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Reading material
– Reading material:

• http://cs231n.github.io/neural-networks-1/
• http://cs231n.github.io/neural-networks-2/
• http://cs231n.github.io/optimization-2/

Youtube: CS 231n: Lectures 4-6 covers the next 3 lectures
• Deep learning Chapter 6.1-6.5
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Today

• The concept of feed-forward neural nets
• Capacity of traditional feed-forward nets
• Forward propagation from input to output 

class labels
• Cost functions for neural net classification
• Net architecture
• Introduction to learning using

backpropagation (as far as time permits)
– Backpropagation in detail next week.
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Feed-forward neural nets
• The focus today is a feed-forward neural net with

few hidden layers. 
• Input will be the image pixel values

– Or features like SIFT, orientation histograms etc. 
• The net will play the role of a classifier that maps

the input data through some hidden layers to a 
score for each class. 
For a network with 2 layers, the score would be 
s=f(W2*f(W1*x))

– f is a non-linear function called activation function

• Later, we will see recurrent networks that feeds the
output back to itself. 
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Non-linear data example
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Logistic classification
Decision boundary Tx=0
Cannot only solve problems 
that are linearly separable
With a higher-order polynomial 
we could possibly find a 
boundary

Higher-order polynomials have 
too many parameters for image 
classification (e.g. 3072 inputs 
for CIFAR-10)



Two-layer net
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xi 

W1(i,j) weight for input 
feature j to
node i in the hidden
layer

W2(j,k) weight for 
hidden node k to 
output node j in the
output layer

Hidden layer

sk



Two-layer net for image classification
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xi one input  node
for each pixel

W1(i,j) weight for input 
feature j to
node i in the hidden
layer

W2(j,k) weight for 
hidden node k to 
output node j

Hidden layer

One output node for each clas.
sk is the score for class k 



• This architecture with some hidden layers and fully forward 
connected layers is also called a multilayer perceptron.

• Fully connected: each node in layer i-1 is connected to each
node in layer i.

• xi is still a 1D vector of pixel values (e.g. 3072x1 for CIFAR-10)
• This network does not use any information about which pixel is 

a neighbor of which pixel, or any spatial features relating
neighboring pixel values.
– A Convolutional neural net will include this information and perform

much better for image classification purposes.

• We can add as many hidden layers as we want, and the
number of nodes in a hidden layer is a parameter we set. 
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Modelling one neuron
• One node in the network is  inspired by a neuron in the

brain.
• It received inputs from its dendrites and produce

outputs along a single axon.  
• We have about 86 billion neurons of different types. 
• Neurons are connected by synaptic junctions or 

synapses. 
• A cell will fire (send a pulse) if its potential reach a 

certain level. The frequency of firing carries information.
– In mathematics this is modelled using activation function f. 

• The weights that connect neurons are learnable. 
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McColloch-Pitt’s mathematical neuron 
model
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McColloch and Pitts (1943) modelled this as a binary threshold unit

Simple illustration More detailed illustration



Pseudo-code for forward progatating a single 
neuron

class Neuron(object): 
#
def forward(inputs):

#assume inputs and weights are 1D arrays
cell_sum = np.sum(input*self.weights)+self.bias
firing_rate = 1(1.0+math.exp(-cell_sum)) # Sigmoid activation
return
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Other activation functions can
be better, like RELU

Note: not an accurate actual model for a human neuron, see 
http://www.sciencedirect.com/science/article/pii/S0959438814000130



Topic for a later lecture: which activation
function to choose
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Architecture for a feed-forward net
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4-layered net
- input layer not counted



One neuron as a binary logistic classifier
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2-layer net , 3 pixels, with notation
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x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 0 Layer 1
Hidden layer

Layer 2
Output layer

h(x)

Note: each layer has a bias node
This node is NOT connected to 
previous layers: it receives NO INPUT



Notation
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2-layer net – what do the layers do?
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x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 1
Hidden layer

Layer 2
Output layer

h(x)

LAST LAYER:
With a sigmoid activation, h acts as a 
logistic binary classifier on a0

(1)…a3
(1)
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x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 2
Hidden layer

Layer 3
Output layer

h(x)

HIDDEN LAYER: 
Each a1

(1) is a weighted linear combination of
all input pixels x1,…x3
This is the network’s own feature extraction
method to extract one feature in each node, 
here 3 features

With 3 hidden layers: 3 steps of feature
extraction, and one step of classification



Example net: MNIST-classification

• Input 20x20 images=400 input nodes + 1 
bias

• 25 nodes in hidden layer: (1) is 25x401 (add
bias term  x0)

• 10 classes: digits ‘0’-’9’: (2) is 10x26 (add
bias term a0

(2) 

– One vs. all loss function
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Example of trained network MNIST 
data
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20x20 images
of handwritten digits,
10 classes
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x0

x1

x400

a0
(1)

a2
(1)

a1
(1)

a25
(1)

Layer 0 Layer 1
25 nodes ,Hidden layer

Layer 3
Output layer

h(x)

HIDDEN LAYER: 
Nof. nodes is a parameter we need to select.
25 nodes represents 25 features. 
Visualize these features by the weights to 
node a1

(1)-a25
(1) for each of the 20x20 pixels. 

(Ignore bias here)

With 3 hidden layers: 3 steps of feature
extraction, and one step of classification

…
…

…
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Weights (1) to node 1-25



Weights for the output layer
25 hidden nodes, 10 classes
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x0

x1

x2

x3

a0
(1)

a2
(1)

a1
(1)

a3
(1)

Layer 1 Layer 1
Hidden layer

Layer 2
Output layer

h(x)=a1
(2)

LAST LAYER:
One output node for each of the 10 
classes

Weights for class k is a vector of 25 
values (ignoring the bias term)



Weights for the output classes
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Class 0 Class 2 Class 3Class 4 Class 5 Class 6 Class 7 Class 8 Class 9Class 1



Let us look at class 2
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High value for feature/node 13 and 1

Maybe this responds to objects with a center in the right half (13) and 
seeing a diagonal edge????



What if the object is rotated or 
translated?
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Maybe this responds to objects with a center in 
the right half (13) and seeing a diagonal edge????

Would this be the case for the rotated object?



Some remarks

• With the output layer, it is possible to use a 
net with or without the activation function.

• The size of network is measured by the
number of neurons. 
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Example feed-forward computation
• Input x: 3x1 vector
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z1 = Theta1.dot(X)
a1 = sigmoid(z1)
#Append 1 to a1 before computing z2
Continue with layer 2……….



Back to the non-linearly separable case
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A similiar, simple example: XNOR
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X1 x2 DESIRED 
OUTPUT

0 0 1
0 1 0
1 0 0
1 1 1

y=1

y=0



Coding the AND-functions
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x0

x1

x2

h(x)

-30

20

20

X1 x2 h(x)

0 0 g(-30)0
0 1 g(-10)0

1 0 g(-10)0

1 1 g(10)1



Which logical function is this?
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x0

x1

x2

h(x)

-10

20

20

X1 x2 h(x)=?

0 0
0 1

1 0

1 1



Creating the XNOR-function
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x0

x1

x2

1

a2
(2)

a1
(2)

Layer 1 Layer 2
Hidden layer

Layer 3
Output layer

h(x)

-30

20

20

10

-20

-20

-10

20

20

Combine AND and OR
by adding layer to get XNOR



Representation power of the net
• Fully-connected nets define a family of functions that are

parameterized by the weights of the network. 
• It turns out that nets with at least one hidden layer are universal 

approximators
– Given any continuous function f(x) and some e>0, there is a net 

g(x) (with a non-linear activation) that can represent the function
such that

– |f(x)-g(x)|<e
• But why do we need more than one hidden layer?
• `In practise, 3-layers feed-forward nets often works better then

2-layers, but going deeper rarely helps.
– This is NOT the case for Convolutional nets where depth

helps, more on this later.  
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Multiple classes: One-vs-all
• Train one output node for each class, e.g. CAR (yes/no), CAT(yes/n0)
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Neural network classification

Binary classification:
y = 1 or 0
1 output unit

Multi-class (K classes)
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Cost function for neural networks

• For logistic regression it was:

• For neural nets it is:
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Implementing the cost function

• Create an indicator matrix Y with one row per 
sample, where each row encodes the class as: 

• Compute the cost without regularization, then add
the regularization term. 
– Use a loop over the training samples if you want. 
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Introduction to backpropagation and 
computational graphs
• We now have a network architecture

and a cost function. 
• A learning algorithm for the net should

give us a way to change the weights in 
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in 
a small change in ouputs.

• Backpropagation use partial derivatives 
to compute the derivative of the cost
function J with respect to all the
weights. 
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Neural net optimization problem

• Given a cost function L (or J), a set of
training data (xi, yi), and the weights W.

• Normally we use backpropagation to 
compute the gradient of the cost function with
respect to W
– We can also compute it with respect to input xi

(useful for visualization)
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Gradients and partial derivatives
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Computational graph for f=(x+y)z
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Forward propagation of one sample
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One sample, x=-2, y=5, z=-4

Green numbers: forward propagation
Red numbers: backwards propagation



Backwards propagation of gradients
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Backwards propagation of gradients
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Backwards propagation of gradients
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Backwards propagation of gradients

25.2.2017 INF 5860 49

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

3

-4

1*z
y
q

q
f

y
f












-4

Green numbers: forward propagation
Red numbers: backwards propagation



Backwards propagation of gradients
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Each gate: get input x and y
Can compute output x 
AND the local gradients of z

Green numbers: forward propagation
Red numbers: backwards propagation
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The sigmoid function

25.2.2017 INF 5860 53



25.2.2017 INF 5860 54

1.0
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1.0

-1/(1.37)2*1.0

-0.53
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1.0

1*-0.53=-0.53

-0.53-0.53
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1.0

e-1*-0.53=-0.20

-0.53-0.53-0.20
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1.0

(-1)*-0.20=0.20

-0.53-0.53-0.200.20
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1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20
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1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20

0.20

0.20
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1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-1*0.20=0.2

2*0.20=0.4



25.2.2017 INF 5860 62

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6



25.2.2017 INF 5860 63

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6

The sigmoid gate



The sigmoid gate
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Output: 0.73
Derivative of the sigmoid gate: (1-0.73)0.73=0.20



Forward and backward for a single neuron
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A more tricky example

• Stage the forward pass into simple operations that we now the
derivative of:
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A more tricky example

• In the backwards pass: compute the derivative of all these terms:
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Patterns in backward flow
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add gate: gradient distributor
max gate: gradient router
mul gate: gradient…. «switcher»

Remark on multiplier gate:
If a gate get one large and one 
small input, backprop will use
the big input to cause a large
change on the small input, and 
vice versa.
This is partly why feature
scaling is important
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Next week:

• Next week: Backpropagation in detail
• Vectorized implementation of backpropagation

– Reading material: 
• http://cs231n.github.io/optimization-2/

• Additional optional material:
• Lecture on backpropagation in Coursera Course on 

Machine Learning (Andrew Ng)
• http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
• http://colah.github.io/posts/2015-08-Backprop/
• http://neuralnetworksanddeeplearning.com/chap2.html
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