

UiO : Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification
Lecture 4 : From regression to classification
Anne Solberg
February 10, 2017

Today's reading material

- CS 231n note on linear classifiers http://cs231n.github.io/linear-classify/
- CS 229 note on supervised classification: http://cs229.stanford.edu/notes/cs229-notes1.pdf
- SVM is included for reference, as it is a commonly used classifier. Details of this is not essential. See http://cs229.stanford.edu/notes/cs229-notes3.pdf

Topics

- Let us show how a regression problem can be transformed into a binary (2-class) classification problem using a nonlinear loss function.
- Then generalize to multiple classes using softmax
- Image-based classifiers $f(X, W)$
- Regularization terms in the loss function.

Introduction

- Consider classification into 2 classes. Call the classes 0 and 1 (or negative and positive)
- Example: classify fish species based on length

What would linear regression give?

- Maybe we would threshold this?

What would linear regression give?

- But what if we got more data? The line (and threshold) would change completely!

length

What if we fitted it to a function that is close to either 0 or 1?

- Hypothesis $h_{\theta}(x)$ is now a non-linear function of x Classification: $y=0$ or 1 Threshold $h_{\theta}(x)$: if $h_{\theta}(x)>1$: set $y=1$, otherwise set $y=0$
- Desirable to have $0 \leq h_{\theta}(x) \leq 1$

Logistic regression model

- Want $0 \leq h_{\theta}(x) \leq 1$
- Let

$$
\begin{aligned}
& h_{\theta}(X)=g\left(\theta^{T} x\right) \\
& g(z)=\frac{1}{1+e^{-z}} \\
& h_{\theta}(X)=\frac{1}{1+e^{-\theta^{T} x}}
\end{aligned}
$$

- This is called the sigmoid function

Decisions for logistic regression

- Decide $y=1$ if $h_{\theta}(x)>$ 0.5 , and $y=0$ otherwise

$$
\begin{aligned}
& h_{\theta}(X)=g\left(\theta^{T} x\right) \\
& g(z)=\frac{1}{1+e^{-z}} \\
& h_{\theta}(X)=\frac{1}{1+e^{-\theta^{T} x}}
\end{aligned}
$$

- $g(z)>0.5$ if $z>0$
- $\theta^{\top} x>0$
$g(z)<0.5$ if $z<0$
$\theta^{\top} x<0$
$\theta^{\top} x=0$ gives the decision boundary

An example with 2 features

Notation: $\mathrm{X}(\mathrm{i}, \mathrm{j})$ is feature j for sample i

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} X(i, 1)+\theta_{2} X(i, 2)\right)
$$

Predict $y=1$ if $x_{1}+2 x_{2}-4 \geq 0$

$$
\left(\theta^{T} x\right)
$$

Decision boundary $x_{1}+2 x_{2}-4=0$

If we KNOW θ_{0}, θ_{1} and θ_{2} classification is based on which side of the boundary we are on, in terms of the sign of $\theta^{\top} \mathbf{x}$

Nonlinear boundary by including higher-order terms

Logistic cost function

- Training set

$$
X=\left[\begin{array}{cccc}
X(1,0) & X(1,1) & . . & X(1, n) \\
X(2,0) & X(2,1) & \ldots & X(2, n) \\
\vdots & \vdots & \ldots & \vdots \\
X(m, 0) & X(m, 1) & \cdots & X(m, n)
\end{array}\right] \quad y=\left[\begin{array}{c}
y(1) \\
y(2) \\
\vdots \\
y(m)
\end{array}\right]
$$

$X(:, j)$ Column $\mathrm{j}:$ all samples for feature j
X(i,:) Row i : all features for sample i
$\mathrm{h}_{\theta}(x)=\frac{1}{1+e^{-\theta^{T} x}}$

- How do we set θ to have high classification accuracy?

Logistic regression cost

Minimize

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(\operatorname{Cost}\left(h_{\theta}\left(x_{i}\right), y_{i}\right)\right)
$$

Due to the sigmoid function $g(z)$, this is a non-quadratic function, and non-convex.
Set

$$
\operatorname{Cost}\left(h_{\theta}(x), y\right)=\left\{\begin{array}{c}
-\log \left(h_{\theta}(x)\right) \text { if } \mathrm{y}=1 \\
-\log \left(1-h_{\theta}(x)\right) \text { if } \mathrm{y}=0
\end{array}\right.
$$

$$
\begin{array}{ll}
\text { Cost }=0 \text { if } \mathrm{y}=1 \text { and } h_{\theta}(x)=1 & \text { We skip deriving this cost, } \\
\text { If } \mathrm{y}=1 \text { and } h_{\theta}(x) \rightarrow 0: \operatorname{Cost} \rightarrow \infty & \text { it is derived by maximizing the } \\
\text { log-likelihood that } \theta \text { fits the data }
\end{array}
$$

Cost $=0$ if $\mathrm{y}=0$ and $h_{\theta}(x)=0$
If $\mathrm{y}=0$ and $h_{\theta}(x) \rightarrow 1$: Cost $\rightarrow \infty$
Mimick a probability

UiO : Department of Informatics

University of Osio

$\operatorname{Cost}\left(h_{\theta}(x), y\right)=\left\{\begin{array}{c}-\log \left(h_{\theta}(x)\right) \text { if } \mathrm{y}=1 \\ -\log \left(1-h_{\theta}(x)\right) \text { if } \mathrm{y}=0\end{array}\right.$
Cost $=0$ if $\mathrm{y}=1$ and $h_{\theta}(x)=1$
If $\mathrm{y}=1$ and $h_{\theta}(x) \rightarrow 0:$ Cost $\rightarrow \infty$
Cost $=0$ if $\mathrm{y}=0$ and $h_{\theta}(x)=0$
If $\mathrm{y}=0$ and $h_{\theta}(x) \rightarrow 1$: Cost $\rightarrow \infty$
Mimick a probability

Blue: Cost if $y=1$. Red: cost if $y=0$

Cost function-compact notation

$$
\begin{aligned}
& J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}(X(i,:), y(i))\right) \\
& =-\frac{1}{m}\left[\sum_{i=1}^{m} y(i) \log h_{\theta}(X(i,:))+(1-y(i)) \log \left(1-h_{\theta}(X(i,:))\right)\right]
\end{aligned}
$$

To find θ : find θ that minimize $\mathrm{J}(\theta)$
To classify a new sample $\mathrm{X}(\mathrm{i},:)$:

$$
\text { Output } h_{\theta}(X(i,:))=\frac{1}{1+e^{-\theta^{T} X(i, i)}}
$$

Gradient descent of $\mathbf{J}(\theta)$

$$
J(\theta)=-\frac{1}{m}\left[\sum _ { i = 1 } ^ { m } y (i) \operatorname { l o g } h _ { \theta } \left(X(i,:)+(1-y(i)) \log \left(1-h_{\theta}(X(i,:))\right]\right.\right.
$$

To find θ : find θ that minimize $\mathrm{J}(\theta)$ using gradient descent
Repeat:

$$
\begin{aligned}
\theta_{j}= & \theta_{j}-\varepsilon \frac{\partial}{\partial \theta_{j}} \\
& \theta_{j}-\varepsilon \frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, j)\right)
\end{aligned}
$$

This algorithm looks similar to linear regression, but now

$$
h_{\theta}(x)=\frac{1}{1+e^{-\theta^{T} x}}
$$

How to include regularization

- Last week: the importance of not overfitting to training data.
- Too many parameters: risk of overfitting

Repetition: Polynomial regression

- If a linear model is not sufficient, we can extend to allow higherorder terms or cross-terms between the variables by changing our hypothesis $h_{\theta}(x)$

$$
\begin{aligned}
& h_{\theta}(x)=\theta^{0}+\theta^{1} x^{1}+\theta^{2}\left(x^{1}\right)^{2}+\theta^{3}\left(x^{1}\right)^{3} \ldots \\
& h_{\theta}(x)=\theta^{0}+\theta^{1} x^{1}+\theta^{2} \sqrt{x^{1}}
\end{aligned}
$$

The danger of overfitting

A higher-order model can easily overfit the training data For the higher order terms:

- The higher the value of the coefficients, the more the curve can fluctuate
- This is not valid for the first two coefficients
- Restricting only the value of
 higher-order terms is difficult in general (e.g. for neural nets)
- But we can restrict the magnitude of the coefficients (except θ_{0}).

Overfitting for classification

- Overfitting must be avoided for classifiation also - this is partly why we start with simple linear models

Regularization - intuition

Suppose we add a penalty to restrict θ_{3} and θ_{4}

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}(X(i,:))-y(i)\right)^{2}+100 \theta_{3}++100 \theta_{4}
$$

To minimize, θ_{3} and θ_{4} must be small

Regularized cost function

- Simplify the hypothesis by having small values for $\theta_{1}, \ldots \theta_{\mathrm{n}}$

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}(X(i,:))-y(i)\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}
$$

- λ is the regularization parameter
- This is L2-regularization, later we will see
- Dropout, max norm...
- Question: Should we restrict θ_{0} ?
- Think about a linear model $\theta_{0}+\theta_{1} x$

What if λ is very large?

- Will we get overfit or underfit?

Gradient descent with regularization: linear regression

To find θ : find θ that minimize $\mathrm{J}(\theta)$ using gradient descent
Note : NO penalty on θ_{0}
Repeat:

$$
\theta_{j}=\theta_{j}-\varepsilon \frac{\partial}{\partial \theta_{j}}
$$

$$
\begin{aligned}
\theta_{0} & =\theta_{0}-\varepsilon \frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, j)\right) \\
\theta_{j} & =\theta_{j}-\varepsilon\left[\frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, j)\right)+\frac{\lambda}{m} \theta_{j}\right] \\
& =\theta_{j}\left(1-\varepsilon \frac{\lambda}{m}\right)-\varepsilon \frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, j)\right)
\end{aligned}
$$

Regularized logistic regression

Regularized logistic regression: gradient descent

Repeat:

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\varepsilon \frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, 0)\right) \\
& \theta_{j}=\theta_{j}-\varepsilon \frac{1}{m} \sum_{i=1}^{m}\left(\left(h_{\theta}(X(i,:))-y(i)\right) X(i, j)\right)+\frac{\lambda}{m} \theta_{j} \\
& j=1, \ldots n \\
& h_{\theta}(X)=\frac{1}{1+e^{-\theta^{T} X}}
\end{aligned}
$$

One vs all classification

- From 2 to C classes:
- Train a logistic classifier $h_{\theta, c}(x)$ for each class c to predict the probability for $\mathrm{y}=\mathrm{c}$.
- Classify new sample x by picking the class c that maximize

$$
\max _{c} h_{\theta, c}(x)
$$

Introducing classifying CIFAR images

- CIFAR-10 images: $32 \times 32 \times 3$ pixels

- Stack one image into a vector x of length $32 \times 32 \times 3=3072$
- Classification will be to find a mapping $f(W, x, b)$ from image space to a set of C classes.
- For CIFAR:

Small example 2 classes

$$
\begin{aligned}
& \text { Graylevel image }=\left[\begin{array}{ll}
40 & 36 \\
16 & 12
\end{array}\right] \quad x=\left[\begin{array}{l}
40 \\
36 \\
16 \\
12
\end{array}\right] \quad W=\left[\begin{array}{cccc}
0.5 & -1.2 & 0.1 & 2.0 \\
1.0 & 0.2 & -0.5 & 0.3
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
2.1 \\
0.3
\end{array}\right] \\
& {\left[\begin{array}{l}
\text { Score for class 1 } \\
\text { Score for class 2 }
\end{array}\right]=\left[\begin{array}{cccc}
0.5 & -1.2 & 0.1 & 2.0 \\
1.0 & 0.2 & -0.5 & 0.3
\end{array}\right]\left[\begin{array}{l}
40 \\
36 \\
16 \\
12
\end{array}\right]+\left[\begin{array}{l}
2.1 \\
0.3
\end{array}\right]=\left[\begin{array}{c}
4.5 \\
43.1
\end{array}\right]}
\end{aligned}
$$

W: 2×4
One weight $w(i, j)$ for pixel j for class i

- If color image, append the $\mathrm{r}, \mathrm{g}, \mathrm{b}$ bands into one long vector x.
- Note: no spatial information concerning pixel neighbors is used here.
- Convolutional nets use spatial information.
- All images are standarized to the same size!
- For CIFAR-10 it is 32×32.
- If a classifier is trained on CIFAR and we have a new image to classify, resize to 32×32.

W for multiclass image classification

- W is a $C x(n+1)$-matrix (C classes, n pixels in the image plus 1 for b)
- We train one linear model pr. class, so each class has a different $\theta_{\mathrm{c}, \mathrm{i}}$-vector
- If $\theta_{c, i}$ is a vector of length $(n+1)$

Let the score for class s_{c} be $f(W, x)=W(c,:) x$ (b is included in W and x)

From 2 to multiple classes: Softmax

- The common generalization to multiple clasess is the softmax classifier.
- We want to predict the class label $y_{i}=\{1, \ldots C\}$ for sample $X(i,:), y$ can take one of C discrete values, so it follow a multinomial distribution.
- This is derived from an assumption that the probability of class $y=k$ is

$$
h_{\theta}(x)=p(y=k \mid x, \theta)=\frac{e^{\theta_{k}^{T} x}}{\sum_{j=1}^{C} e^{\theta_{j}^{T} x}}
$$

$$
\begin{aligned}
& \text { - The score or loss function for class i is } \\
& \text { This is called the cross-entropy loss } \quad L_{i}=-\log \left(\frac{e^{\theta_{i}^{T} X(i .)}}{\sum_{j=1}^{k} e^{\theta_{T}^{T_{1}(i)}}}\right)
\end{aligned}
$$

Cross-entropy

- From information theory, the cross entropy between a true distribution p and an estimated distribution q is:

$$
H(p, q)=-\sum_{x} p(x) \log q(x)
$$

- Softmax minimize the cross-entropy between the estimated class probabilities and the 'true' distribution (the distribution where all the mass is in the correct class).

Softmax

- From a training data set with m samples, we formulate the loglikelihood function that the model fits the data:

$$
l(\theta)=\sum_{i=1}^{m} \log \left(p\left(y_{i} \mid X(i,:), \theta\right)\right)
$$

- We can now find θ that maximize the likelihood using e.g. gradient ascent of the log-likelihood function.
- Or we can minimize $-I(\theta)$ using gradient descent

Loss and gradient descent for softmax

- The cost function for softmax, including regularization:
$x_{i}=X(i,:)^{T}$, the n pixel values for image i, $\operatorname{let} \theta_{\mathrm{j}}=W(j,:)$, the row for class j
$J(\theta)=-\frac{1}{n}\left[\sum_{i=1}^{n} \sum_{j=1}^{C} I\left(y_{i}=j\right) \log \left(\frac{e^{\theta_{j}^{T} x_{i}}}{\sum_{l=1}^{C} e^{\theta_{l}^{T} x_{i}}}\right)\right]+\frac{\lambda}{2} \sum_{i=1}^{c} \sum_{j=0}^{n} W(i, j)^{2}$
$\nabla J_{\theta_{j}}=-\frac{1}{n} \sum_{i=1}^{n} x_{i}\left(I\left(y_{i}=j\right)-p\left(y_{i}=j \mid x_{i}, W\right)\right)+\lambda \theta_{j}$
- $\mathrm{I}(\mathrm{y}=\mathrm{j})$ is the indicator function that is 1 if $\mathrm{y}=\mathrm{j}$ and zero otherwise.
- See http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

Link to Gaussian classifiers

- In INF 4300, we used a traditional Gaussian classifier
- This type of models is called generative models, where a specific distribution is assumed.

UiO : Department of Informatics

University of Osio

FROM INF 4300:Discriminant functions for the Gaussian density

- When finding the class with the highest probability, these functions are equivalent:

$$
\begin{aligned}
& g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})} \\
& g_{i}(\mathbf{x})=p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \\
& g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right)
\end{aligned}
$$

- With a multivariate Gaussian we get:

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{t} \Sigma_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|+\ln P\left(\omega_{i}\right)
$$

- If we assume all classes have equal diagonal covariance matrix, the discriminant function is a linear function of x :

$$
\frac{1}{\left(\sigma^{2}\right)} \boldsymbol{\mu}_{j}^{T} \mathbf{x}-\frac{1}{2\left(\sigma^{2}\right)} \boldsymbol{\mu}_{j}^{T} \boldsymbol{\mu}_{j}+\ln P\left(\omega_{j}\right)
$$

Gaussian classifier vs. logistic regression

- These Gaussian with diagonal covariance and the logistic regression/softmax classifier will result in different linear decision boundaries.
- If the Gaussian assumption is correct, we will expect that this classifier has the lowest error rate.
- The logistic regresion might be better if the data is not entirely Gaussian.
- NOTE: SOFTMAX reduces to logistic regression if we have 2 classes.

Support Vector Machine classifiers

- Another popular classifier is the Support Vector Machine (SVM) formulation, which also can be formulated in terms of loss functions
- The following foils are for completeness, only a basic understand of the SVM as a maximum-margin classifier is expected in this course.

UiO : Department of Informatics

University of Oslo

Background SVM

Background SVM

- If the two classes are linearly separable, there exist a hyperplane $\mathrm{w}^{* T} \mathrm{x}=0$ such that:

$$
\begin{array}{ll}
w^{* T} \quad x>0 & \forall x \in \omega_{1} \\
w^{* T} x<0 & \forall x \in \omega_{2}
\end{array}
$$

- The above also covers the situation where the hyperplane does not cross the origin, $w^{* \top} x+w_{0}=0$, since this can reformulated as $x^{\prime}=[x, 1]^{\top}, w^{\prime}=\left[w^{* \top}, w_{0}\right]^{\top}$. Then $w^{* \top} x+w_{0}=w^{\prime \top} x^{\prime}$.

UiO : Department of Informatics

Hyperplanes and margins

Background SVM

- A hyperplane is defined by its direction (w) and exact position $\left(w_{0}\right)$.
- If both classes are equally probable, the distance from the hyperplane to the closest points in both classes should be equal. This is called the margin.
- The margin for direction 1 is $2 z_{1}$, and for direction 2 it is $2 z_{2}$.

- The distance from a point to a hyperplane is

$$
z=\frac{|g(x)|}{\|w\|}
$$

UiO : Department of Informatics

University of Oslo

Hyperplanes and margins

Background SVM

- We can scale w and w_{0} such that $g(x)$ will be equal to 1 at the closest points in the two classes. This is equivalent to:

1. Have a margin of

$$
\frac{1}{\|w\|}+\frac{1}{\|w\|}=\frac{2}{\|w\|}
$$

2. Require that

$$
\begin{aligned}
& w^{T} x+w_{0} \geq 1, \quad \forall x \in \omega_{1} \\
& w^{T} x+w_{0} \leq-1, \quad \forall x \in \omega_{2}
\end{aligned}
$$

- Goal: find w and w_{0}

Support Vector Machine loss

- A SVM loss function can be formulated by having as large margin as possible.
- This is generalized to multiple classes so the SVM 'wants' the correct class to have a score higher than the scores for the incorrect classes by som margin Δ
- If s_{i} is the score for class i, the loss function for SVM is

$$
L_{i}=\sum_{j \neq i} \max \left(0, s_{j}-s_{y_{i}}+\Delta\right) \quad \text { This is called the hinge loss }
$$

The optimization problem with margins

- The class indicator for pattern $\mathrm{i}, \mathrm{y}_{\mathrm{i}}$, is defined as 1 if y_{i} belongs to class ω_{1} and -1 if it belongs to ω_{2}.
- The best hyperplane with margin can be found by solving the optimization problem with respect to w and w_{0} :

$$
\begin{array}{ll}
\operatorname{minimize} & J(w)=\frac{1}{2}\|w\|^{2} \\
\text { subject to } & y_{i}\left(w^{T} x_{i}+w_{0}\right) \geq 1, \quad i=1,2, \ldots N
\end{array}
$$

The optimization problem with margins

$$
\begin{array}{ll}
\operatorname{minimize} & J(w)=\frac{1}{2}\|w\|^{2} \\
\text { subject to } & y_{i}\left(w^{T} x_{i}+w_{0}\right) \geq 1, \quad i=1,2, \ldots N
\end{array}
$$

- This is a quadratic optimization task with a set of linear inequality contraints.
- It can be shown that the solution has the form:

$$
\mathrm{w}=\sum_{i=1}^{N} \lambda_{i} y_{i} x_{i} \text { where } \sum_{i=1}^{N} \lambda_{i} y_{i}=0
$$

- The λ_{i} 's are called Lagrange multipliers.
- The λ_{i} 's can be either 0 or positive.
- We see that the solution w is a linear combination of $\mathrm{N}_{\mathrm{s}} \leq \mathrm{N}$ feature vectors associated with a $\lambda_{i}>0$.
- The feature vectors x_{i} with a corresponding $\lambda_{i}>0$ are called the support vectors for the problem.
- The classifier defined by this hyperplane is called a Support Vector Machine.
- Depending on $\mathrm{y}_{\mathrm{i}}(+1$ or -1$)$, the support vectors will thus lie on either of the two hyperplanes

$$
w^{\top} x+w_{0}= \pm 1
$$

- The support vectors are the points in the training set that are closest to the decision hyperplane.
- The optimization has a unique solution, only one hyperplane satisfies the conditions.

Solving the optimization problem

Background SVM

- The optimization problem minimize $J(w)=\frac{1}{2}\|w\|^{2}$

$$
\text { subject to } \quad y_{i}\left(w^{T} x_{i}+w_{0}\right) \geq 1, \quad i=1,2, \ldots . N
$$

has a dual representation with equality constraints:

$$
\begin{array}{ll}
\operatorname{maximize} & L\left(w, w_{0}, \lambda\right) \\
\text { subject to } & \mathrm{w}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \lambda_{\mathrm{i}} y_{i} x_{i} \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \lambda_{\mathrm{i}} y_{i}=0 \text { and } \lambda_{i} \geq 0 \forall i
\end{array}
$$

- This is easier to solve and can be reformulated as:

$$
\begin{aligned}
& \max _{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y, \boxed{x_{i}^{T} x_{j}}\right) \\
& \text { subject to } \sum_{i=1}^{N} \lambda_{i} y_{i}=0 \text { and } \lambda_{i} \geq 0 \forall i
\end{aligned}
$$

- Note that the training samples x_{i} and x_{j} occurr as inner products of pairs of feature vectors. The solution does not depend on the dimensionality of the feature vector, only on the inner product.
- The computational complexity can be expected to depend on the number of pixels in the training data set, N .
- In this setting we just accept that the solution can be found in optimization theory.

The nonseparable case

- If the two classes are nonseparable, a hyperplane satisfying the conditions $w^{\top} x-w_{0}= \pm 1$ cannot be found.
- The feature vectors in the training set are now either:

1. Vectors that fall outside the band and are correctly classified.
Correctly classifiedErroneously classified and are correctly classified. They satisfy $0 \leq y_{i}\left(w^{\top} x+w_{0}\right)<1$ \square
2. Vectors that are misclassified expressed as $y_{i}\left(w^{\top} x+w_{0}\right)<0$

Background SVM

- The three cases can be treated under a single type of contraints if we introduce slack variables ξ_{i} :

$$
y_{i}\left[w^{T} x+w_{0}\right] \geq 1-\xi_{i}
$$

- The first category (outside, correct classified) have $\xi_{i}=0$
- The second category (inside, correct classified) have $0 \leq \xi_{\mathrm{i}} \leq 1$
- The third category (inside, misclassified) have $\xi_{i}>1$
- The optimization goal is now to keep the margin as large as possible and the number of points with $\xi_{i}>0$ as small as possible.

Cost function - nonseparable case

- The cost function to minimize is now

Background SVM

- C is a parameter that controls how much misclassified training samples is weighted.
- We skip the mathematics and present the alternative dual formulation:

$$
\begin{aligned}
& \max _{\lambda}^{\operatorname{On}}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{j}\right) \\
& \text { subject to } \sum_{\mathrm{i}=1}^{N} \lambda_{\mathrm{i}} y_{i}=0 \text { and } 0 \leq \lambda_{i} \leq C \quad \forall i
\end{aligned}
$$

- All points between the two hyperplanes $\left(\xi_{\mathrm{i}}>0\right)$ can be shown to have $\lambda_{i}=C$.

Background SVM

Nonseparable vs. separable case

- Note that the slack variables ξ_{i} does not enter the problem explicitly.
- The only difference between the linear separable and the non-separable case is that the Lagrangemultipliers are bounded by C .
- Training a SVM classifier consists of solving the optimization problem.
- The problem is quite complex since it grows with the number of training pixels.
- It is computationally heavy.

An example - the effect of C

Background SVM

- C is the misclassification cost.

- Selecting too high C will give a classifier that fits the training data perfect, but fails on different data set.
- The value of C should be selected using a separate validation set. Separate the training data into a part used for training, train with different values of C and select the value that gives best results on the validation data set. Then apply this to new data or the test data set. (explained later)

SVM and gradient descent

- We can also solve the SVM using gradient descent also, we will not cover this, but see http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

SVMs: The nonlinear case

- We have now found a classifier that is not defined in terms of the class centres or the distributions, but in terms of patterns close to the borders between classes, the support vectors.
- It gives us a solution in terms of a hyperplane. This hyperplane can be expressed as a inner product between the training samples:

$$
\begin{aligned}
& \max _{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{j}\right) \\
& \text { subject to } \sum_{\mathrm{i}=1}^{\mathrm{N}} \lambda_{\mathrm{i}} y_{i}=0 \text { and } 0 \leq \lambda_{i} \leq C \quad \forall i
\end{aligned}
$$

- The training samples are l-dimensional vectors.
- What if the classes overlap in I-dimensional space:
- Can we find a mapping to a higher dimensional space, and use the SVM framework in this higher dimensional space?

Background SVM

- Assume that there exist a mapping from I-dimensional feature space to a k-dimensional space ($\mathbf{k}>\mathbf{l}$) :

$$
x \in R^{l} \rightarrow y \in R^{k}
$$

- Even if the feature vectors are not linearly separable in the input space, they might be separable in a higher dimensional space.
- Classification of a new pattern x is to be computed by computing the sign of

$$
\begin{aligned}
g(x) & =w^{T} x+w_{0} \\
& =\sum_{i=1}^{N_{s}} \lambda_{i} y_{i} x_{i}^{T} x_{i}+w_{0}
\end{aligned}
$$

- In k-dimensional space, this involves the inner product between two k-dimensional vectors.
- Can it really help to go to a higher dimensional space?

An examle: from 2D to 3D

- Let x be a 1 x 2 vector $x=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$.
- Consider the transformation

$$
y=\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right]
$$

- On the toy example, the two classes can not be linearly separated in the original 2D space.
- It can be shown that

$$
y_{i}^{T} y_{j}=\left(x_{i}^{T} x_{j}\right)^{2}
$$

- Given the transformation above, these points in a 3D space CAN actually be separated by a hyperplane.
- In 2D, we would need an ellipse to separate the classes.
- In 3D, this ellipse can be expressed as a linear function of y.

Remark: we don't know yet how to construct this mapping or other useful mappings.

UiO : Department of Informatics

University of Oslo useful trick: Mercer's theorem - finding a mapping to the high-dimensional space using a kernel

Background SVM

Assume that ϕ is a mapping:

$$
x \rightarrow \phi(x) \in H
$$

where H is an Euclidean space.

> What we need from all this math is just that the inner product can be computed using the kernel $\mathrm{K}(\mathrm{x}, \mathrm{z})$. Someone has also identified some useful kernels.

The inner product has an equivalent representation

$$
\sum \phi_{r}(x) \phi_{r}(z)=K(x, z)
$$

where $\phi_{r}(x)$ is the r-component of the mapping $\phi(x)$ of x, and $K(x, z)$ is a symmetric function satisfying

$$
\int K(x, z) g(x) g(z) d x d z \geq 0
$$

for any $g(x), x \in R^{\prime}$ such that

$$
\int g(x)^{2} d x<+\infty
$$

$K(x, z)$ defines a inner product. $K(x, z)$ is called a kernel. Once a kernel has been defined, a mapping to the higher dimensional space is defined.

Radial basis kernel for classification

- Radial basis function kernels (most commonly used)

$$
K(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{\sigma^{2}}\right)
$$

- The most common type of kernel is the radial basis function. It has an extra parameter σ that must be tuned.
- Use software packages like libsvm to solve.
- Given the appropriate kernel (e.g. Radial with width σ) and the cost of misclassification C , the optimization task is:

$$
\begin{gathered}
\max _{\lambda}\left(\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)\right) \\
\text { subject to } \quad 0 \leq \lambda_{i} \leq C, \quad i=1, \ldots . N \\
\sum_{i} \lambda_{i} y_{i}=0
\end{gathered}
$$

- The resulting classifier is:
assign x to class ω_{1} if $g(x)=\sum_{i=1}^{N} \lambda_{i} y_{i} K\left(x_{i}, x\right)+w 0>0$ and to class ω_{2} otherwise

Background SVM

SVM architecture

- Notice how the kernels are used to compute the inner product between all pairs of samples x_{i} in the training data set.

Link to Gaussian classifiers

- In INF 4300, we used a traditional Gaussian classifier
- This type of models is called generative models, where a specific distribution is assumed.

UiO : Department of Informatics

University of Osio

FROM INF 4300:Discriminant functions for the Gaussian density

- When finding the class with the highest probability, these functions are equivalent:

$$
\begin{aligned}
& g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})} \\
& g_{i}(\mathbf{x})=p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \\
& g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right)
\end{aligned}
$$

- With a multivariate Gaussian we get:

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{t} \Sigma_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|+\ln P\left(\omega_{i}\right)
$$

- If we assume all classes have equal diagonal covariance matrix, the discriminant function is a linear function of x :

$$
\frac{1}{\left(\sigma^{2}\right)} \boldsymbol{\mu}_{j}^{T} \mathbf{x}-\frac{1}{2\left(\sigma^{2}\right)} \boldsymbol{\mu}_{j}^{T} \boldsymbol{\mu}_{j}+\ln P\left(\omega_{j}\right)
$$

Gaussian classifier vs. logistic regression

- These Gaussian with diagonal covariance and the logistic regression classifier will result in different linear decision boundaries.
- If the Gaussian assumption is correct, we will expect that this classifier has the lowest error rate.
- The logistic regresion might be better if the data is not entirely Gaussian.

Learning goals

- Understand logistic regression and the loss function for binary classification.
- Have knowledge about Softmax classification.
- Know what Support Vector Machines optimize and recognize the loss function in the linear case (without the kernel trick).
- Understand the need for regularization, and how to incorporate this in the loss function.

Next two weeks:

- Next week: Image representation/feature extraction
- In 2-3 weeks: basic neural nets
- Reading material:
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/optimization-2/
- Deep learning Chapter 6

