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Lecture : Backpropagation – learning in 
neural nets
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Reading material

– Reading material: 
• http://cs231n.github.io/optimization-2/

• Additional optional material:
• Lecture on backpropagation in Coursera Course on 

Machine Learning (Andrew Ng)
CS 231n on youtube: lecture 4

• http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
• http://colah.github.io/posts/2015-08-Backprop/
• http://neuralnetworksanddeeplearning.com/chap2.html
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Notation- forward propagation
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Example feed-forward computation
• Input x: 3x1 vector
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z1 = Theta1.dot(X)
a1 = sigmoid(z1)
#Append 1 to a1 before computing z2
Continue with layer 2……….



Cost function for one-vs-all neural 
networks
For a neural nets with one-vs-all :

03.03.2017 INF 5860 6

 

tionTermRegulariza*   LossTerm)(
llayer  in bias)(without   units ofNumber :s

layers ofnumber  :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h  a :Output

l

1

1

2)(

1

1

11 1

KL

.















 










 



J

m
iXhiyiXhiy

m
J

jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k

Remark: two variations are common:
- Regularize all weights including the bias terms (sum from 0)
- Avoid regularizing the bias terms (sum from 1)

In practise, this choice do not matter. 



Cost function for softmax neural 
networks
For a neural net with softmax loss function :
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Remark: two variations are common, 
See previous slide:



Introduction to backpropagation and 
computational graphs
• We now have a network architecture

and a cost function. 
• A learning algorithm for the net should

give us a way to change the weights in 
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in 
a small change in ouputs.

• Backpropagation use partial derivatives 
to compute the derivative of the cost
function J with respect to all the
weights. 
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During 
backpropagation, the
node will learn

The gate uses chain 
rule to redistribute this
gradient to its inputs 
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Green numbers: forward propagation
Red numbers: backwards propagation



A more complicated graph example
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1.0

-1/(1.37)2*1.0

-0.53
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1.0

1*-0.53=-0.53

-0.53-0.53
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1.0

e-1*-0.53=-0.20

-0.53-0.53-0.20
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1.0

(-1)*-0.20=0.20

-0.53-0.53-0.200.20
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1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs

0.20

0.20
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1.0-0.53-0.53-0.200.20

(1)*0.20=0.20
Distribute to both inputs
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0.20
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1.0-0.53-0.53-0.200.20
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-1*0.20=-0.2

2*0.20=0.4
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The sigmoid gate



The sigmoid gate
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Output: 0.73
Derivative of the sigmoid gate: (1-0.73)0.73=0.20
This is the same result as above.



Forward and backward for a single neuron
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Remark: an efficient implemetation will store inputs and intermediates
during forward, so that they are available for backprop. 



A more tricky example

• Stage the forward pass into simple operations that we now the
derivative of:
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A more tricky example

• In the backwards pass: compute the derivative of all these terms:
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Patterns in backward flow
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add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:
If a gate get one large and one 
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is 
important



The optimization problem
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Backpropagation: recursive application of the chain rule on a 
computational graph to compute the gradients of all 
input/parameters/intermediates

Implementation: 
• Forward: compute the result of the node operation and save 

the intermediates needed for gradient computation
• Backwards: apply the chain rule to compute the gradients of

the loss function with respect to the input of each node.



A very simple net with one input
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Sigmoid* * Sigmoid

x

(1)  (2) 

z(1) z(2)a(1) a(2)

Assume that we want to minimize the square error between the
output a(2) and the true class y
E=1/2(y-a(2))2 (Mean square error in this example)
Compute the partial derivatives with respect to (1) and (2), 

and use use gradient descent to update (1)

and (2)

)2(
1

)1(  and    
 



 EE

Measure of error on 
training data
E=1/2(y-a(2))2 
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From  scalars to vectors
• In the example x was a scalar, and     was a vector with one 

element pr. weight. 
• When working with vector input, for each layer will be a 

matrix. 
• Deriving the vector/matrix version of backpropagation is more 

tedious, but follows the same principle. 
• A good source is 
http://neuralnetworksanddeeplearning.com/chap2.html
• We now present the vector algorithm
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Backpropagation algorithm for a 
single training sample (xi, yi)

03.3.2017 INF 5860 31

  
  

1)(
)(

)1()2()2()1(

)2()3()3()2(

)3(
j

)3()3(

)3()3(
j

J notation,  thisWith

)('               

)(' Compute

jlayer  in nodes ofnumber   theis  where,,..1 of vector  thebe Let 

Let 

 :netlayer -3a For 
0)(set  tionregulariza  theignore now,For 















l
i

l
jl

ij

T

T

jj

jj

a

zg

zg

ssjya

ya













Note that this is the elementwise product, or 
Hadamard-product of two vectors



Derivative of loss function
• In backpropagation, we need the derivative of the loss functions with

respect to the activation of the output layer ai
L. 

• If we ignore the regularization term, the derivative of the logistic loss 
function for sample i can be shown to be (ai

L-yi)
– See http://stats.stackexchange.com/questions/219241/gradient-for-

logistic-loss-function
• For softmax, ignoring the regularization term, the derivative of the

softmax loss is also (ai
L-yi)

– See http://math.stackexchange.com/questions/945871/derivative-
of-softmax-loss-function

NOTE: ai
L is computed differently
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Notice that the bias nodes  do not receive input from previous layer.
Thus, they should NOT be used in backpropagation



Including the regularization term
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Remark: softmax will have the same regularization term



Backpropagation with a loop over 
training data
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Checking dimensions

• Note that in backpropagation, we use T 

• When implementing this shape() is your best friend 

• Think of a net with one hidden layer (layer 1) with 25 nodes + bias, and output 
layer with 10 nodes (10 classes)

• (2) has dimension 10x26 including bias, and ((2))T is 26x10
• (2) has dimension  10x1 

• REMARK: we can either ignore the bias terms in backpropagation, or compute
0

(1) also (resulting in a  26x1 vector), but later ignore the 0
(1)  values

– When doing backpropagation from layer 2 to layer 1, ignore the bias in (index 0 of
layer 2) and backpropagate ((2))T(1:25,0:9)

• (1) then has dimension [(25x10)x(10x1)](25x1) = 25x1
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Assumptions behind
backpropragation
1. The loss function should be expressed as a sum or 

average over all training samles.
– This is true for all the functions we have studied so far
– We will be able to compute for a single training example, 

and then average over all samples.  
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Assumptions behind
backpropragation
2. The loss function must be expressed as a function

of the outputs of the net.
– This allows us to change the weights and measure how

similar yi and the output h(x) is.

03.3.2017 INF 5860 38

 
llayer  in bias)(without   units ofNumber :s

layers ofnumber  :L

)(
2

):)),((1log())(1(:)),((log)(1)(

R(x)h :Output

l

1

1

2)(

1

1

11 1

K

.








 














jl s

j

l
ji

s

i

L

l

m

i
kkkk

K

k m
iXhiyiXhiy

m
L 





Gradient checking

• When implementing backpropagation, we
use gradient checking to verify the
implementation. 

• When the code works, we turn off gradient 
checking. 

• But what is it?
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Gradient checking: numerical
estimation of the gradient
• The gradient of a function is defined as:

• When we have the cost function implemented, we
can easily approximate the gradient  as 
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Procedure for gradient checking
• ‘Unroll’ 1, 2,…into a 1-d vector  = [1,…. n]
• Approximate

• Check that the difference between this partial derivative and 
the one from backpropagation is smaller than a threshold. 
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Regarding gradient checking:

• Computing the approximated gradient is 
computationally much slower than backpropagation:
– Use gradient checking for a small example when debugging

the backpropagation code.
– Once it works, turn off gradient checking and proceed with

training the entire data set. 
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Random initialization of weights

• All weights must be initialized to small, but
different random numbers. 
– More on why next week. 
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Training a neural network

• Choose an architecture: 
– Number of inputs: dimension of feature vector or 

image
– Number of outputs: number of classes
– 1-2 hidden layers. 

• For simplicity: use the same number of nodes in each
hidden layer

– More on practial details in the next two lectures. 
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Training a network
1. Randomly initialize each weight to small numbers
2. Implement forward propagation to get the output 
3. Implement code to compute the cost function J()
4. Implement backprop to compute the partial derivatives 

for i=1:m
Perform forward propagation and backpropagation for       

sample xi,yi

5. Use gradient checking to compate numerical estimates and 
backpropagation gradients. Afterward, disable gradient 
checking.

6. Use gradient descent (or optimization methods) with
backpropagation to minimize J. 
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Weekly exercise:

• A detailed programming exercise, with
descriptions on the operations, will be 
available. 

• Implementing backpropagation is central to 
Mandatory exercise 1
– No solution in python will be given, but test data 

with known results. 
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Next weeks:

• Training in practice, useful tricks. 
• Babysitting the training process
• Parameter updates
• Activation functions
• Weight initialization
• Preprocessing
• Evaluation 
Main reading material: http://cs231n.github.io/neural-
networks-3/
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