have stuck to the inequality and 

formulated is as

where 

(where we collect the indicator variables of the form 𝑓 𝐶1, …
to the left and they of the form 𝑓 𝐶2, … to the right)
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Reformulation, contd.
32

 and 

 in this notation

 and similarly for P(c2|f)
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Multinomial logistic regression

 We may generalize this to more than two classes

 For each class cj for j = 1,..,k

 a linear expression

 and the probability of belonging to class cj:

 where

 and
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Footnote: Alternative formulation

 (In case you read other presentations, like Mitchell or Hastie et. al.:

 They use a slightly different formulation, corresponding to

 where for i = 1, 2,…, k-1:

 But                                       and

 The two formulations are equivalent though:

 In the J&M formulation, divide the numerator and denominator in each P(ci|f) 
with 

 and you get this formulation (with adjustments to Z and w.) 
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Examples – J&M 
35



Why called ”maximum entropy”?

See NLTK book for a 

further example

36

P(NN)+P(JJ)+P(NNS)+P(VB)=1

P(NN)+P(NNS)=0.8

P(VB)=1/20



Why called ”maximum entropy”?

 The multinomial logistic regression yields the 

probability distribution which

 Gives the maximum entropy

 Given our training data
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Today

 Linear classifiers

 Naive Bayes is log linear

 Logistic Regression

 Multinomial Logistic Regression = 

Maximum Entropy Classifiers

 Comparing Naïve Bayes and Logistic regression
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Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃( Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓

 NB is an instance of LogReg, 

 i.e. one possible choice of weights

 LogReg will always do at least as well as NB on the
training data
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Comparing NB and LogReg

 LogReg will always do at least as well as NB on the 

training data

 When the independence assumptions of NB holds, 

NB will do as well as LogReg

 When the independence assumptions does not hold, 

NB may put too much weight on some features

 LogReg will not do this: If we add features that 

depend on other features, LogReg will put less 

weight on them
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LogReg
41

 LogReg is prone to overfitting to the training data:

 Use regularization.

 Adding more features will not disturb LogReg (on 

the training data.)

 To see which features are important for LogReg, use 

ablation:

 Throw in all

 Remove one after the other

 But you may remove f1 or f2 but not both of f1 and f2


