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Today’s reading material

• CS 231n note on linear classifiers
http://cs231n.github.io/linear-classify/

• CS 229 note on supervised classification: 
http://cs229.stanford.edu/notes/cs229-notes1.pdf

• SVM is included for reference, as it is a commonly used classifier. Details of
this is not essential.  See http://cs229.stanford.edu/notes/cs229-notes3.pdf



Topics

• Let us show how a regression problem can be 
transformed into a binary (2-class) classification
problem using a nonlinear loss function.

• Then generalize to multiple classes using softmax
• Image-based classifiers f(X,W)
• Regularization terms in the loss function.
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Introduction

• Consider classification into 2 classes. Call the
classes 0 and 1 (or negative and positive)

• Example: classify fish species based on length
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What would linear regression give?

• Maybe we would threshold this?
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What would linear regression give?

• But what if we got more data?
The line  (and threshold) would change completely!
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What if we fitted it to a function that is 
close to either 0 or 1?
• Hypothesis h(x) is now a non-linear function of x

Classification: y=0 or 1
Threshold h(x): if h(x)>1 : set y=1, otherwise set y=0

• Desirable to have 0≤h(x)≤1 
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Logistic regression model
• Want 0≤h(x)≤1
• Let

• This is called the sigmoid 
function
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Decisions for logistic regression

• Decide y=1 if h(x)> 
0.5, and y=0 otherwise

• g(z)>0.5 if z>0
– Tx>0

g(z)<0.5 if z<0
Tx<0

Tx=0 gives the decision
boundary
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An example with 2 features
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X(i,2)

))2,()1,(()( 210 iXiXgxh  

X(i,1)

Predict y=1 if x1+2x2-4≥0

 xT

Decision boundary x1+2x2-4=0

If we KNOW 0,  1 and 2 
classification is based on which
side of the boundary we are on, 
in terms of the sign of Tx

Notation: X(i,j) is feature j for sample i



Nonlinear boundary by including
higher-order terms
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Logistic cost function
• Training set

• How do we set  to have high classification accuracy? 
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Logistic regression cost
Minimize

Due to the sigmoid function g(z), this is a non-quadratic function, 
and non-convex.
Set 
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it is derived by maximizing the
log-likelihood that  fits the data
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Cost function-compact notation
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Gradient descent of J()
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How to include regularization

• Last week: the importance of not overfitting
to training data.

• Too many parameters: risk of overfitting
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Repetition: Polynomial regression
• If a linear model is not sufficient, we can extend to allow higher-

order terms or cross-terms between the variables by changing
our hypothesis h(x)
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The danger of overfitting
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A higher-order model can easily
overfit the training data
For the higher order terms: 
• The higher the value of

the coefficients, the more the
curve can fluctuate

• This is not valid for the first two
coefficients

• Restricting only the value of
higher-order terms is difficult in 
general (e.g. for neural nets)

• But we can restrict the
magnitude of the coefficients
(except 0).



Overfitting for classification
• Overfitting must be avoided for classifiation also – this is partly

why we start with simple linear models
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Regularization - intuition
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Regularized cost function

• Simplify the hypothesis by having small values for 
1,…. n

•  is the regularization parameter
• This is L2-regularization, later we will see 

– Dropout, max norm…
• Question: Should we restrict 0? 

– Think about a linear model
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What if  is very large?

• Will we get overfit or underfit?
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Gradient descent with regularization: 
linear regression
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Regularized logistic regression
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Regularized logistic regression: 
gradient descent
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One vs all classification

• From 2 to C classes:
– Train a logistic classifier h,c(x) for each class c to 

predict the probability for y=c.
– Classify new sample x by picking the class c that

maximize
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Introducing classifying CIFAR images
• CIFAR-10 images: 32x32x3 pixels

• Stack one image into a vector x of length 32x32x3=3072
• Classification will be to find a mapping f(W,x,b) from image 

space to a set of C classes. 
• For CIFAR: 
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Small example 2 classes
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• If color image, append the r,g,b bands into
one long vector x. 

• Note: no spatial information concerning pixel
neighbors is used here. 
– Convolutional nets use spatial information. 

• All images are standarized to the same size! 
– For CIFAR-10 it is 32x32. 
– If a classifier is trained on CIFAR and we have a 

new image to classify, resize to 32x32.  
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W for  multiclass image classification
• W is a Cx(n+1)-matrix (C classes, n pixels in the image plus 1 

for b)
• We train one linear model pr. class, so each class has a 

different c,i-vector
• If c,i- is a vector of length (n+1)

Cx(n+1)
Let the score for class sc be f(W,x)=W(c,:)x (b is included in W and 
x)
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From 2 to multiple classes: Softmax
• The common generalization to multiple clasess is the softmax

classifier.
• We want to predict the class label yi={1,…C} for sample X(i,:), y 

can take one of C discrete values, so it follow a multinomial
distribution. 

• This is derived from an assumption that the probability of class
y=k is

• The score or loss function for class i is 
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Cross-entropy

• From information theory, the cross entropy between a 
true distribution p and an estimated distribution q is:

• Softmax minimize the cross-entropy between the
estimated class probabilities and the ‘true’ distribution
(the distribution where all the mass is in the correct
class).
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Softmax
• From a training data set with m samples, we formulate the log-

likelihood function that the model fits the data:

• We can now find  that maximize the likelihood using e.g. 
gradient ascent of the log-likelihood function. 

– Or we can minimize –l() using gradient descent
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Loss and gradient descent for softmax
• The cost function for softmax, including regularization:

• I(y=j) is the indicator function that is 1 if y=j and zero otherwise.
• See http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

10.2.2017 INF 5860 36

jiii

n

i
i

n

j

C

i

C

j
C

l

x

x

i

n

i

T
i

WxjypjyIx
n

J

jiW
e

ejyI
n

J

jWiXx

j

i
T
l

i
T
j








































































)),|()((1

),(
2

log)(1)(

j classfor  row  the,:),(let    ,  i imagefor   valuespixeln   the,:),(

1

0

2

11

1

1

j



Link to Gaussian classifiers

• In INF 4300, we used a traditional Gaussian
classifier
– This type of models is called generative models, 

where a specific distribution is assumed.
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FROM INF 4300:Discriminant functions
for the Gaussian density

• When finding the class with the highest probability, these functions
are equivalent:

• With a multivariate Gaussian we get:

• If we assume all classes have equal diagonal covariance matrix, 
the discriminant function is a linear function of x:
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Gaussian classifier vs. logistic regression

• These Gaussian with diagonal covariance and the
logistic regression/softmax classifier will result in 
different linear  decision boundaries.

• If the Gaussian assumption is correct, we will expect
that this classifier has the lowest error rate. 

• The logistic regresion might be better if the data is 
not entirely Gaussian. 

• NOTE: SOFTMAX reduces to logistic regression if
we have 2 classes.
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Support Vector Machine classifiers

• Another popular classifier is the Support 
Vector Machine (SVM) formulation, which
also can be formulated in terms of loss 
functions

• The following foils are for completeness, only
a basic understand of the SVM as a 
maximum-margin classifier is expected in this
course. 
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Background SVM

• If the two classes are linearly separable, there exist a 
hyperplane w*Tx=0 such that:

• The above also covers the situation where the hyperplane
does not cross the origin, w*Tx+w0=0, since this can
reformulated as x’=[x,1]T, w’=[w*T,w0]T. Then w*Tx+w0=w’Tx’.
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Hyperplanes and margins

• A hyperplane is defined by its
direction (w) and exact position
(w0). 

• If both classes are equally
probable, the distance from 
the hyperplane to the closest
points in both classes should
be equal. This is called the
margin.

• The margin for direction 1 is 
2z1, and for direction 2 it is 2z2.

• The distance from a point to a 
hyperplane is  
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Hyperplanes and margins

• We can scale w and w0 such
that g(x) will be equal to 1 at the
closest points in the two
classes. This is equivalent to:

1. Have a margin of

2. Require that

• Goal: find w and w0
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Support Vector Machine loss
• A SVM loss function can be formulated by having as large

margin as possible. 
• This is generalized to multiple classes so the SVM ‘wants’ the

correct class to have a score higher than the scores for the
incorrect classes by som margin 

• If si is the score for class i, the loss function for SVM is
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The optimization problem with margins

• The class indicator for pattern i, yi, is defined as 1 if yi belongs to 
class 1 and -1 if it belongs to 2.

• The best hyperplane with margin can be found by solving the
optimization problem with respect to w and w0 : 
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The optimization problem with margins

• This is a quadratic optimization task with a set of linear inequality
contraints.

• It can be shown that the solution has the form:

• The i’s are called Lagrange multipliers.
• The i’s can be either 0 or positive. 
• We see that the solution w is a linear combination of NsN feature 

vectors associated with a i>0.
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• The feature vectors xi with a 
corresponding i>0 are called the
support vectors for the problem.

• The classifier defined by this
hyperplane is called a Support Vector
Machine.  

• Depending on yi (+1 or -1), the
support vectors will thus lie on either
of the two hyperplanes 

wTx+w0=1
• The support vectors are the points in 

the training set that are closest to the
decision hyperplane. 

• The optimization has a unique
solution, only one hyperplane 
satisfies the conditions. 

The support vectors for hyperplane 1
are the blue circles.
The support vectors for hyperplane 2
are the red circles.
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Solving the optimization problem 
• The optimization problem

has a dual representation with equality constraints:

• This is easier to solve and can be reformulated as: 

• Note that the training samples xi and xj occurr as inner products of pairs of feature 
vectors. The solution does not depend on the dimensionality of the feature 
vector, only on the inner product.

• The computational complexity can be expected to depend on the number of pixels
in the training data set, N.  

• In this setting we just accept that the solution can be found in optimization theory. 
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The nonseparable case
• If the two classes are

nonseparable, a hyperplane 
satisfying the conditions wTx-w0=1 
cannot be found.

• The feature vectors in the training
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2. Vectors that are inside the band 
and are correctly classified. They
satisfy 0yi(wTx+w0)<1

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0

Correctly classified

Erroneously classified
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• The three cases can be treated under a single type of contraints if
we introduce slack variables i:

– The first category (outside, correct classified) have i=0
– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.

i
T

i wxwy  1][ 0
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Cost function – nonseparable case
• The cost function to minimize is now

• C is a parameter that controls how much misclassified training
samples is weighted. 

• We skip the mathematics and present the alternative dual 
formulation:

• All points between the two hyperplanes (i>0) can be shown to 
have i=C.
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Nonseparable vs. separable case

• Note that the slack variables i does not enter the
problem explicitly.

• The only difference between the linear separable 
and the non-separable case is that the Lagrange-
multipliers are bounded by C. 

• Training a SVM classifier consists of solving the
optimization problem.
– The problem is quite complex since it grows with the

number of training pixels. 
– It is computationally heavy.
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An example – the effect of C
• C is the misclassification cost.

• Selecting too high C will give a classifier that fits the training 
data perfect, but fails on different data set.

• The value of C should be selected using a separate validation
set. Separate the training data into a part used for training, train
with different values of C and select the value that gives best 
results on the validation data set. Then apply this to new data or 
the test data set. (explained later)

C=0.2 C=100

Background SVM



SVM and gradient descent

• We can also solve the SVM using gradient descent
also, we will not cover this, but see
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
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SVMs: The nonlinear case

• We have now found a classifier that is not defined in terms of the
class centres or the distributions, but in terms of patterns close
to the borders between classes, the support vectors.

• It gives us a solution in terms of a hyperplane. This hyperplane can
be expressed as a inner product between the training samples:

• The training samples are l-dimensional vectors.
• What if the classes overlap in l-dimensional space:

– Can we find a mapping to a higher dimensional space, and use the
SVM framework in this higher dimensional space?
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• Assume that there exist a mapping from l-dimensional feature 
space to a k-dimensional space (k>l) :

• Even if the feature vectors are not linearly separable in the input 
space, they might be separable in a higher dimensional space. 

• Classification of a new pattern x is to be computed by computing
the sign of

• In k-dimensional space, this involves the inner product between
two k-dimensional vectors.

• Can it really help to go to a higher dimensional space?
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An examle: from 2D to 3D
• Let x be a 1x2 vector x=[x1,x2].
• Consider the transformation

• On the toy example, the two classes
can not be linearly separated in the
original 2D space. 

• It can be shown that

• Given the transformation above, 
these points in a 3D space CAN 
actually be separated by a 
hyperplane. 

• In 2D, we would need an ellipse to 
separate the classes. 

• In 3D, this ellipse can be expressed
as a linear function of y. 
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Remark: we don’t know yet how 
to construct this mapping or 
other useful mappings. 
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A useful trick: Mercer’s theorem – finding a mapping to the
high-dimensional space using a kernel

Assume that  is a mapping:

where H is an Euclidean space. 
The inner product has an equivalent representation

where r(x) is the r-component of the mapping (x) of x, and K(x,z)
is a symmetric function satisfying

for any g(x), xRl such that

K(x,z) defines a inner product. K(x,z) is called a kernel. 
Once a kernel has been defined, a mapping to the higher
dimensional space is defined.  

  Hxx 
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r , 

   0)()(, dxdzzgxgzxK

 dxxg 2)(

What we need from all this math is 
just that the inner product can be 
computed using the kernel K(x,z). 
Someone has also identified 
some useful kernels. 
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Radial basis kernel for classification

• Radial basis function kernels (most commonly used)

• The most common type of kernel is the radial basis function. It has 
an extra parameter  that must be tuned. 

• Use software packages like libsvm to solve.
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The kernel formulation of
the cost function
• Given the appropriate kernel (e.g. Radial with width ) and the cost of 

misclassification C, the optimization task is: 

• The resulting classifier is:
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SVM architecture
• Notice how the kernels 

are used to compute the 
inner product between 
all pairs of samples xi in 
the training data set. 
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Link to Gaussian classifiers

• In INF 4300, we used a traditional Gaussian
classifier
– This type of models is called generative models, 

where a specific distribution is assumed.
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FROM INF 4300:Discriminant functions
for the Gaussian density

• When finding the class with the highest probability, these functions
are equivalent:

• With a multivariate Gaussian we get:

• If we assume all classes have equal diagonal covariance matrix, 
the discriminant function is a linear function of x:
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Gaussian classifier vs. logistic regression

• These Gaussian with diagonal covariance and the
logistic regression classifier will result in different 
linear  decision boundaries.

• If the Gaussian assumption is correct, we will expect
that this classifier has the lowest error rate. 

• The logistic regresion might be better if the data is 
not entirely Gaussian. 
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Learning goals 

• Understand logistic regression and the loss function
for binary classification.

• Have knowledge about Softmax classification.
• Know what Support Vector Machines optimize and 

recognize the loss function in the linear case (without
the kernel trick).

• Understand  the need for regularization, and how to 
incorporate this in the loss function.
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Next two weeks:

• Next week: Image representation/feature extraction
• In 2-3 weeks: basic neural nets

– Reading material:
• http://cs231n.github.io/neural-networks-1/
• http://cs231n.github.io/neural-networks-2/
• http://cs231n.github.io/optimization-2/
• Deep learning Chapter 6
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