INF5830 – 2015 FALL NATURAL LANGUAGE PROCESSING

1

Jan Tore Lønning, Lecture 3, 1.9

Today: More statistics

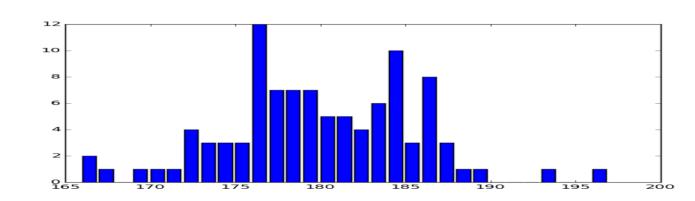
Recap

- Probability distributions
- Categorical distributions
 - Bernoulli trial
 - Binomial distribution
- Continuous random variables/distributions
 - Normal distribution
- Sampling and sampling distribution

From Lecture 1: Looking at data

- □ Median, mean mode
- Median, quartiles
- Variance, standard deviation

Median, mean mode



□ 3 ways to define "middle", "average"

Median: equally many above and below, in the example: 179

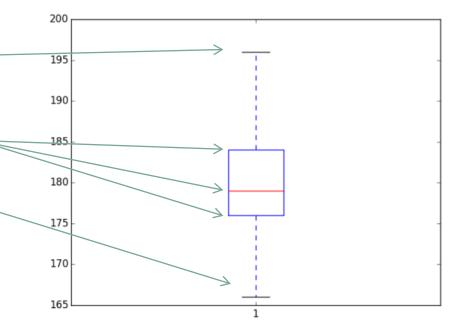
□ Mean: ex: 179.54

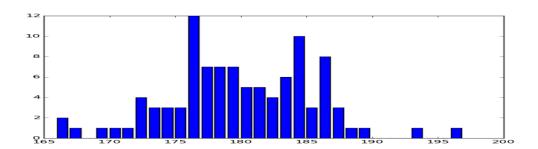
$$\bar{x} = (x_1 + x_2 + \dots + x_n)/n = \frac{1}{n} \sum_{i=1}^n x_i$$

□ Mode, the most frequent one, ex: 176

Dispersion 1:Median, quartile

- Example 1:
 - 🗖 Max 196
 - Quartiles:
 - 176, 179, 184
 - Min 166
- Also good for continuous data
- (The exact definition may var when "outlayers")





Dispersion 2: Variance

7

- $\square \text{ Mean: } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- □ Variance: $\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$

Beware: For some purposes we will later on divide by (n-1) instead of n. We return to that!

🗆 Idea:

- Measure how far each point is from the mean
- Take the average
- Square otherwise the average would be 0
- \Box Standard deviation: \sqrt{Var}
 - "Correct dimension and magnitude"

From Tutorial 1: Probabilities

- Median, mean mode
- Median, quartiles
- Variance, standard deviation

Mean of a discrete random variable

The mean (or expectation) (forventningsverdi) of a discrete random variable X:

$$\mu_X = E(X) = \sum_x p(x)x$$

Useful to remember

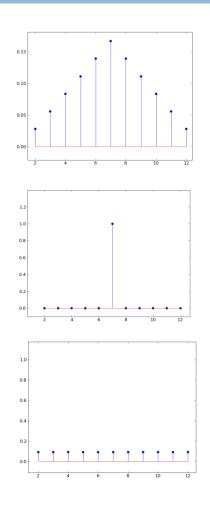
$$\mu_{(X+Y)} = \mu_X + \mu_Y$$
$$\mu_{(a+bX)} = a + b\mu_x$$

Examples: One dice: 3.5 Two dices: 7 Ten dices: 35

More than mean

- Mean doesn't say everything
- Example
 - (1.3) The sum of the two dice, Z, i.e.
 p₇(2) = 1/36, ..., p₇(7) = 6/36 etc
 - **(**3.2) p₂ given by:
 - p₂(7)=1

- □ (3.3) p₃ given by:
 - $p_3(x) = 1/11$ for x = 2,3,...,12
- Have the same mean but are very different



Variance

11

The variance of a discrete random variable X

$$Var(X) = \sigma^2 = \sum_{x} p(x)(x - \mu)^2$$

Observe that

 $Var(X) = E((X - E(X))^2)$

□ It may be shown that this equals $E(X^2) - (E(X))^2$

□ The standard deviation of the random variable

$$\sigma = \sqrt{Var(X)}$$

Summary: tutorial 1

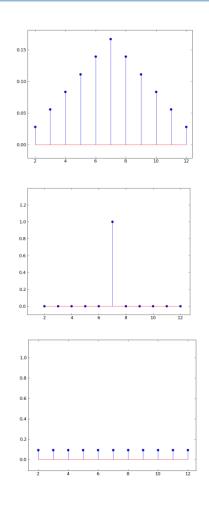
- Probability space
 - Random experiment (or trial) (no: forsøk)
 - Outcomes (utfallene)
 - Sample space (utfallsrommet)
 - An event (begivenhet)
 - Bayes theorem
- Discrete random variable
 - The probability mass function, pmf
 - The cumulative distribution function, cdf
 - The mean (or expectation) (forventningsverdi)
 - The variance of a discrete random variable X
 - The standard deviation of the random variable

¹³ Probability distributions

Sannsynlighetsfordelinger

Examples of distributions

- (1.3) The sum of the two dice, Z, i.e.
 p_Z(2) = 1/36, ..., p_Z(7) = 6/36 etc
- □ (3.2) p_2 given by: □ $p_2(7)=1$ □ $p_2(x)=0$ for $x \neq 7$
- (3.3) p₃ given by:
 p₃(x)= 1/11 for x = 2,3,...,12



Examples of variance

Throwing one dice

□
$$\mu = (1+2+..+6)/6=7/2$$

□ $\sigma^2 = ((1-7/2)^2 + (2-7/2)^2 + ...(6-7/2)^2)/6 = (25+9+1)/4*3=35/12$

- \square (Ex 1.3) Throwing two dice: $\sigma^2 = 35/6$
- \square (Ex 3.2) p₂, where p₂(7)=1 has variance 0

 \Box (Ex 3.3) p₃, the uniform distribution, has variance: $\square ((2-7)^2 + \dots (12-7)^2)/11 = (25+16+9+4+1+0)^*2/11 = 10$

¹⁶ Categorical distributions

- Bernoulli trial
- Binomial distribution

Bernoulli trial

- One experiment, two outcomes
- $\Box \ \Omega_{X} = \{0, 1\}$
- Write p for p(1)
- □ Then p(0) = 1-p

Examples:

- Flipping a fair coin, p=1/2
- Rolling a dice, getting a 6, p=1/6
- The mean/expectation: $0^*p(0)+1^*p(1)=0+p=p$ Variance $Var(X) = \sigma^2 = \sum_x p(x)(x-\mu)^2 = (1-p)(0-p)^2 + p(1-p)^2 = p(1-p)$

Standard deviation $\sigma = \sqrt{p(1-p)}$

Bernoulli trial and binomial distribution

- The Bernoulli trial seems trivial, but can be used as a lego block for more interesting models
- Binomial:
 - n trials
 - Iet X be a random variabel counting the number of successes
 - Possible values {0, 1, 2, ..., n}
 - Consider the distribution p(k)
- □ Geometric: how many trials before the first success?

Sampling

Ordered sequences:

- \Box Choose k items from a population of n items with replacement: n^k
- Without replacement (permutation):

□ : n(n-1)(n-2)...(n-k+1)=
$$\frac{n!}{(n-k)!}$$

Unordered sequences

• Without replac.:
$$\frac{1}{k!} \left(\frac{n!}{(n-k)!} \right) = \left(\frac{n!}{k!(n-k)!} \right) = \binom{n}{k}$$

- The number of ordered sequences/
 - (The number of ordered sequences containing the same k elements *
 - The number of ordered sequences containing the same (n-k) elements)

- Binomial distribution (binomisk fordeling)
- Conducting n Bernoulli trials with the same probability and counting the number of successes

Example flipping a fair coin n times, p(k):
n=2: p(0)=1/4, p(1)=1/2, p(2) =1/4
n=3: p(0)=1/8, p(1)=3/8, p(2)=3/8, p(3)=1/8
n=4: (1,4,6,4,1)/16
n=5: (1,5,10,5,1)/32

□ n:

$$p(k) = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Binomial distribution (binomisk fordeling)
- General form:
 - □ 0<p<1
 - n a natural number

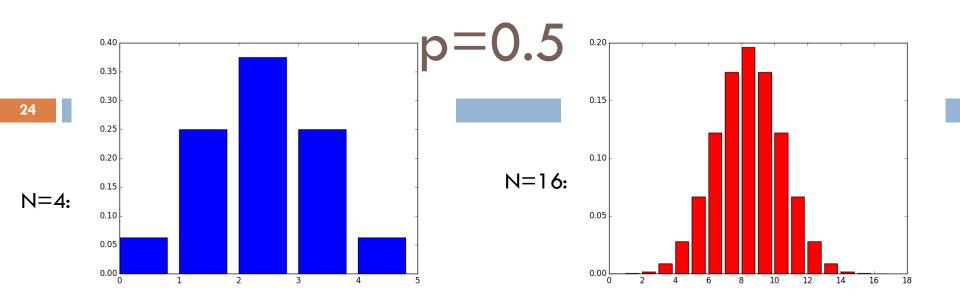
B(n,p) is given by
$$b(k;n,p) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

for k = 0, 1, ..., where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$



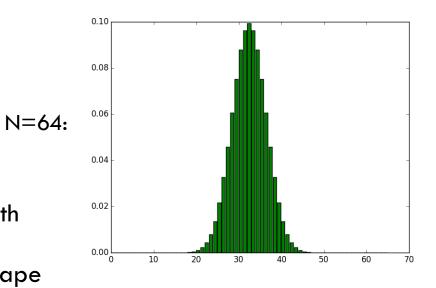
- \square Mean/expectation, μ , of B(n,p) is np
 - n Bernoulli trials
 - Each Bernoulli trial has mean p
- The variance is np(1-p)
 - Because the Bernoulli trials are independent
 - Each Bernoulli trial has variance p(1-p)

The variance of the sum of two independent random variables is the sum of their variances



Ν	1	4	16	64	256
σ^2	0.25	1	4	16	64
σ	0.5	1	2	4	8

- The relative variation gets smaller with growing N
- □ The pmf graph approaches a bell shape



SciPy

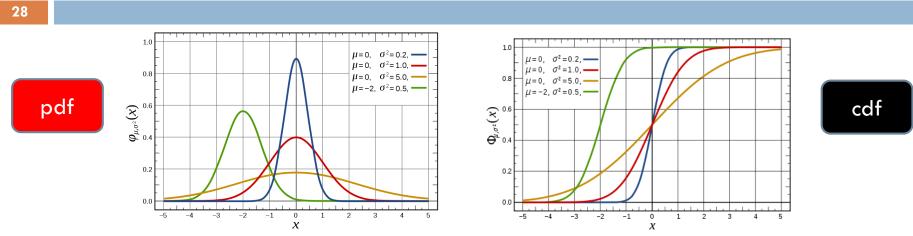
- import scipy
- □ from scipy import stats
- \square bin10 = stats.binom(10, 0.5) # N=10, p=0.5
- \square bin10.pmf(3) # probability mass of 3, b(3;10,0.5)
- \square bin10.cdf(3) # cumulative distribution function at 3
- □ bin10.var() # variance
- bin10.std() # standard deviation
- $\square x = np.arange(11); plt.bar(x, bin_10.pmf(x))$

The normal distribution

Continuous random variables

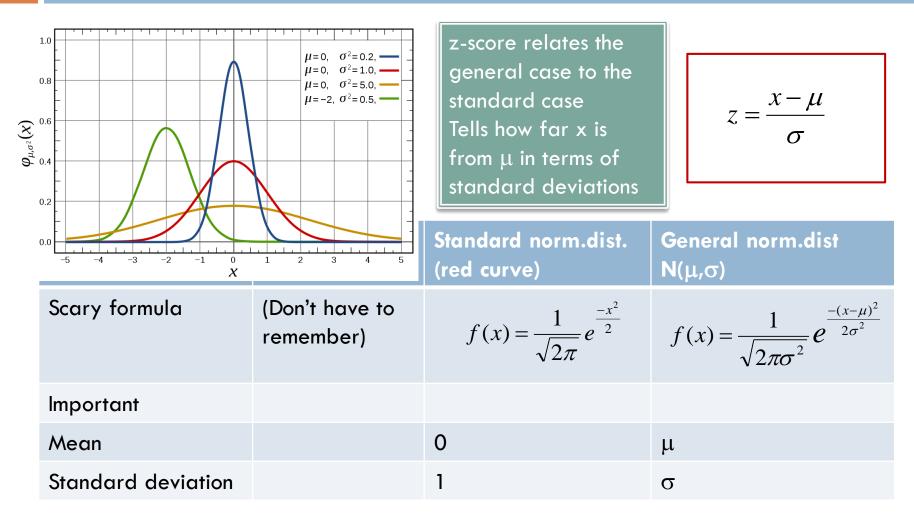
- \square P(X=a) = 0 for nearly all values a
- The probability mass function does not make sense
- □ The cumulative distribution function, cdf, given by F(a) = P(X≤a) makes sense
- $\Box P(a \leq x \leq b) = F(b) F(a)$
- To calculate expectation and variance we must use integration instead of (infinite) sums.
 - We skip the details!

Probability density function



- The derivative of the cdf, F', is called the probability density function, pdf (sannsynlighetstetthet)
- □ We draw curves for pdf-s
- The pdf has a similar relationship to the cdf in the continuous case as the pmf has in the discrete case

The normal distribution



68% - 95% - 99.7%

Percentage of cases in 8 portions of the curve	_		mal, I-shaped 2.14%	Cu	rve 13.599	% 3	34.139	%	34.139	% 1	3.59%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.14%	, , , , , , , , , , , , , , , , , , ,	8%
Standard Deviations	-40	σ -:	3σ	-2σ		-1σ		0		+10	5	+20	σ +	3σ I	+4σ Ι
Cumulative Percentages		0.1	%	2.3%	, , 0	15.9%	6	50%		84.1	1%	97.	7% 9	9.9%	
Percentiles			1		1 1 5 10	20) 30 4	0 50	 60 70	80	1 1 90 95	5	99	1	
Z scores	-4.() -3	.0 .	-2.0		-1.0		0		+1.0)	+2	.0 ·	+3.0	+4.0
T scores		2	0	30		40		50		60		70)	80	
Standard Nine (Stanines)			1		2	3	4	5	6	7	8		9		
Percentage in Stanine			4%		7%	12%	17%	20%	17%	12%	6 7%		4%		

Example

$$z = \frac{x - \mu}{\sigma}$$

- Tallness of Norwegian young men (rough numbers):
 - □ µ = 180 cm
 - 🗖 σ = 6cm
 - z = (186-180)/6=1
 (standard deviation)
 - (100-68)/2%=
 16% are taller than 186cm

- How many are taller than 190cm?
- □ z = (190-180)/6 = 1.67
- Prob. = 0.0475 (from table or software)

³² Sampling distribution

Utvalgsfordeling

Sampling - empirically

Goal:

- make assertions about a whole population
- from observations of a sample (utvalg)
- □ A simple random sample (SRS) (tilfeldig utvalg):
 - 1. Each individual has equal chance of being chosen (unbiased/forventningsrett)
 - 2. Selection of the various individuals are independent
- □ Not as simple as it sounds (c.f. the current election polls):
 - Various methods to rescue
 - E.g. choose from known groups, weigh by group size (gender, age, home town, etc.)

Sampling in Language Technology

- You want to take a simple random sample of words from a corpus?
 - Can you use the *n* first sentences?
 - Can you use a random sample of n sentences?
- How can you build a corpus (sample) which gives a random sample of Norwegian texts?

Sampling distributions – Example

- Height: X
 - assume N(180, 6)
 - (Var=36)
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - □ $Exp(S) = n^*\mu = 18000$ (cm)
 - Var(S) = 100*Var(X) = 3600

$$\sigma_S = 10 \times \sigma_X = 60 \ (cm)$$

Source: Wikipedia

Sampling distributions – Example

- Height: X
 - assume N(180, 6)
 - (Var=36)
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - Exp(S) = $n^*\mu$ = 18000 (cm)
 - Var(S) = 100*Var(X) = 3600
 - $\sigma_S = 10 \times \sigma_X = 60 \ (cm)$

- The mean of the samples:
- $\Box \overline{X} = S/n$
- A new random variable
 (all such means of samples of 100)

•
$$Exp(S) = \mu = 180$$
 (cm)

$$\sigma_{\bar{X}} = \frac{1}{100} \times \sigma_S = 0.6 \ (cm)$$

Sampling distributions

37

Let **I** X be a random variable for a population with exp: μ , std: σ Let $S = X_1 + X_2 + \ldots + X_n$, i.e. each X_i equals X **Let** : $\overline{X} = S/n$

Then:

• Exp(S) =
$$n^*\mu$$

Var(S) =
$$\sigma_s^2 = n \times Var(X) = n \times \sigma_x^2$$

Var
$$(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{1}{n^2} \times Var(S) = \frac{1}{n} \times \sigma_X^2$$

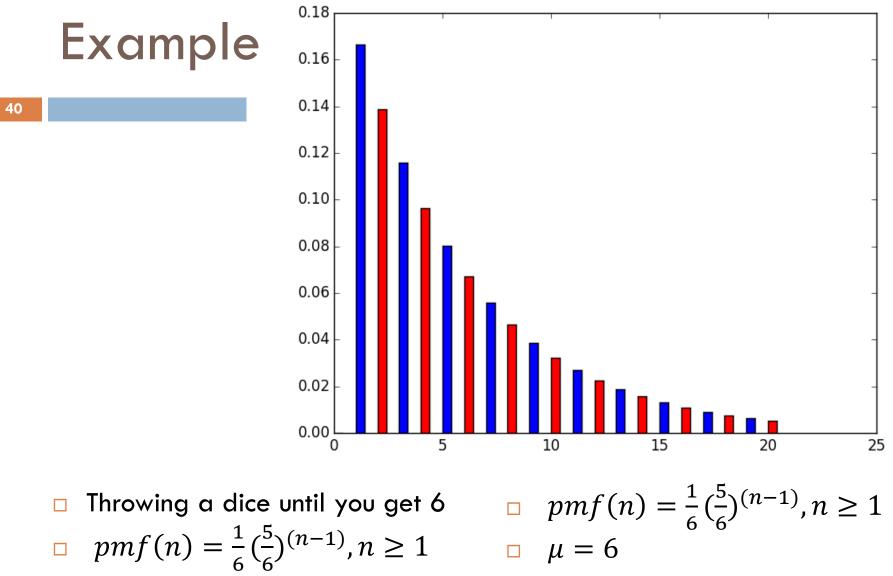
$$\sigma_{\overline{X}} = \frac{1}{\sqrt{n}} \times \sigma_{X}$$

Effect of sample size

Sample size	1	4	16	100	400	1600
Standard dev.	6	3	1.5	0.6	0.3	0.15

The form of the distribution

- 39
- If the Xi-s are independent and normally distributed, then X is normally distributed (as expected)
- (More surprisingly) Even though the Xi-s are not normally distributed: for large n-s, the sample distribution is approximately normal
- = Central Limit Theorem

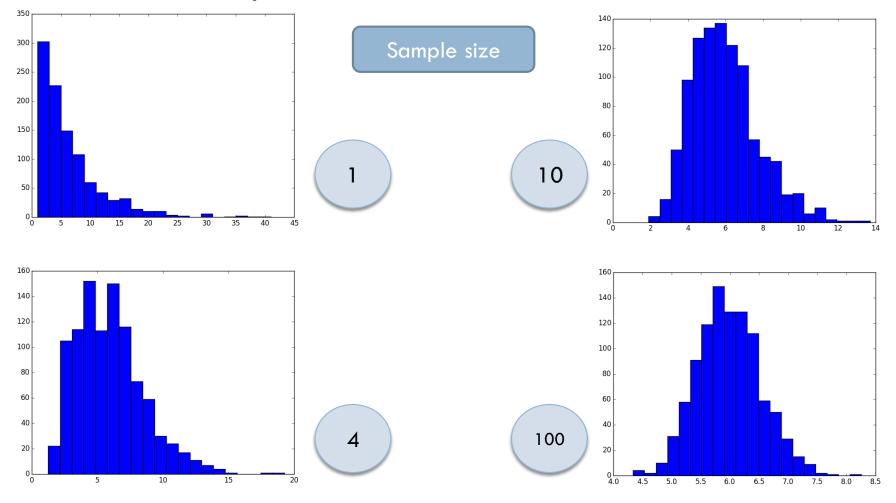


 $\square \quad \mu = 6$

Example: throwing the dice until a 6

41

Number of samples: 1000



Binomial distribution $b(k;n,p) = \binom{n}{k} p^k (1-p)^{(n-k)}$

Population: all Bernoulli trials with probability p.

Sample: *n* such trials

Example: Throwing a dice n times, counting the number of 6-s (success)

- Number of successes: X
- Random variable over all series of n trials
- Binomial distribution (binomisk fordeling): B(n,p)
- □ E(X)= np
- $\Box \quad Var(X) = np(1-p)$

$$\sigma_X = \sqrt{np(1-p)}$$

□ Approximated by N(*np*, $\sqrt{np(1-p)}$) for large n

Rule of thumb: np>10 and n(1-p)>10 Proportion of success:
$$\hat{p} = X/n$$

 $E(\hat{p}) = E(X/n) = np/n = p$
 $Var(\hat{p}) = \sigma_X^2/n^2 =$
 $np(1-p)/n^2 = p(1-p)/n$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \frac{\sigma_{Y}}{\sqrt{n}}$$

Approximated by N(p, $\sqrt{p(1-p)/n}$) for large n