
INF 5860 Machine learning for image classification

Lecture 6 : Introduction to neural nets
Anne Solberg
February 25, 2017

Reading material
– Reading material:

• http://cs231n.github.io/neural-networks-1/
• http://cs231n.github.io/neural-networks-2/
• http://cs231n.github.io/optimization-2/

Youtube: CS 231n: Lectures 4-6 covers the next 3 lectures
• Deep learning Chapter 6.1-6.5

25.2.2017 INF 5860 3

Today

• The concept of feed-forward neural nets
• Capacity of traditional feed-forward nets
• Forward propagation from input to output

class labels
• Cost functions for neural net classification
• Net architecture
• Introduction to learning using

backpropagation (as far as time permits)
– Backpropagation in detail next week.

25.2.2017 INF 5860 4

Feed-forward neural nets
• The focus today is a feed-forward neural net with

few hidden layers.
• Input will be the image pixel values

– Or features like SIFT, orientation histograms etc.
• The net will play the role of a classifier that maps

the input data through some hidden layers to a
score for each class.
For a network with 2 layers, the score would be
s=f(W2*f(W1*x))

– f is a non-linear function called activation function

• Later, we will see recurrent networks that feeds the
output back to itself.

25.2.2017 INF 5860 5

Non-linear data example

25.2.2017 INF 5860 6

Logistic classification
Decision boundary Tx=0
Cannot only solve problems
that are linearly separable
With a higher-order polynomial
we could possibly find a
boundary

Higher-order polynomials have
too many parameters for image
classification (e.g. 3072 inputs
for CIFAR-10)

Two-layer net

25.2.2017 INF 5860 7

xi

W1(i,j) weight for input
feature j to
node i in the hidden
layer

W2(j,k) weight for
hidden node k to
output node j in the
output layer

Hidden layer

sk

Two-layer net for image classification

25.2.2017 INF 5860 8

xi one input node
for each pixel

W1(i,j) weight for input
feature j to
node i in the hidden
layer

W2(j,k) weight for
hidden node k to
output node j

Hidden layer

One output node for each clas.
sk is the score for class k

• This architecture with some hidden layers and fully forward
connected layers is also called a multilayer perceptron.

• Fully connected: each node in layer i-1 is connected to each
node in layer i.

• xi is still a 1D vector of pixel values (e.g. 3072x1 for CIFAR-10)
• This network does not use any information about which pixel is

a neighbor of which pixel, or any spatial features relating
neighboring pixel values.
– A Convolutional neural net will include this information and perform

much better for image classification purposes.

• We can add as many hidden layers as we want, and the
number of nodes in a hidden layer is a parameter we set.

25.2.2017 INF 5860 9

Modelling one neuron
• One node in the network is inspired by a neuron in the

brain.
• It received inputs from its dendrites and produce

outputs along a single axon.
• We have about 86 billion neurons of different types.
• Neurons are connected by synaptic junctions or

synapses.
• A cell will fire (send a pulse) if its potential reach a

certain level. The frequency of firing carries information.
– In mathematics this is modelled using activation function f.

• The weights that connect neurons are learnable.

25.2.2017 INF 5860 10

25.2.2017 INF 5860 11

McColloch-Pitt’s mathematical neuron
model

25.2.2017 INF 5860 12

McColloch and Pitts (1943) modelled this as a binary threshold unit

Simple illustration More detailed illustration

Pseudo-code for forward progatating a single
neuron

class Neuron(object):
#
def forward(inputs):

#assume inputs and weights are 1D arrays
cell_sum = np.sum(input*self.weights)+self.bias
firing_rate = 1(1.0+math.exp(-cell_sum)) # Sigmoid activation
return

25.2.2017 INF 5860 13

Other activation functions can
be better, like RELU

Note: not an accurate actual model for a human neuron, see
http://www.sciencedirect.com/science/article/pii/S0959438814000130

Topic for a later lecture: which activation
function to choose

25.2.2017 INF 5860 14

Architecture for a feed-forward net

25.2.2017 INF 5860 15

4-layered net
- input layer not counted

One neuron as a binary logistic classifier

25.2.2017 INF 5860 16

w),x|1P(y-1w),x|0P(y

 and w),,x|1 P(yclass1 ofy probabilita as dinterprete be can)(
function sigmoid theis)1/(1)(

iiii

ii










bxw
ez

ii
i

x




2-layer net , 3 pixels, with notation

25.2.2017 INF 5860 17

x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 0 Layer 1
Hidden layer

Layer 2
Output layer

h(x)

Note: each layer has a bias node
This node is NOT connected to
previous layers: it receives NO INPUT

Notation

25.2.2017 INF 5860 18

 
 
 

  aaaaa)(

 xxxxa

 xxxxa

 xxxxa

)1(s s size has :jlayer in nodes s 1,-jlayer in nodes s
1) 1)-(jlayer in (nodes(j))layer in (nodesdimension has

1j tojlayer from mappingfunction gcontrollin weightsofmatrix -

layer and unit of activation -

(2)
3

)2(
13

)2(
2

)2(
12

)2(
1

)2(
11

)2(
0

)2(
10

(2)
1

3
)1(

332
)1(

321
)1(

310
)1(

30
(1)
3

3
)1(

232
)1(

221
)1(

210
)1(

20
(1)
2

3
)1(

132
)1(

121
)1(

110
)1(

10
(1)
1

1-jj
)(

j1-j

)(

)(

)(















 gxh

g

g

g

jia

j

j

j

j
i

2-layer net – what do the layers do?

25.2.2017 INF 5860 19

x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 1
Hidden layer

Layer 2
Output layer

h(x)

LAST LAYER:
With a sigmoid activation, h acts as a
logistic binary classifier on a0

(1)…a3
(1)

25.2.2017 INF 5860 20

x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 2
Hidden layer

Layer 3
Output layer

h(x)

HIDDEN LAYER:
Each a1

(1) is a weighted linear combination of
all input pixels x1,…x3
This is the network’s own feature extraction
method to extract one feature in each node,
here 3 features

With 3 hidden layers: 3 steps of feature
extraction, and one step of classification

Example net: MNIST-classification

• Input 20x20 images=400 input nodes + 1
bias

• 25 nodes in hidden layer: (1) is 25x401 (add
bias term x0)

• 10 classes: digits ‘0’-’9’: (2) is 10x26 (add
bias term a0

(2)

– One vs. all loss function

25.2.2017 INF 5860 21

Example of trained network MNIST
data

25.2.2017 INF 5860 22

20x20 images
of handwritten digits,
10 classes

25.2.2017 INF 5860 23

x0

x1

x400

a0
(1)

a2
(1)

a1
(1)

a25
(1)

Layer 0 Layer 1
25 nodes ,Hidden layer

Layer 3
Output layer

h(x)

HIDDEN LAYER:
Nof. nodes is a parameter we need to select.
25 nodes represents 25 features.
Visualize these features by the weights to
node a1

(1)-a25
(1) for each of the 20x20 pixels.

(Ignore bias here)

With 3 hidden layers: 3 steps of feature
extraction, and one step of classification

…
…

…

25.2.2017 INF 5860 24
Weights (1) to node 1-25

Weights for the output layer
25 hidden nodes, 10 classes

25.2.2017 INF 5860 25

x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 1
Hidden layer

Layer 2
Output layer

h(x)=a1
(2)

LAST LAYER:
One output node for each of the 10
classes

Weights for class k is a vector of 25
values (ignoring the bias term)

Weights for the output classes

25.2.2017 INF 5860 26

Class 0 Class 2 Class 3Class 4 Class 5 Class 6 Class 7 Class 8 Class 9Class 1

Let us look at class 2

25.2.2017 INF 5860 27

High value for feature/node 13 and 1

Maybe this responds to objects with a center in the right half (13) and
seeing a diagonal edge????

What if the object is rotated or
translated?

25.2.2017 INF 5860 28

Maybe this responds to objects with a center in
the right half (13) and seeing a diagonal edge????

Would this be the case for the rotated object?

Some remarks

• With the output layer, it is possible to use a
net with or without the activation function.

• The size of network is measured by the
number of neurons.

25.2.2017 INF 5860 29

Example feed-forward computation
• Input x: 3x1 vector

25.2.2017 INF 5860 30

+1 Bias node
+1

)()()(1

)2()2()2(1
)1()1()1(1

X

: timeoneat 1....Nn all
predictcan wesamples trainingN have weIf

1)1layer in nodeshidden nof. classes (nof. 52:
1)inputs nof. 1layer in nodeshidden (nof. 44:

321

321

321

)2(

)1(




































NxNxNnx

xxnx
xxnx

pixelpixelpixel

pixelpixelpixel

pixelpixelpixel





z1 = Theta1.dot(X)
a1 = sigmoid(z1)
#Append 1 to a1 before computing z2
Continue with layer 2……….

Back to the non-linearly separable case

25.2.2017 INF 5860 31

A similiar, simple example: XNOR

25.2.2017 INF 5860 32

X1 x2 DESIRED
OUTPUT

0 0 1
0 1 0
1 0 0
1 1 1

y=1

y=0

Coding the AND-functions

25.2.2017 INF 5860 33

x0

x1

x2

h(x)

-30

20

20

X1 x2 h(x)

0 0 g(-30)0
0 1 g(-10)0

1 0 g(-10)0

1 1 g(10)1

Which logical function is this?

25.2.2017 INF 5860 34

x0

x1

x2

h(x)

-10

20

20

X1 x2 h(x)=?

0 0
0 1

1 0

1 1

Creating the XNOR-function

25.2.2017 INF 5860 35

x0

x1

x2

1

a2
(2)

a1
(2)

Layer 1 Layer 2
Hidden layer

Layer 3
Output layer

h(x)

-30

20

20

10

-20

-20

-10

20

20

Combine AND and OR
by adding layer to get XNOR

Representation power of the net
• Fully-connected nets define a family of functions that are

parameterized by the weights of the network.
• It turns out that nets with at least one hidden layer are universal

approximators
– Given any continuous function f(x) and some e>0, there is a net

g(x) (with a non-linear activation) that can represent the function
such that

– |f(x)-g(x)|<e
• But why do we need more than one hidden layer?
• `In practise, 3-layers feed-forward nets often works better then

2-layers, but going deeper rarely helps.
– This is NOT the case for Convolutional nets where depth

helps, more on this later.
25.2.2017 INF 5860 36

Multiple classes: One-vs-all
• Train one output node for each class, e.g. CAR (yes/no), CAT(yes/n0)

25.2.2017 INF 5860 37

SHIPif DOGif CATif CAR if
1
0
0
0

)(h

0
1
0
0

)(h

0
0
1
0

)(h

0
0
0
1

)(h :Want















































































  iiiiiiii yxyxyxyx

Neural network classification

Binary classification:
y = 1 or 0
1 output unit

Multi-class (K classes)

25.2.2017 INF 5860 38











































































1
0
0
0

 ,

0
1
0
0

 .

0
0
1
0

 .

0
0
0
1

 e.g. ,kRy

Cost function for neural networks

• For logistic regression it was:

• For neural nets it is:

25.2.2017 INF 5860 39

2
:)),((1log())(1(:),((log)(1)(

1

2

1










 
n

j
j

m

i m
iXhiyiXhiy

m
J  

llayer in bias)(without units ofNumber :s

layers ofnumber :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h :Output

l

1

1

2)(

1

1

11 1

K

.








 














jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k m
iXhiyiXhiy

m
J 



Implementing the cost function

• Create an indicator matrix Y with one row per
sample, where each row encodes the class as:

• Compute the cost without regularization, then add
the regularization term.
– Use a loop over the training samples if you want.

25.2.2017 INF 5860 40





















































0100

1000
0001
0010
0010

let ,

3

4
1
2
2

 yIF



Y

Introduction to backpropagation and
computational graphs
• We now have a network architecture

and a cost function.
• A learning algorithm for the net should

give us a way to change the weights in
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in
a small change in ouputs.

• Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

25.2.2017 INF 5860 41

Neural net optimization problem

• Given a cost function L (or J), a set of
training data (xi, yi), and the weights W.

• Normally we use backpropagation to
compute the gradient of the cost function with
respect to W
– We can also compute it with respect to input xi

(useful for visualization)

25.2.2017 INF 5860 42

Gradients and partial derivatives

25.2.2017 INF 5860 43

x
q

q
f

x
f

qzfzyxzyxf

xy
y
fyx

x
fyxyxf

y
f

x
fyxyxf

x
y
fy

x
fxyyxf











































:rule chain theuse and andy xq Let)(),,(

)(1)(1),max(),(

11),(

),(

Computational graph for f=(x+y)z

25.2.2017 INF 5860 44

+

*

x

y

z

q
f

z
f

y
f

x
f








 , , :Want

Forward propagation of one sample

25.2.2017 INF 5860 45

+

*

x

y

z

q
f

-2

5

-4

3
-12

One sample, x=-2, y=5, z=-4

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 46

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 47

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

z
f



3

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 48

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

q
f



3

-4

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 49

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

3

-4

1*z
y
q

q
f

y
f












-4

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 50

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

3

-4

1*z
x
q

q
f

x
f












-4

-4

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 51

f

x

z

y

Activations

z
L



x
z




y
z




Each gate: get input x and y
Can compute output x
AND the local gradients of z

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 52

f

x

z

y

Activations

z
L



x
z




y
z




x
z

z
L

x
L











y
z

z
L

y
L











During
backpropagation, the
node will learn

The gate uses chain
rule to redistribute this
gradient to its inputs

z
L



Green numbers: forward propagation
Red numbers: backwards propagation

The sigmoid function

25.2.2017 INF 5860 53

25.2.2017 INF 5860 54

1.0

25.2.2017 INF 5860 55

1.0

-1/(1.37)2*1.0

-0.53

25.2.2017 INF 5860 56

1.0

1*-0.53=-0.53

-0.53-0.53

25.2.2017 INF 5860 57

1.0

e-1*-0.53=-0.20

-0.53-0.53-0.20

25.2.2017 INF 5860 58

1.0

(-1)*-0.20=0.20

-0.53-0.53-0.200.20

25.2.2017 INF 5860 59

1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20

25.2.2017 INF 5860 60

1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20

0.20

0.20

25.2.2017 INF 5860 61

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-1*0.20=0.2

2*0.20=0.4

25.2.2017 INF 5860 62

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6

25.2.2017 INF 5860 63

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6

The sigmoid gate

The sigmoid gate

25.2.2017 INF 5860 64

Output: 0.73
Derivative of the sigmoid gate: (1-0.73)0.73=0.20

Forward and backward for a single neuron

25.2.2017 INF 5860 65

A more tricky example

• Stage the forward pass into simple operations that we now the
derivative of:

25.2.2017 INF 5860 66

A more tricky example

• In the backwards pass: compute the derivative of all these terms:

25.2.2017 INF 5860 67

Patterns in backward flow

25.2.2017 INF 5860 68

add gate: gradient distributor
max gate: gradient router
mul gate: gradient…. «switcher»

Remark on multiplier gate:
If a gate get one large and one
small input, backprop will use
the big input to cause a large
change on the small input, and
vice versa.
This is partly why feature
scaling is important

25.2.2017 INF 5860 69

Next week:

• Next week: Backpropagation in detail
• Vectorized implementation of backpropagation

– Reading material:
• http://cs231n.github.io/optimization-2/

• Additional optional material:
• Lecture on backpropagation in Coursera Course on

Machine Learning (Andrew Ng)
• http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
• http://colah.github.io/posts/2015-08-Backprop/
• http://neuralnetworksanddeeplearning.com/chap2.html

10.2..2017 INF 5860 70

