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Reading material

— Reading material:
e http://cs231n.qgithub.io/optimization-2/

« Additional optional material:

 Lecture on backpropagation in Coursera Course on
Machine Learning (Andrew Ng)
CS 231n on youtube: lecture 4

* http://vann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
* http://colah.qgithub.io/posts/2015-08-Backprop/
* http://neuralnetworksanddeeplearning.com/chap2.html
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Notation- forward propagation

Assume that the input 1s layer 0

a'l - activation of uniti and layer |

®') - matrix of weights controlling function mapping from layer j-1to ]
®') has dimension (nodes in layer (j)) x (nodes in layer (j-1) + 1)

s;; nodesin layer j-1,s; nodesin layer j: ®Vhas size s i x (s, +1)

al" = g(Of)x, + OVx, + O, + OV, )

ay) = g(®glo)xo +05)x, + 0%, +05)x, )

al) = g0, + O, +Ollx, + O,

_ a2 _ 2), (M 2), (M 2, (M 2), ()
ho(X)=a,” = g(®1o a, +0a +05a, +0;a, )
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Example feed-forward computation

Bias node

input layer

hidden layer
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* |Input x: 3x1 vector

®" : 4x 4 (nof. hidden nodes in layer 1 x nof. inputs +1)

@™ :2x5 (nof. classes x nof. hidden nodes in layer1+1)

If we have N training samples we can predict
alln =1....N at one time :

1 Xpen M=1D  Xpern (D X pixer3 (1) |
I Xppen (N=2) X e, (2) X pixet3 (2)

_1 Xpixell(n:N) Xpixelz(N) Xpixel3(N)_

z1 = Theta1.dot(X)

a1l = sigmoid(z1)

#Append 1 to a1 before computing z2
Continue with layer 2..........
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Cost function for one-vs-all neural
networks

For a neural nets with one-vs-all :
Output:a“ =h,(x) e R®

1| &S : : : .

J(©) = —E{ZZ Yi(Dloghy (X (1,:) + 1=y, (1) log( - h, (X(i,2)) )}r
i=1 k=1

L : number of layers

s, : Number of units (without bias) in layer |

J(®) = LossTerm + A * RegularizationTerm

Remark: two variations are common:
- Regularize all weights including the bias terms (sum from 0)
- Avoid regularizing the bias terms (sum from 1)

In practise, this choice do not matter.
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Cost function for softmax neural
networks

For a neural net with softmax loss function :

o/ x

[ P(y=1[x,0) |
P(y =2|x,0) 1 o &*

Output:a" =hy(x) =

P(y=K|[x,0)| ki

Op X;
1| kA y) L-1 s S+l
J@=——| 3> Uy =kflog -w——||+- -2 3 > (OF)
m| 5= Ze Ok X 2miT T3
L k=l . Remark: two variations are common,
L : number of layers See previous slide:
s, : Number of units (without bias) in layer |

J(®) = LossTerm + A * RegularizationTerm
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Introduction to backpropagation and
computational graphs

« We now have a network architecture o, coumes nsmall change in the outpos
and a cost function. e

* Alearning algorithm for the net should
give us a way to change the weights in
such a manner that the output is closer
to the correct class labels.

* The activation function should assure
that a small change in weights results in
a small change in ouputs.

« Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

output+Aoutput
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During
backpropagation, the
node will learn oL
£l
The gate uses chain
Activations rule to redistribute this
gradient to its inputs

oL oJL oz

OX 07 OX
y
0z
oL oL oz
oy 0z oy

Green numbers: forward propagation
Red numbers: backwards propagation
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A more complicated graph example

1
f(’i'_U:, iE) — 14+ E—{wui!u-l—wﬁ’l"‘wﬂ
f(m):% — %:_1/;32
fo@) =c+a — =t
f($) — o7 s g — ¥
fa(@) = az ~ 2=

dx
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03\ 100 N 03
SiUa
1 af
f(ﬂf)ZE — 5——1/372
fe(@)=c+=z — gzl
fla) =< - e
fo(z) = az — gz
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-0.53 1.0

1 df
f@)=3 - &~ Y -1/(1.37)21.0
fel@)=c+z — %:1
f@) = E g
fo(z) = ax — %:a
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-0.563 -0.53 1.0
fa) = = - Y
fola) =c+a L1 1*-0.53=-0.53
J@) = T
falz) = ax %:
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-0.53 -0.53 1.0

137 /’;1\ 37 @ 073

e1*-0.53=-0.20
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-0.53 -0.53 1.0
0377\, R0
ol B A EA€ e
f(w):% — %:fl/w2
fel@)=c+z — %:1
@) =& - 4
falz) = ax — %:

(-1)*-0.20=0.20
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-0.20 -0.53 -0.53 1.0

T - dz - 71/$2
(1)*0.20=0.20 o i
Distribute to both inputs i
flz)=¢ - dr
falz) = ax — 3;: =
3.3.2017
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-0.53 -0.53 1.0

BAT SN W N B
EP—\)=—=¥

f(z) = % = e
(1)*0.20=0.20 o i
Distribute to both inputs i
f(@)=¢" - ==
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-1*0.20=-0.2
w0 2.00 020

2*0.20=0.4

w1 -3.00
x1 -2.00

w2 -3.00
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020 -0.20 -0.53 -0.53 1.0
df 2
:l — E:fl/w
fel@)=c+z — %:1
j@) = - -
falz) = ax — %:
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-2*0.20=-0.4 w 2% -0.53 -0.53

1.00 -1.00 0.37 /'-\ 1.37
i - 1)
-3*0.20=-0.6 *' 29 —— =
w2 -3.00
= =_1/z’
% 1
df _
af
af
ar
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The sigmoid gate

-2*0.20=-0.4 w1 2% -0.20 -0.53 -0.53 1.0

100y 0% ()1 @ 0.73

-3*0.20=-0.6 * 2% i 2 B 22
w2 -3.00
af
@ = U
df B
a =1
df _
i
af _
af _
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The sigmoid gate

1
o(z) = 1+e™®
do(z)  e® = [(l+e®—1 1 B
dze  (1+e®)? ( 1+e® ) (1+e—$) = (1—o(z))o(z)
Output: 0.73

Derivative of the sigmoid gate: (1-0.73)0.73=0.20
This is the same result as above.

25.2.2017 INF 5860
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Forward and backward for a single neuron

w = [2,-3,-3]

x = [-1, =21

dot = w[01*x[0] + w[l]*x[1] + wl[2]
f=1.0/ (1 + math.exp(-dot))

ddot = (1 - £) * £

dx = [w[0] * ddot, w[l] * ddot]

dw = [X[0] * ddot, x[1l] * ddot, 1.0 * ddot]

Remark: an efficient implemetation will store inputs and intermediates
during forward, so that they are available for backprop.
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A more tricky example

T + o(y)

flz,y) =

o(z) + (z +y)

« Stage the forward pass into simple operations that we now the
derivative of:

¢ = 3 # example wvalue

# forward pas

(PYSOr = Xpy**2
den = sigx + xpysqr # denominator
invden = 1.0 / den

f = num * invden # done!

3.3.2017 INF 5860
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A more tricky example

z + o(y)
o(z) + (= + y)?

flz,y) =

In the backwards pass: compute the derivative of all these terms:

dnum = invden

dinvden = num

dden = (-1.0 / (den**2)) * dinvden
dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqgr

dx = (1) * dxpy

dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx
dx += (1) * dnum

dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy

24
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Patterns in backward flow

x 3.00

add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:

If a gate get one large and one
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is
important
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The optimization problem

Given a loss function J and a feed - forward net with L layers

with weights ®®
We want to minimize J using gradient descent

Need the derivatives of J with respect to every @m’n(l)

Backpropagation: recursive application of the chain rule on a
computational graph to compute the gradients of all
input/parameters/intermediates

Implementation:
« Forward: compute the result of the node operation and save

the intermediates needed for gradient computation
« Backwards: apply the chain rule to compute the gradients of

the loss function with respect to the input of each node.
3.3.2017 INF 5860
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A very simple net with one input

o) 0 ()
Measure of error on
training data
E=1/2(y-a(?)?

* Sigmoid % Sigmoid ——>
a(l) 2(2) a2

X z()

Assume that we want to minimize the square error between the

output a® and the true class y

E=1/2(y-a®)? (Mean square error in this example) o o
Compute the partial derivatives with respect to 6(") and 6@ 350, 4555
and use use gradient descent to update 0()
and 6©)

03.3.2017 INF 5860 27
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0E | OE |pal?
00 |0a”|po”

2
— (a(z) _ y)6a2 1qm
52

5 Gzéz)
2% 06"

N —

_ (a(2> _y

(2)

applies the sigmoid function g(z) so =9'(z?) = g(z(z))(l — g(z(z)))

(2)
a oz N
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0E  oE da®? ((2) \oa” oz
00" ~ 5a® 06" Vo2 56"

a (2) aa(l)
B Y e

= (@ - y)o@)1-g@)p =

(D

%)
- (@ - yJoe)li- g 91— 9@")S
((2) )g(z(z))( g(z(z)))é’(z)g(z(”)(l—g(z“)))x

a2
a'" applies the sigmoid function g(z) so g =9'(z") =g (Z(l))(l — g(z(l)))
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From scalars to vectors

oE .
* In the example x was a scalar, and ;, was a vector with one
element pr. weight.

« When working with vector input, for each layer %Wi” be a
matrix.

« Deriving the vector/matrix version of backpropagation is more
tedious, but follows the same principle.

A good source is
http://neuralnetworksanddeeplearning.com/chap2.html
* We now present the vector algorithm
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Backpropagation algorithm for a
single training sample (x;, y;)

For now, ignore the regularization (set A = 0)

Fora 3 -layer net :

Lets” =a¥ -y,

Let 5% =a®™ -y be the vector of 5, j =1,..5,, where s, is the number of nodes in layer j

Compute § * = (((9(3))T5(3) -#g'(2?)
5O ((®(2))T5(2) %' (")

Note that this is the elementwise product, or
Hadamard-product of two vectors

M

With this notation, o __ ag')é‘i'“
00,

03.3.2017 INF 5860 31
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Derivative of loss function

» In backpropagation, we need the derivative of the loss functions with
respect to the activation of the output layer a'.

« If we ignore the regularization term, the derivative of the logistic loss
function for sample i can be shown to be (a--y))
— See http://stats.stackexchange.com/questions/219241/gradient-for-
logistic-loss-function
* For softmax, ignoring the regularization term, the derivative of the
softmax loss is also (al-y,)

— See http://math.stackexchange.com/questions/945871/derivative-
of-softmax-loss-function

NOTE: al is computed differently
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Notice that the bias nodes do not receive input from previous layer.
Thus, they should NOT be used in backpropagation

o) l O2)

+1

— hy(x)

S5O — ((@m )T 5(2)), +g'(z") 6% =a? - yind(k)
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Including the regularization term

J<®>=—i{i2 Y, () logh, (X (1,9) + (1~ y, (D)log(l -y (X(i,) )}i Y S @)

m{ 5

J(®) = LossTerm + A * RegularizationTerm

Backpropagation update including the regularization :

agﬁ) = Di?) — lA(i}) for j= 0, here the convention is that we do not regularize the bias terms
¢ m

ij

aJl _pp— 1 AD + 200 forj=>1

00" m " m

Note that 11s indexed from 1, and j from O (it gets input from the bias in the previous layer)

Remark: softmax will have the same regularization term
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Backpropagation with a loop over
training data

Training set {(X1 3V )seeee (X ym)}
Set A(i? =0 for all1, j,1
fori=1:m
Seta®=x,
Do forward propagation to computea® 1 =1,..L—1

Compute 5, =a, "

Compute 5*2,...6"Vas 5 = ((@)(') )T §<1+1))->x<g'(z(l))
Set AV = AD 1 4 O 50D
Y ] 1

1

—yind(k),, yind is an indicator function, = 1if y, = k and 0 otherwise

Dy = 1 —AY +20),if j#0
m
DO = L0 if j=0
ij m ij ? 1 j=
Q)
Here, @(I) i

1
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Checking dimensions
SO = (((9(2) )T 5@ )-*g'(z“))
« Note that in backpropagation, we use O
« When implementing this shape() is your best friend ©

« Think of a net with one hidden layer (layer 1) with 25 nodes + bias, and output
layer with 10 nodes (10 classes)

« 0@ has dimension 10x26 including bias, and (©®)T is 26x10
« 3 has dimension 10x1

«  REMARK: we can either ignore the bias terms in backpropagation, or compute
5,1 also (resulting in a 26x1 vector), but later ignore the §,(1) values

— When doing backpropagation from layer 2 to layer 1, ignore the bias in (index 0 of
layer 2) and backpropagate (©®?))7(1:25,0:9)

« 3(Mthen has dimension [(25x10)x(10x1)]-*(25x1) = 25x1
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Assumptions behind
backpropragation

1. The loss function should be expressed as a sum or
average over all training samles.
— This is true for all the functions we have studied so far

. oL . _
— We will be able to compute g for a single training example,
and then average over all samples.

Output :hy(x) e R®

sj+1

J(@)———{iz () loghy (X (i,2)) +(1— y, (D) log(l—hy (X (i,:)) >}+iz DN I0%

2m I=1 i=1 j=1

L :number of layers

s, : Number of units (without bias) in layer|
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Assumptions behind
backpropragation

2. The loss function must be expressed as a function
of the outputs of the net.

— This allows us to change the weights and measure how
similar y, and the output hg(x) is.

Output :hy(x) e R®
L“”Z‘%{iz Vi (D loghy (X (i,)) +(1- y, (i) log(l —hy (X (i,?)) )}L Sy

L : number of layers

s, : Number of units (without bias) in layer |
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Gradient checking

 When implementing backpropagation, we
use gradient checking to verify the
Implementation.

* When the code works, we turn off gradient
checking.

« But what is it?

03.3.2017 INF 5860
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Gradient checking: numerical
estimation of the gradient

* The gradient of a function is defined as:

ij(g)zlimJ(¢9+5)—J(9—5)
do £—0 2¢

 When we have the cost function implemented, we
can easily approximate the gradient 6 as

J@+e)-J(O—-¢)
2&

03.3.2017 INF 5860
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Procedure for gradient checking

* ‘Unroll’ ®,, ©,,...into a 1-d vector 6 = [0,,.... 6,]
* Approximate

8] J(0,+¢,6,,..0,)- (6, £,6,,...0,)

00, 2¢
o J(6,,0,+e,..6)-3(6,,0,—¢,..0,)
00, 2¢

ol J(6,.6,,...0,+&)-J(06,,0,,...0,—¢)
ol7) 2¢

n

« Check that the difference between this partial derivative and
the one from backpropagation is smaller than a threshold.

03.3.2017 INF 5860
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Regarding gradient checking:

« Computing the approximated gradient is
computationally much slower than backpropagation:

— Use gradient checking for a small example when debugging
the backpropagation code.

— Once it works, turn off gradient checking and proceed with
training the entire data set.
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Random initialization of weights

* All weights must be initialized to small, but
different random numbers.

— More on why next week.

03.3.2017 INF 5860

43



UiO S Department of Informatics
University of Oslo

Training a neural network

« Choose an architecture:
— Number of inputs: dimension of feature vector or
image
— Number of outputs: number of classes
— 1-2 hidden layers.

« For simplicity: use the same number of nodes in each
hidden layer

— More on practial details in the next two lectures.
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Training a network

Randomly initialize each weight to small numbers
Implement forward propagation to get the output
Implement code to compute the cost function J(0)
Implement backprop to compute the partial derivatives
fori=1:m
Perform forward propagation and backpropagation for
sample x,,y;

5. Use gradient checking to compate numerical estimates and
backpropagation gradients. Afterward, disable gradient
checking.

6. Use gradient descent (or optimization methods) with
backpropagation to minimize J.

s wn -

03.3.2017 INF 5860
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Weekly exercise:

* A detailed programming exercise, with

descriptions on the operations, will be
available.

* Implementing backpropagation is central to
Mandatory exercise 1

— No solution in python will be given, but test data
with known results.
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Next weeks:

« Training in practice, useful tricks.
« Babysitting the training process
« Parameter updates
 Activation functions

* Weight initialization

* Preprocessing

« Evaluation

Main reading material: http://cs231n.github.io/neural-
networks-3/
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