UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification

Lecture : Backpropagation — learning in
neural nets

Anne Solberg
March 3, 2017

UiO S Department of Informatics
University of Oslo

Reading material

— Reading material:
e http://cs231n.qgithub.io/optimization-2/

« Additional optional material:

 Lecture on backpropagation in Coursera Course on
Machine Learning (Andrew Ng)
CS 231n on youtube: lecture 4

* http://vann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
* http://colah.qgithub.io/posts/2015-08-Backprop/
* http://neuralnetworksanddeeplearning.com/chap2.html

03.03.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Notation- forward propagation

Assume that the input 1s layer 0

a'l - activation of uniti and layer |

®') - matrix of weights controlling function mapping from layer j-1to]
®') has dimension (nodes in layer (j)) x (nodes in layer (j-1) + 1)

s;; nodesin layer j-1,s; nodesin layer j: ®Vhas size s i x (s, +1)

al" = g(Of)x, + OVx, + O, + OV,)

ay) = g(®glo)xo +05)x, + 0%, +05)x,)

al) = g0, + O, +Ollx, + O,

_ a2 _ 2), (M 2), (M 2, (M 2), ()
ho(X)=a,” = g(®1o a, +0a +05a, +0;a,)

03.03.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Example feed-forward computation

Bias node

input layer

hidden layer

03.03.2017 INF 5860

* |Input x: 3x1 vector

®" : 4x 4 (nof. hidden nodes in layer 1 x nof. inputs +1)

@™ :2x5 (nof. classes x nof. hidden nodes in layer1+1)

If we have N training samples we can predict
alln =1....N at one time :

1 Xpen M=1D Xpern (D X pixer3 (1) |
I Xppen (N=2) X e, (2) X pixet3 (2)

1 Xpixell(n:N) Xpixelz(N) Xpixel3(N)

z1 = Theta1.dot(X)

a1l = sigmoid(z1)

#Append 1 to a1 before computing z2
Continue with layer 2..........

UiO S Department of Informatics
University of Oslo

Cost function for one-vs-all neural
networks

For a neural nets with one-vs-all :
Output:a“ =h,(x) e R®

1| &S : : : .

J(©) = —E{ZZ Yi(Dloghy (X (1,:) + 1=y, (1) log(- h, (X(i,2)))}r
i=1 k=1

L : number of layers

s, : Number of units (without bias) in layer |

J(®) = LossTerm + A * RegularizationTerm

Remark: two variations are common:
- Regularize all weights including the bias terms (sum from 0)
- Avoid regularizing the bias terms (sum from 1)

In practise, this choice do not matter.

03.03.2017 INF 5860 6

UiO S Department of Informatics
University of Oslo

Cost function for softmax neural
networks

For a neural net with softmax loss function :

o/ x

[P(y=1[x,0) |
P(y =2|x,0) 1 o &*

Output:a" =hy(x) =

P(y=K|[x,0)| ki

Op X;
1| kA y) L-1 s S+l
J@=——| 3> Uy =kflog -w——||+- -2 3 > (OF)
m| 5= Ze Ok X 2miT T3
L k=l . Remark: two variations are common,
L : number of layers See previous slide:
s, : Number of units (without bias) in layer |

J(®) = LossTerm + A * RegularizationTerm
03.03.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Introduction to backpropagation and
computational graphs

« We now have a network architecture o, coumes nsmall change in the outpos
and a cost function. e

* Alearning algorithm for the net should
give us a way to change the weights in
such a manner that the output is closer
to the correct class labels.

* The activation function should assure
that a small change in weights results in
a small change in ouputs.

« Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

output+Aoutput

03.03.2017 INF 5860 8

UiO S Department of Informatics
University of Oslo

During
backpropagation, the
node will learn oL
£l
The gate uses chain
Activations rule to redistribute this
gradient to its inputs

oL oJL oz

OX 07 OX
y
0z
oL oL oz
oy 0z oy

Green numbers: forward propagation
Red numbers: backwards propagation

3.3.2017 INF 5860 9

UiO S Department of Informatics
University of Oslo

A more complicated graph example

1
f(’i'_U:, iE) — 14+ E—{wui!u-l—wﬁ’l"‘wﬂ
f(m):% — %:_1/;32
fo@) =c+a — =t
f($) — o7 s g — ¥
fa(@) = az ~ 2=

dx

3.3.2017 INF 5860

10

UiO S Department of Informatics
University of Oslo

03\ 100 N 03
SiUa
1 af
f(ﬂf)ZE — 5——1/372
fe(@)=c+=z — gzl
fla) =< - e
fo(z) = az — gz

3.3.2017 INF 5860

1"

UiO S Department of Informatics
University of Oslo

-0.53 1.0

1 df
f@)=3 - &~ Y -1/(1.37)21.0
fel@)=c+z — %:1
f@) = E g
fo(z) = ax — %:a

3.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

3.3.2017 INF 5860

-0.563 -0.53 1.0
fa) = = - Y
fola) =c+a L1 1*-0.53=-0.53
J@) = T
falz) = ax %:

13

UiO S Department of Informatics
University of Oslo

3.3.2017 INF 5860

-0.53 -0.53 1.0

137 /’;1\ 37 @ 073

e1*-0.53=-0.20

14

UiO S Department of Informatics
University of Oslo

3.3.2017 INF 5860

-0.53 -0.53 1.0
0377\, R0
ol B A EA€ e
f(w):% — %:fl/w2
fel@)=c+z — %:1
@) =& - 4
falz) = ax — %:

(-1)*-0.20=0.20

15

UiO S Department of Informatics
University of Oslo

-0.20 -0.53 -0.53 1.0

T - dz - 71/$2
(1)*0.20=0.20 o i
Distribute to both inputs i
flz)=¢ - dr
falz) = ax — 3;: =
3.3.2017

INF 5860

UiO S Department of Informatics
University of Oslo

-0.53 -0.53 1.0

BAT SN W N B
EP—\)=—=¥

f(z) = % = e
(1)*0.20=0.20 o i
Distribute to both inputs i
f(@)=¢" - ==

3.3.2017 INF 5860

UiO S Department of Informatics

University of Oslo
-1*0.20=-0.2
w0 2.00 020

2*0.20=0.4

w1 -3.00
x1 -2.00

w2 -3.00

3.3.2017 INF 5860

020 -0.20 -0.53 -0.53 1.0
df 2
:l — E:fl/w
fel@)=c+z — %:1
j@) = - -
falz) = ax — %:

18

UiO S Department of Informatics
University of Oslo

-2*0.20=-0.4 w 2% -0.53 -0.53

1.00 -1.00 0.37 /'-\ 1.37
i - 1)
-3*0.20=-0.6 *' 29 —— =
w2 -3.00
= =_1/z’
% 1
df _
af
af
ar

3.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

The sigmoid gate

-2*0.20=-0.4 w1 2% -0.20 -0.53 -0.53 1.0

100y 0% ()1 @ 0.73

-3*0.20=-0.6 * 2% i 2 B 22
w2 -3.00
af
@ = U
df B
a =1
df _
i
af _
af _

25.2.2017 INF 5860

UiO S Department of Informatics
University of Oslo

The sigmoid gate

1
o(z) = 1+e™®
do(z) e® = [(l+e®—1 1 B
dze (1+e®)? (1+e®) (1+e—$) = (1—o(z))o(z)
Output: 0.73

Derivative of the sigmoid gate: (1-0.73)0.73=0.20
This is the same result as above.

25.2.2017 INF 5860

21

UiO S Department of Informatics
University of Oslo

Forward and backward for a single neuron

w = [2,-3,-3]

x = [-1, =21

dot = w[01*x[0] + w[l]*x[1] + wl[2]
f=1.0/ (1 + math.exp(-dot))

ddot = (1 - £) * £

dx = [w[0] * ddot, w[l] * ddot]

dw = [X[0] * ddot, x[1l] * ddot, 1.0 * ddot]

Remark: an efficient implemetation will store inputs and intermediates
during forward, so that they are available for backprop.

3.3.2017 INF 5860 22

UiO S Department of Informatics
University of Oslo

A more tricky example

T + o(y)

flz,y) =

o(z) + (z +y)

« Stage the forward pass into simple operations that we now the
derivative of:

¢ = 3 # example wvalue

forward pas

(PYSOr = Xpy**2
den = sigx + xpysqr # denominator
invden = 1.0 / den

f = num * invden # done!

3.3.2017 INF 5860

23

UiO S Department of Informatics
University of Oslo

A more tricky example

z + o(y)
o(z) + (= + y)?

flz,y) =

In the backwards pass: compute the derivative of all these terms:

dnum = invden

dinvden = num

dden = (-1.0 / (den**2)) * dinvden
dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqgr

dx = (1) * dxpy

dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx
dx += (1) * dnum

dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy

24

UiO S Department of Informatics
University of Oslo

Patterns in backward flow

x 3.00

add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:

If a gate get one large and one
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is
important

3.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

The optimization problem

Given a loss function J and a feed - forward net with L layers

with weights ®®
We want to minimize J using gradient descent

Need the derivatives of J with respect to every @m’n(l)

Backpropagation: recursive application of the chain rule on a
computational graph to compute the gradients of all
input/parameters/intermediates

Implementation:
« Forward: compute the result of the node operation and save

the intermediates needed for gradient computation
« Backwards: apply the chain rule to compute the gradients of

the loss function with respect to the input of each node.
3.3.2017 INF 5860

26

UiO S Department of Informatics
University of Oslo

A very simple net with one input

o) 0 ()
Measure of error on
training data
E=1/2(y-a(?)?

* Sigmoid % Sigmoid ——>
a(l) 2(2) a2

X z()

Assume that we want to minimize the square error between the

output a® and the true class y

E=1/2(y-a®)? (Mean square error in this example) o o
Compute the partial derivatives with respect to 6(") and 6@ 350, 4555
and use use gradient descent to update 0()
and 6©)

03.3.2017 INF 5860 27

UiO S Department of Informatics
University of Oslo

0E | OE |pal?
00 |0a”|po”

2
— (a(z) _ y)6a2 1qm
52

5 Gzéz)
2% 06"

N —

_ (a(2> _y

(2)

applies the sigmoid function g(z) so =9'(z?) = g(z(z))(l — g(z(z)))

(2)
a oz N

03.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

0E oE da®? ((2) \oa” oz
00" ~ 5a® 06" Vo2 56"

a (2) aa(l)
B Y e

= (@ - y)o@)1-g@)p =

(D

%)
- (@ - yJoe)li- g 91— 9@")S
((2))g(z(z))(g(z(z)))é’(z)g(z(”)(l—g(z“)))x

a2
a'" applies the sigmoid function g(z) so g =9'(z") =g (Z(l))(l — g(z(l)))

03.3.2017 INF 5860

29

UiO S Department of Informatics
University of Oslo

From scalars to vectors

oE .
* In the example x was a scalar, and ;, was a vector with one
element pr. weight.

« When working with vector input, for each layer %Wi” be a
matrix.

« Deriving the vector/matrix version of backpropagation is more
tedious, but follows the same principle.

A good source is
http://neuralnetworksanddeeplearning.com/chap2.html
* We now present the vector algorithm

03.3.2017 INF 5860 30

UiO S Department of Informatics
University of Oslo

Backpropagation algorithm for a
single training sample (x;, y;)

For now, ignore the regularization (set A = 0)

Fora 3 -layer net :

Lets” =a¥ -y,

Let 5% =a®™ -y be the vector of 5, j =1,..5,, where s, is the number of nodes in layer j

Compute § * = (((9(3))T5(3) -#g'(2?)
5O ((®(2))T5(2) %' (")

Note that this is the elementwise product, or
Hadamard-product of two vectors

M

With this notation, o __ ag')é‘i'“
00,

03.3.2017 INF 5860 31

UiO S Department of Informatics
University of Oslo

Derivative of loss function

» In backpropagation, we need the derivative of the loss functions with
respect to the activation of the output layer a'.

« If we ignore the regularization term, the derivative of the logistic loss
function for sample i can be shown to be (a--y))
— See http://stats.stackexchange.com/questions/219241/gradient-for-
logistic-loss-function
* For softmax, ignoring the regularization term, the derivative of the
softmax loss is also (al-y,)

— See http://math.stackexchange.com/questions/945871/derivative-
of-softmax-loss-function

NOTE: al is computed differently

03.3.2017 INF 5860 32

UiO S Department of Informatics
University of Oslo

Notice that the bias nodes do not receive input from previous layer.
Thus, they should NOT be used in backpropagation

o) l O2)

+1

— hy(x)

S5O — ((@m)T 5(2)), +g'(z") 6% =a? - yind(k)

03.3.2017 INF 5860 33

UiO S Department of Informatics
University of Oslo

Including the regularization term

J<®>=—i{i2 Y, () logh, (X (1,9) + (1~ y, (D)log(l -y (X(i,))}i Y S @)

m{ 5

J(®) = LossTerm + A * RegularizationTerm

Backpropagation update including the regularization :

agﬁ) = Di?) — lA(i}) for j= 0, here the convention is that we do not regularize the bias terms
¢ m

ij

aJl _pp— 1 AD + 200 forj=>1

00" m " m

Note that 11s indexed from 1, and j from O (it gets input from the bias in the previous layer)

Remark: softmax will have the same regularization term

03.3.2017 INF 5860 34

UiO S Department of Informatics
University of Oslo

Backpropagation with a loop over
training data

Training set {(X1 3V)seeee (X ym)}
Set A(i? =0 for all1, j,1
fori=1:m
Seta®=x,
Do forward propagation to computea® 1 =1,..L—1

Compute 5, =a, "

Compute 5*2,...6"Vas 5 = ((@)('))T §<1+1))->x<g'(z(l))
Set AV = AD 1 4 O 50D
Y] 1

1

—yind(k),, yind is an indicator function, = 1if y, = k and 0 otherwise

Dy = 1 —AY +20),if j#0
m
DO = L0 if j=0
ij m ij ? 1 j=
Q)
Here, @(I) i

1

03.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Checking dimensions
SO = (((9(2))T 5@)-*g'(z“))
« Note that in backpropagation, we use O
« When implementing this shape() is your best friend ©

« Think of a net with one hidden layer (layer 1) with 25 nodes + bias, and output
layer with 10 nodes (10 classes)

« 0@ has dimension 10x26 including bias, and (©®)T is 26x10
« 3 has dimension 10x1

« REMARK: we can either ignore the bias terms in backpropagation, or compute
5,1 also (resulting in a 26x1 vector), but later ignore the §,(1) values

— When doing backpropagation from layer 2 to layer 1, ignore the bias in (index 0 of
layer 2) and backpropagate (©®?))7(1:25,0:9)

« 3(Mthen has dimension [(25x10)x(10x1)]-*(25x1) = 25x1

03.3.2017 INF 5860 36

UiO S Department of Informatics
University of Oslo

Assumptions behind
backpropragation

1. The loss function should be expressed as a sum or
average over all training samles.
— This is true for all the functions we have studied so far

. oL . _
— We will be able to compute g for a single training example,
and then average over all samples.

Output :hy(x) e R®

sj+1

J(@)———{iz () loghy (X (i,2)) +(1— y, (D) log(l—hy (X (i,:)) >}+iz DN I0%

2m I=1 i=1 j=1

L :number of layers

s, : Number of units (without bias) in layer|

03.3.2017 INF 5860 37

UiO S Department of Informatics
University of Oslo

Assumptions behind
backpropragation

2. The loss function must be expressed as a function
of the outputs of the net.

— This allows us to change the weights and measure how
similar y, and the output hg(x) is.

Output :hy(x) e R®
L“”Z‘%{iz Vi (D loghy (X (i,)) +(1- y, (i) log(l —hy (X (i,?)))}L Sy

L : number of layers

s, : Number of units (without bias) in layer |

03.3.2017 INF 5860 38

UiO S Department of Informatics
University of Oslo

Gradient checking

 When implementing backpropagation, we
use gradient checking to verify the
Implementation.

* When the code works, we turn off gradient
checking.

« But what is it?

03.3.2017 INF 5860

39

UiO S Department of Informatics
University of Oslo

Gradient checking: numerical
estimation of the gradient

* The gradient of a function is defined as:

ij(g)zlimJ(¢9+5)—J(9—5)
do £—0 2¢

 When we have the cost function implemented, we
can easily approximate the gradient 6 as

J@+e)-J(O—-¢)
2&

03.3.2017 INF 5860

40

UiO S Department of Informatics
University of Oslo

Procedure for gradient checking

* ‘Unroll’ ®,, ©,,...into a 1-d vector 6 = [0,,.... 6,]
* Approximate

8] J(0,+¢,6,,..0,)- (6, £,6,,...0,)

00, 2¢
o J(6,,0,+e,..6)-3(6,,0,—¢,..0,)
00, 2¢

ol J(6,.6,,...0,+&)-J(06,,0,,...0,—¢)
ol7) 2¢

n

« Check that the difference between this partial derivative and
the one from backpropagation is smaller than a threshold.

03.3.2017 INF 5860

41

UiO S Department of Informatics
University of Oslo

Regarding gradient checking:

« Computing the approximated gradient is
computationally much slower than backpropagation:

— Use gradient checking for a small example when debugging
the backpropagation code.

— Once it works, turn off gradient checking and proceed with
training the entire data set.

03.3.2017 INF 5860 42

UiO S Department of Informatics
University of Oslo

Random initialization of weights

* All weights must be initialized to small, but
different random numbers.

— More on why next week.

03.3.2017 INF 5860

43

UiO S Department of Informatics
University of Oslo

Training a neural network

« Choose an architecture:
— Number of inputs: dimension of feature vector or
image
— Number of outputs: number of classes
— 1-2 hidden layers.

« For simplicity: use the same number of nodes in each
hidden layer

— More on practial details in the next two lectures.

03.3.2017 INF 5860 44

UiO S Department of Informatics
University of Oslo

Training a network

Randomly initialize each weight to small numbers
Implement forward propagation to get the output
Implement code to compute the cost function J(0)
Implement backprop to compute the partial derivatives
fori=1:m
Perform forward propagation and backpropagation for
sample x,,y;

5. Use gradient checking to compate numerical estimates and
backpropagation gradients. Afterward, disable gradient
checking.

6. Use gradient descent (or optimization methods) with
backpropagation to minimize J.

s wn -

03.3.2017 INF 5860

45

UiO S Department of Informatics
University of Oslo

Weekly exercise:

* A detailed programming exercise, with

descriptions on the operations, will be
available.

* Implementing backpropagation is central to
Mandatory exercise 1

— No solution in python will be given, but test data
with known results.

03.3.2017 INF 5860 46

UiO S Department of Informatics
University of Oslo

Next weeks:

« Training in practice, useful tricks.
« Babysitting the training process
« Parameter updates
 Activation functions

* Weight initialization

* Preprocessing

« Evaluation

Main reading material: http://cs231n.github.io/neural-
networks-3/

3.3..2017 INF 5860 47

