
INF 5860 Machine learning for image classification

Lecture : Backpropagation – learning in
neural nets
Anne Solberg
March 3, 2017

Reading material

– Reading material:
• http://cs231n.github.io/optimization-2/

• Additional optional material:
• Lecture on backpropagation in Coursera Course on

Machine Learning (Andrew Ng)
CS 231n on youtube: lecture 4

• http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
• http://colah.github.io/posts/2015-08-Backprop/
• http://neuralnetworksanddeeplearning.com/chap2.html

03.03.2017 INF 5860 3

Notation- forward propagation

03.03.2017 INF 5860 4

 
 
 

 

 aaaaa)(

 xxxxa

 xxxxa

 xxxxa

)1(s s size has :jlayer in nodes s 1,-jlayer in nodes s
1) 1)-(jlayer in (nodes(j))layer in (nodes dimension has

j to1-jlayer from mapping function gcontrollin weightsofmatrix -

layer and unit of activation -
0layer isinput that theAssume

(1)
3

)2(
13

)1(
2

)2(
12

)1(
1

)2(
11

)1(
0

)2(
10

(2)
1

3
)1(

332
)1(

321
)1(

310
)1(

30
(1)
3

3
)1(

232
)1(

221
)1(

210
)1(

20
(1)
2

3
)1(

132
)1(

121
)1(

110
)1(

10
(1)
1

1-jj
)(

j1-j

)(

)(

)(















 gxh

g

g

g

jia

j

j

j

j
i

Example feed-forward computation
• Input x: 3x1 vector

03.03.2017 INF 5860 5

+1 Bias node
+1

)()()(1

)2()2()2(1
)1()1()1(1

X

: timeoneat 1....Nn all
predictcan wesamples trainingN have weIf

1)1layer in nodeshidden nof. classes (nof. 52:
1)inputs nof. 1layer in nodeshidden (nof. 44:

321

321

321

)2(

)1(




































NxNxNnx

xxnx
xxnx

pixelpixelpixel

pixelpixelpixel

pixelpixelpixel





z1 = Theta1.dot(X)
a1 = sigmoid(z1)
#Append 1 to a1 before computing z2
Continue with layer 2……….

Cost function for one-vs-all neural
networks
For a neural nets with one-vs-all :

03.03.2017 INF 5860 6

tionTermRegulariza* LossTerm)(
llayer in bias)(without units ofNumber :s

layers ofnumber :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h a :Output

l

1

1

2)(

1

1

11 1

KL

.















 










 



J

m
iXhiyiXhiy

m
J

jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k

Remark: two variations are common:
- Regularize all weights including the bias terms (sum from 0)
- Avoid regularizing the bias terms (sum from 1)

In practise, this choice do not matter.

Cost function for softmax neural
networks
For a neural net with softmax loss function :

03.03.2017 INF 5860 7

 

tionTermRegulariza* LossTerm)(

llayer in bias)(without units ofNumber :s
layers ofnumber :L

)(
2

log11)(

1

)x,|KP(y

)x,|2P(y
)x,|1P(y

(x)ha :Output

l

1

1

2)(

1

1

11

1

1

1

L

.

2

1
































































































































J

me

e
ky

m
J

e

e

e

e

jl

i
T
k

i
T
k

T
K

T

T

T
k

s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i

x

x

x

K

k

x 

Remark: two variations are common,
See previous slide:

Introduction to backpropagation and
computational graphs
• We now have a network architecture

and a cost function.
• A learning algorithm for the net should

give us a way to change the weights in
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in
a small change in ouputs.

• Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

03.03.2017 INF 5860 8

3.3.2017 INF 5860 9

f

x

z

y

Activations

z
L



x
z




y
z




x
z

z
L

x
L











y
z

z
L

y
L











During
backpropagation, the
node will learn

The gate uses chain
rule to redistribute this
gradient to its inputs

z
L



Green numbers: forward propagation
Red numbers: backwards propagation

A more complicated graph example

3.3.2017 INF 5860 10

3.3.2017 INF 5860 11

1.0

3.3.2017 INF 5860 12

1.0

-1/(1.37)2*1.0

-0.53

3.3.2017 INF 5860 13

1.0

1*-0.53=-0.53

-0.53-0.53

3.3.2017 INF 5860 14

1.0

e-1*-0.53=-0.20

-0.53-0.53-0.20

3.3.2017 INF 5860 15

1.0

(-1)*-0.20=0.20

-0.53-0.53-0.200.20

3.3.2017 INF 5860 16

1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20

3.3.2017 INF 5860 17

1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20

0.20

0.20

3.3.2017 INF 5860 18

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-1*0.20=-0.2

2*0.20=0.4

3.3.2017 INF 5860 19

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6

25.2.2017 INF 5860 20

1.0-0.53-0.53-0.200.20

0.20

0.20

0.20

0.20

-0.2

0.4

-2*0.20=-0.4

-3*0.20=-0.6

The sigmoid gate

The sigmoid gate

25.2.2017 INF 5860 21

Output: 0.73
Derivative of the sigmoid gate: (1-0.73)0.73=0.20
This is the same result as above.

Forward and backward for a single neuron

3.3.2017 INF 5860 22

Remark: an efficient implemetation will store inputs and intermediates
during forward, so that they are available for backprop.

A more tricky example

• Stage the forward pass into simple operations that we now the
derivative of:

3.3.2017 INF 5860 23

A more tricky example

• In the backwards pass: compute the derivative of all these terms:

25.2.2017 INF 5860 24

Patterns in backward flow

3.3.2017 INF 5860 25

add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:
If a gate get one large and one
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is
important

The optimization problem

3.3.2017 INF 5860 26

(l)
,

(l)

every respect to J with of sderivative theNeed

descent gradient usingJ minimize want toWe
 weights with

layersLnet with forward-feeda andJ function lossa Given

nm



Backpropagation: recursive application of the chain rule on a
computational graph to compute the gradients of all
input/parameters/intermediates

Implementation:
• Forward: compute the result of the node operation and save

the intermediates needed for gradient computation
• Backwards: apply the chain rule to compute the gradients of

the loss function with respect to the input of each node.

A very simple net with one input

03.3.2017 INF 5860 27

Sigmoid* * Sigmoid

x

(1)  (2)

z(1) z(2)a(1) a(2)

Assume that we want to minimize the square error between the
output a(2) and the true class y
E=1/2(y-a(2))2 (Mean square error in this example)
Compute the partial derivatives with respect to (1) and (2),

and use use gradient descent to update (1)

and (2)

)2(
1

)1(and
 



 EE

Measure of error on
training data
E=1/2(y-a(2))2

03.3.2017 INF 5860 28

 

 

 )(1)()(' so g(z) function sigmoid theapplies)2()2()2(
)2(

)2(
)2(

)1(
)2(

)2(
2)2(

)2(

)2(
2

)2(

)2(
)2(

)2(

)2(
2

)2()2(

zgzgzg
z
a

a

a
z
aya

z
z
a

yaa
a
EE





























03.3.2017 INF 5860 29

 

   

   

     

     

 )(1)()(' so g(z)function sigmoid theapplies

)(1)()(1)(

)(1)()(1)(

)(1)(

)(1)(

)1()1()1(
)1(

)1(
)1(

)1()1()2()2()2()2(

)1(

)1(
)1(

1
)1()2()2()2()2(

)1(

)1(

)1(

)1(
)2()2()2()2(

)1(

)1(

)1(

)2(
)2()2()2(

)1(

)2(

)2(

)2(
)2(

)1(

)2(

)2()1(

zgzgzg
z
a

a

xzgzgzgzgya

z
zgzgzgzgya

z
z
a

zgzgya

a
a
z

zgzgya

z
z
a

ya
a

a
EE































































From scalars to vectors
• In the example x was a scalar, and was a vector with one

element pr. weight.
• When working with vector input, for each layer will be a

matrix.
• Deriving the vector/matrix version of backpropagation is more

tedious, but follows the same principle.
• A good source is
http://neuralnetworksanddeeplearning.com/chap2.html
• We now present the vector algorithm

03.3.2017 INF 5860 30


E

l
E



Backpropagation algorithm for a
single training sample (xi, yi)

03.3.2017 INF 5860 31

  
  

1)(
)(

)1()2()2()1(

)2()3()3()2(

)3(
j

)3()3(

)3()3(
j

J notation, thisWith

)('

)(' Compute

jlayer in nodes ofnumber theis where,,..1 of vector thebe Let

Let

 :netlayer -3a For
0)(set tionregulariza theignore now,For















l
i

l
jl

ij

T

T

jj

jj

a

zg

zg

ssjya

ya













Note that this is the elementwise product, or
Hadamard-product of two vectors

Derivative of loss function
• In backpropagation, we need the derivative of the loss functions with

respect to the activation of the output layer ai
L.

• If we ignore the regularization term, the derivative of the logistic loss
function for sample i can be shown to be (ai

L-yi)
– See http://stats.stackexchange.com/questions/219241/gradient-for-

logistic-loss-function
• For softmax, ignoring the regularization term, the derivative of the

softmax loss is also (ai
L-yi)

– See http://math.stackexchange.com/questions/945871/derivative-
of-softmax-loss-function

NOTE: ai
L is computed differently

03.3.2017 INF 5860 32

03.3.2017 INF 5860 33

)((2)(2) kyindakk   )(')1((2))2((1) zgT
 

Notice that the bias nodes do not receive input from previous layer.
Thus, they should NOT be used in backpropagation

Including the regularization term

03.3.2017 INF 5860 34

layer) previous thein bias thefrominput gets(it 0 from j and 1, from indexed is i that Note

1jfor
m

1J

 termsbias theregularizenot do that weis convention thehere , 0jfor 1J
:tionregulariza theincluding update ationBackpropag

tionTermRegulariza* LossTerm)(

)(
2

):)),((1log())(1(:)),((log)(1)(

(l)
ij

)()(
(l)
ij

)()(
(l)
ij

1

1

2)(

1

1

11 1

.


















  






 








l
ij

l
ij

l
ij

l
ij

s

j

l
ji

s

i

L

l

m

i
kkkk

K

k

m
D

m
D

J

m
iXhiyiXhiy

m
J

jl

Remark: softmax will have the same regularization term

Backpropagation with a loop over
training data

03.3.2017 INF 5860 35

 

  

(l)
ij)(

(l)
ij

(l)
ij

)((l)
ij

(l)
ij

1)(l(l)
j

(l)
ij

(l)
ij

)(1)(l)((l)(1)2)-(L

i
1)-(L1)-(L

(l)
i

(0)

(l)
ij

mm11

DJ Here,

0j if ,1D

0j if ,1D

 aSet

)(' ,.... Compute

otherwise 0 andk y if 1 function,indicator an is yind ,)(Compute

1,...1,a compute n topropagatio forward Do

xaSet
m:1ifor

lj,i, allfor 0Set
)y,),.....(xy,(xset Training



























l
ij

l
ij

i

lTl

ikk

m

m

zgas

kyinda

Ll









Checking dimensions

• Note that in backpropagation, we use T

• When implementing this shape() is your best friend 

• Think of a net with one hidden layer (layer 1) with 25 nodes + bias, and output
layer with 10 nodes (10 classes)

• (2) has dimension 10x26 including bias, and ((2))T is 26x10
• (2) has dimension 10x1

• REMARK: we can either ignore the bias terms in backpropagation, or compute
0

(1) also (resulting in a 26x1 vector), but later ignore the 0
(1) values

– When doing backpropagation from layer 2 to layer 1, ignore the bias in (index 0 of
layer 2) and backpropagate ((2))T(1:25,0:9)

• (1) then has dimension [(25x10)x(10x1)](25x1) = 25x1

03.3.2017 INF 5860 36

  )(')1((2))2((1) zgT
 

Assumptions behind
backpropragation
1. The loss function should be expressed as a sum or

average over all training samles.
– This is true for all the functions we have studied so far
– We will be able to compute for a single training example,

and then average over all samples.

03.3.2017 INF 5860 37

llayer in bias)(without units ofNumber :s

layers ofnumber :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h :Output

l

1

1

2)(

1

1

11 1

K

.








 














jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k m
iXhiyiXhiy

m
J 



l
ij

L



Assumptions behind
backpropragation
2. The loss function must be expressed as a function

of the outputs of the net.
– This allows us to change the weights and measure how

similar yi and the output h(x) is.

03.3.2017 INF 5860 38

llayer in bias)(without units ofNumber :s

layers ofnumber :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h :Output

l

1

1

2)(

1

1

11 1

K

.








 














jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k m
iXhiyiXhiy

m
L 



Gradient checking

• When implementing backpropagation, we
use gradient checking to verify the
implementation.

• When the code works, we turn off gradient
checking.

• But what is it?

03.3.2017 INF 5860 39

Gradient checking: numerical
estimation of the gradient
• The gradient of a function is defined as:

• When we have the cost function implemented, we
can easily approximate the gradient  as

03.3.2017 INF 5860 40




  2
)()(lim)(

0






JJJ
d
d




2
)()( JJ

Procedure for gradient checking
• ‘Unroll’ 1, 2,…into a 1-d vector  = [1,…. n]
• Approximate

• Check that the difference between this partial derivative and
the one from backpropagation is smaller than a threshold.

03.3.2017 INF 5860 41
















2
),....,(),....,(

2
),....,(),....,(

2
),....,(),....,(

2121

2121

2

2121

1



















nn

n

nn

nn

JJJ

JJJ

JJJ



Regarding gradient checking:

• Computing the approximated gradient is
computationally much slower than backpropagation:
– Use gradient checking for a small example when debugging

the backpropagation code.
– Once it works, turn off gradient checking and proceed with

training the entire data set.

03.3.2017 INF 5860 42

Random initialization of weights

• All weights must be initialized to small, but
different random numbers.
– More on why next week.

03.3.2017 INF 5860 43

Training a neural network

• Choose an architecture:
– Number of inputs: dimension of feature vector or

image
– Number of outputs: number of classes
– 1-2 hidden layers.

• For simplicity: use the same number of nodes in each
hidden layer

– More on practial details in the next two lectures.

03.3.2017 INF 5860 44

Training a network
1. Randomly initialize each weight to small numbers
2. Implement forward propagation to get the output
3. Implement code to compute the cost function J()
4. Implement backprop to compute the partial derivatives

for i=1:m
Perform forward propagation and backpropagation for

sample xi,yi

5. Use gradient checking to compate numerical estimates and
backpropagation gradients. Afterward, disable gradient
checking.

6. Use gradient descent (or optimization methods) with
backpropagation to minimize J.

03.3.2017 INF 5860 45

Weekly exercise:

• A detailed programming exercise, with
descriptions on the operations, will be
available.

• Implementing backpropagation is central to
Mandatory exercise 1
– No solution in python will be given, but test data

with known results.

03.3.2017 INF 5860 46

Next weeks:

• Training in practice, useful tricks.
• Babysitting the training process
• Parameter updates
• Activation functions
• Weight initialization
• Preprocessing
• Evaluation
Main reading material: http://cs231n.github.io/neural-
networks-3/

3.3..2017 INF 5860 47

