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Geometry: lines

 Descartes 

 (1596-1650)

 Line:

 ax + by + c = 0

 If b ≠ 0: 

 y= mx + n

 n = - c/b is 
the intercept with the y-
axis

 m = -a/b is the slope

 A point = 
intersection of two lines

 y = - 2x + 5

 4x + 2y – 10 = 0



Normal vector of a line

 cos(π/2) = 0

 If P passes through 
(0,0) there is an n = 
(xn, yn) s.t.

 (x,y) is on P iff 

 (x,y)  (xn, yn) = 0

 x  xn = - y  yn

 If (a,b) ≠ (0,0) is on P:

 n = s (b, -a) for some 
s

 Example:

 y = -2x/5

 2x + 5y = 0

 (x,y)  (2,5) = 0



Lines not through (0,0)

 y = - 2x + 5

 2x + y – 5 = 0

 (x,y)  (2,1) = 5

 ((x,y)-(2.5, 0)  (2,1) = 0

 ((x,y)-(0,5))  (2,1) = 0

 ((x,y)-(x0, y0))  (2,1) = 0

 For any (x0, y0) on the line



Geometry: planes

 Plane:

 ax + by + cz + d = 0

 If c ≠ 0: 

 z= mx + ny + n

 A line is 
the intersection of two planes

 3x + 2y –z +2 = 0

 z = 3x + 2y + 2

http://www.univie.ac.at/future.media/mo

e/galerie/geom2/geom2.html#eb



Normal vector of a plane

 All points (x,y,z) where

 ((x,y,z)-(x0,y0,z0))(a,b,c) =0

 (x,y,z)  (a,b,c) = d

 (d = a x0+b y0+c z0)

 Hyperplane 

 w0+w1x1+w2x2 +… +wnxn = 0

 (w1,w2,…,wn) (x1, x2,…xn)=-w0

 Sometimes (n+1 dimensions):

 (w0,w1,w2,…,wn) (1,x1, x2,…xn)= 0



Hyperplanes

 Generalizes to higher dimensions

 In n-dimensional space (x1, x2, …, xn):
 Points satisfying:

 w0 + w1x1 + w2x2 +… + wnxn = 0
 for any choice of w0, w1, w2,… wn

 where not all of w1, w2,… wn = 0 

 is called a hyper-plane

 (In machine learning) the same as the intersection of two 
hyper-planes in n+1 dimensional space:

 w0x0 + w1x1 + w2x2 +… + wnxn

 x0 = 1



Linear classifiers

 Assume: 

 All features are numerical 
(including Boolean)

 Two classes

 The two classes are 
linearly separable if they 
can be separated by a 
hyperplane

 In 2 dimensions that is a 
line:

 ax + by < c for red points

 ax + by > c for blue points
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Linear classifiers

 A linear classifier 

introduces a hyperplane 

and classifies 

accordingly

 If the data aren’t 

linearly separable, the 

classifier will make 

mistakes.

 Then: goal to make as 

few mistakes as possible
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Linear classifiers – general case

 Try to separate the classes 
by a hyperplane

 (equivalently               

 taking w0=- and x0=1)

 The object represented by

 is in C if and only if

 and in –C if

 nxxx ,...,, 21
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Towards logistic regression
13

 Two ways to approach logistic regressions

1. Start with linear classifier and try to derive 
probabilistic classifier (e.g., J&M)

2. Start with NB and show that it is log-linear
Consider log.reg. as a generalization

 We choose alt. 2 to supplement J&M, and because

 the reasons for choosing the logistic function in (1) 
are not obvious.



Naive Bayes is a log linear classifier
14

 We start with a binary classifier, with classes: C1, C2= not C1

 For a given feature vector Ԧ𝑓, we choose C1: 

 iff:  𝑃 𝐶1 Ԧ𝑓 > 𝑃 −𝐶1 Ԧ𝑓 = 𝑃 𝐶2 Ԧ𝑓

 iff:                                                         (by NB assumption)    

 Iff (by Bayes' formula): 

 which is a linear expressions
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Naive Bayes is a log linear classifier
15

 How does this linear expression 

correspond to a linear classifier?

 What in the NB-classifier corresponds to wi and xi in the linear 

classifier?





M

i

ii xw
1



0)2|(log)(log)|(log)(log)|(log)|(log
1

2

1

1121  


n

j

j

n

j

j cfPcPcfPcPfcPfcP



16





M

i

ii xw
1



Example 1 (gender of names, NLTK), 

the only feature registers the last letter of the name

 Original view:

 One (categorical) feature f1

 26 possible different values: a, b, c, …,z
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Indicator variables
17

Example 1 Current view:

 52 different features x1, x2, …, x52

 Each corresponds to a pair of last letter and class, e.g.

 x1=f1(letter|class) = 1 if letter='a' and class='fem'

 0 otherwise

 x2=f31(letter|class) = 1 if letter='e' and class='masc'

 0 otherwise

 𝑤31 = 𝑃(𝑙𝑎𝑠𝑡 = 𝑒|𝐶2)

 Exactly two of these xi-s will equal1, the rest equals 0

 In addition, two features, x53=x54=1, w53=P(C1), w54=P(C2)



Example 2: Bernoulli text classif.
18

 Original view: one feature fi for a term ti:

 fi = 1 if ti is present, fi = 0 if ti isn’t present

 Current view

 Four features x1, x2, …, x4 corresponding to

 𝑤1 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝑇𝑅𝑈𝐸|′𝑝𝑜𝑠′)

 𝑤2 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝐹𝐴𝐿𝑆𝐸|′𝑝𝑜𝑠′)

 𝑤3 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝑇𝑅𝑈𝐸|′𝑛𝑒𝑔′)

 𝑤4 = 𝑃(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(′𝑏𝑜𝑏′) = 𝐹𝐴𝐿𝑆𝐸|′𝑛𝑒𝑔′)

 Two xi-s will be 1 (w1, w3 or w2, w4) and two will be 0
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Example 3: the multinomial model
19

 Original view: one feature for each term e.g. f1 
for 'alice' and f2 for 'bob'. 

 Here two values for each term, 

𝑤1 = 𝑃(′𝑎𝑙𝑖𝑐𝑒′|′𝑝𝑜𝑠′)

𝑤2 = 𝑃(′𝑎𝑙𝑖𝑐𝑒′|′𝑛𝑒𝑔′)

𝑤3 = 𝑃(′𝑏𝑜𝑏′|′𝑝𝑜𝑠′)

𝑤4 = 𝑃(′𝑏𝑜𝑏′|′𝑛𝑒𝑔′)

 x1=x2=3, if alice occurs 3 times

 x3=x4=0, if bob occurs 0 times
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NB and logistic regression

 The NB uses a linear expression to decide

 Where the wi-s are determined by estimating probabilities 
of the type

 𝑃(𝐶1) , the class probability, and 

 𝑃 𝑓𝑖 𝐶𝑗 and the probability of seeing a feature for the given 
class

 Are these the best choices for the wjs?

 Logistic regression instead faces the question directly:

 Which wjs make the best classifier of the form above?
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Logistic regression – learning 

 Conditional maximum likelihood estimation:

Choose the model that fits the training data best!

 where:

 There are m many training instances

 The feature vector for observation i is:

 𝑐𝑘𝑖 is the class of observation i, i.e. c1 or c2.
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Furthermore

 To estimate

 we must find the relationship between w and P(ci|fi)
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Logistic function

 Takes values between 0 and 1 

 Can express probabilities.

 Useful for transforming discrete values to probs.

 Used e.g. in "deep learning"

 Mathematically "well-behaved"

 Used to model population growth, disease spreading etc.
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 There is no analytic solution to

 Use some iterative algorithm:

 start with an initial value for 𝑤 and step by step try better candidates

 The problem is convex: There is a global optimum and we will not be 

caught in local – non-global – optima.

 Possible algorithms

 (Hill climbing: optimize for one 𝑤𝑖after the other)

 Some sort of gradient ascent: use derivatives to find optimal direction

Learning algorithms
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Convex Gradient ascent
26

convex



Learning

NLTK:  Some iterative optimization techniques are much 
faster than others. 

 When training Maximum Entropy models, avoid the use of 

 Generalized Iterative Scaling (GIS) or

 Improved Iterative Scaling (IIS), 

 which are both considerably slower than the

 Conjugate Gradient (CG) and 

 the BFGS optimization methods.
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 There is a tendency to overfitting, hence 

regularization

 The regularization punishes large weights

 Most common is L2-regularization 𝑅 𝑊 = σ0
𝑛𝑤𝑖

2

 Alternative: L1-regularization 𝑅 𝑊 = σ0
𝑛 |𝑤𝑖|

Regularization
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scikit-learn – LogisticRegression
29

 LogisticRegression(penalty=’l2’, …, 
C=1.0, …)

 Uses L2-regularization as default

 Obligatory assignment 2.4:

 Without regularization (C=10000), you loose ca 0.05

 With C=0.1, I gained ca 0.005 on accuracy
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A slight reformulation

 We have formulated

 as 



 But we could have stuck to the inequality and 

formulated is as

where 

(where we collect the indicator variables of the form 𝑓 𝐶1, …
to the left and they of the form 𝑓 𝐶2, … to the right)
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Reformulation, contd.
32

 and 

 in this notation

 and similarly for P(c2|f)
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Multinomial logistic regression

 We may generalize this to more than two classes

 For each class cj for j = 1,..,k

 a linear expression

 and the probability of belonging to class cj:

 where

 and

   









 

i i

f

i

fwfwjj i

if
j

ii i
j

i
j

a
Z

w

Z
e

Z
e

Z
fw

Z
fcP e

1111
exp

1
)|(



j
iw

i ea 

 



k

j

j fwZ
1

exp






M

i

i

j

i

j xwfw
0



33



Footnote: Alternative formulation

 (In case you read other presentations, like Mitchell or Hastie et. al.:

 They use a slightly different formulation, corresponding to

 where for i = 1, 2,…, k-1:

 But                                       and

 The two formulations are equivalent though:

 In the J&M formulation, divide the numerator and denominator in each P(ci|f) 
with 

 and you get this formulation (with adjustments to Z and w.) 
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Examples – J&M 
35



Why called ”maximum entropy”?

See NLTK book for a 

further example

36

P(NN)+P(JJ)+P(NNS)+P(VB)=1

P(NN)+P(NNS)=0.8

P(VB)=1/20



Why called ”maximum entropy”?

 The multinomial logistic regression yields the 

probability distribution which

 Gives the maximum entropy

 Given our training data
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Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃( Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓

 NB is an instance of LogReg, 

 i.e. one possible choice of weights

 LogReg will always do at least as well as NB on the
training data
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Comparing NB and LogReg

 LogReg will always do at least as well as NB on the 

training data

 When the independence assumptions of NB holds, 

NB will do as well as LogReg

 When the independence assumptions does not hold, 

NB may put too much weight on some features

 LogReg will not do this: If we add features that 

depend on other features, LogReg will put less 

weight on them
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LogReg
41

 LogReg is prone to overfitting to the training data:

 Use regularization.

 Adding more features will not disturb LogReg (on 

the training data.)

 To see which features are important for LogReg, use 

ablation:

 Throw in all

 Remove one after the other

 But you may remove f1 or f2 but not both of f1 and f2


