

UiO : Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification
Lecture : Backpropagation - learning in neural nets

Anne Solberg
March 3, 2017

Reading material

- Reading material:
- http://cs231n.github.io/optimization-2/
- Additional optional material:
- Lecture on backpropagation in Coursera Course on Machine Learning (Andrew Ng) CS 231n on youtube: lecture 4
- http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
- http://colah.github.io/posts/2015-08-Backprop/
- http://neuralnetworksanddeeplearning.com/chap2.html

Notation- forward propagation

Assume that the input is layer 0
$a_{i}^{(j)}$ - activation of unit i and layer j
$\Theta^{(j)}$ - matrix of weights controlling function mapping from layer $\mathrm{j}-1$ to j
$\Theta^{(j)}$ has dimension (nodes in layer (j)) $\times($ nodes in layer $(\mathrm{j}-1)+1)$
$\mathrm{s}_{\mathrm{j}-1}$ nodes in layer $\mathrm{j}-1, \mathrm{~s}_{\mathrm{j}}$ nodes in layer $\mathrm{j}: \Theta^{(j)}$ has size $\mathrm{s}_{\mathrm{j}} \times\left(\mathrm{s}_{\mathrm{j}-1}+1\right)$
$\mathrm{a}_{1}^{(1)}=g\left(\Theta_{10}^{(1)} \mathbf{x}_{0}+\Theta_{11}^{(1)} \mathrm{x}_{1}+\Theta_{12}^{(1)} \mathbf{x}_{2}+\Theta_{13}^{(1)} \mathrm{X}_{3}\right)$
$\mathbf{a}_{2}^{(1)}=g\left(\Theta_{20}^{(1)} \mathbf{x}_{0}+\Theta_{21}^{(1)} \mathbf{x}_{1}+\Theta_{22}^{(1)} \mathbf{x}_{2}+\Theta_{23}^{(1)} \mathbf{x}_{3}\right)$
$\mathrm{a}_{3}^{(1)}=g\left(\Theta_{30}^{(1)} \mathrm{x}_{0}+\Theta_{31}^{(1)} \mathrm{x}_{1}+\Theta_{32}^{(1)} \mathrm{x}_{2}+\Theta_{33}^{(1)} \mathrm{x}_{3}\right)$
$h_{\Theta}(x)=\mathbf{a}_{1}^{(2)}=g\left(\Theta_{10}^{(2)} \mathbf{a}_{0}{ }^{(1)}+\Theta_{11}^{(2)} \mathbf{a}_{1}{ }^{(1)}+\Theta_{12}^{(2)} \mathbf{a}_{2}{ }^{(1)}+\Theta_{13}^{(2)} \mathbf{a}_{3}{ }^{(1)}\right)$

UiO : Department of Informatics

Example feed-forward computation

- Input x: 3×1 vector
$\Theta^{(1)}: 4 \times 4$ (nof. hidden nodes in layer $1 \times$ nof.inputs +1)
$\Theta^{(2)}: 2 \times 5$ (nof.classes \times nof. hidden nodes in layer $1+1$)
If we have N training samples we can predict
all $\mathrm{n}=1 \ldots . \mathrm{N}$ at one time :

z1 = Theta1.dot(X)
a1 = sigmoid(z1)
\#Append 1 to a1 before computing z2
Continue with layer 2..........

Cost function for one-vs-all neural networks

For a neural nets with one-vs-all:
Output: $a^{L}=h_{\Theta}(x) \in R^{K}$
$J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}(i) \log h_{\theta k}(X(i,:))+\left(1-y_{k}(i)\right) \log \left(1-h_{\theta k}(X(i,:))\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{j}+1}\left(\Theta_{j i}^{(l)}\right)^{2}$
L: number of layers
s_{1} : Number of units (without bias) in layer 1
$J(\Theta)=$ LossTerm $+\lambda *$ RegularizationTerm

Remark: two variations are common:

- Regularize all weights including the bias terms (sum from 0)
- Avoid regularizing the bias terms (sum from 1)

In practise, this choice do not matter.

Cost function for softmax neural networks

For a neural net with softmax loss function :

$$
\begin{aligned}
& \text { Output: } \mathrm{a}^{\mathrm{L}}=\mathrm{h}_{\Theta}(\mathrm{x})=\left[\begin{array}{c}
\mathrm{P}(\mathrm{y}=1 \mid \mathrm{x}, \Theta) \\
\mathrm{P}(\mathrm{y}=2 \mid \mathrm{x}, \Theta) \\
\vdots \\
\mathrm{P}(\mathrm{y}=\mathrm{K} \mid \mathrm{x}, \Theta)
\end{array}\right]=\frac{1}{\sum_{k=1}^{K} e^{\Theta_{k}^{T} x}}\left[\begin{array}{c}
e^{\Theta_{1}^{T} x} \\
e^{\Theta_{2}^{T} x} \\
\vdots \\
e^{\Theta_{\mathrm{K}}^{T} x}
\end{array}\right] \\
& \begin{array}{l}
J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\left\{y_{i}=k\right\} \log \left(\frac{e^{\Theta_{k}^{T} x_{i}}}{\sum_{k=1}^{K} e^{\Theta_{k}^{T} x_{i}}}\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{j}+1}\left(\Theta_{j i}^{(l)}\right)^{2} \\
\begin{array}{l}
\text { Remark: two variations are common, } \\
\text { See previous slide: }
\end{array} \\
\mathrm{s}_{1}: \text { number of layers }
\end{array} \\
& J(\Theta)=\text { LossTerm }+\lambda * \text { RegularizationTerm }
\end{aligned}
$$

Introduction to backpropagation and computational graphs

- We now have a network architecture and a cost function.
- A learning algorithm for the net should give us a way to change the weights in such a manner that the output is closer to the correct class labels.
- The activation function should assure that a small change in weights results in
small change in any weight (ior bias)
 a small change in ouputs.
- Backpropagation use partial derivatives to compute the derivative of the cost function J with respect to all the weights.

UiO: Department of Informatics

Green numbers: forward propagation
Red numbers: backwards propagation

A more complicated graph example

$$
\begin{array}{ccc}
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \\
f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1 \\
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a
\end{array}
$$

UiO : Department of Informatics

1.0

$$
\begin{array}{lll}
f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1 \\
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a
\end{array}
$$

UiO: Department of Informatics

UiO: Department of Informatics

UiO : Department of Informatics

UiO : Department of Informatics

UiO: Department of Informatics

UiO: Department of Informatics

UiO : Department of Informatics

UiO : Department of Informatics

University of Osio

UiO : Department of Informatics

University of Osio

The sigmoid gate

$$
\begin{gathered}
\sigma(x)=\frac{1}{1+e^{-x}} \\
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\end{gathered}
$$

Output: 0.73
Derivative of the sigmoid gate: (1-0.73)0.73=0.20
This is the same result as above.

Forward and backward for a single neuron

```
w = [2,-3,-3] # assume some random weights and data
x = [-1, -2]
# forward pass
dot = w[0]*x[0] + w[1]*x[1] + w[2]
f = 1.0 / (1 + math.exp(-dot)) # sigmoid function
# backward pass through the neuron (backpropagation)
ddot = (1 - f) * f # gradient on dot variable, using the sigmoid gradient derivation
dx = [w[0] * ddot, w[1] * ddot] # backprop into x
dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot] # backprop into w
# we're done! we have the gradients on the inputs to the circuit
```

Remark: an efficient implemetation will store inputs and intermediates during forward, so that they are available for backprop.

A more tricky example

$$
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}}
$$

- Stage the forward pass into simple operations that we now the derivative of:

```
x = 3# example values
# forward pass
sigy = 1.0 / (1 + math.exp (-y)) # sigmoid in numerator #(1)
num = x + sigy # numerator #(2)
sigx = 1.0 / (1 + math.exp (-x)) # sigmoid in denominator # (3)
xpy = x + y # (4)
xpysqr = xpy**2 #(5)
den = sigx + xpysqr # denominator # (6)
invden = 1.0 / den # (7)
f = num * invden # done! # (8)
```


A more tricky example

$$
f(x, y)=\frac{x+\sigma(y)}{\sigma(x)+(x+y)^{2}}
$$

- In the backwards pass: compute the derivative of all these terms:

```
# backprop f = num * invden
dnum = invden # gradient on numerator # (8)
dinvden = num # (8)
    # backprop invden = 1.0 / den
dden = (-1.0 / (den**2)) * dinvden #(7)
# backprop den = sigx + xpysqr
    dsigx = (1) * dden # (6)
    dxpysqr = (1) * dden # (6)
    # backprop xpysqr = xpy**2
    dxpy = (2 * xpy) * dxpysqr # (5)
    # backprop xpy = x + y 
    dy = (1) * dxpy # (4)
    # backprop sigx = 1.0 / (1 + math.exp(-x))
    dx += ((1 - sigx) * sigx) * dsigx # Notice += !! See notes below #(3)
    # backprop num = x + sigy
    dx += (1) * dnum
        # (2)
    dsigy = (1) * dnum #(2)
    # backprop sigy = 1.0 / (1 + math. exp (-y)) 
2
```


Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: be careful

Remark on multiplier gate:
If a gate get one large and one small input, backprop will use the big input to cause a large change on the small input, and vice versa. This is partly why feature scaling is important

The optimization problem

Given a loss function J and a feed - forward net with L layers with weights $\Theta^{(1)}$
We want to minimize J using gradient descent
Need the derivatives of J with respect to every $\Theta_{m, n}{ }^{(1)}$
Backpropagation: recursive application of the chain rule on a computational graph to compute the gradients of all input/parameters/intermediates

Implementation:

- Forward: compute the result of the node operation and save the intermediates needed for gradient computation
- Backwards: apply the chain tule to compute the gradients of the loss function with respect to the input of each node.

A very simple net with one input

Assume that we want to minimize the square error between the output $\mathrm{a}^{(2)}$ and the true class y
$\mathrm{E}=1 / 2\left(\mathrm{y}-\mathrm{a}^{(2)}\right)^{2}$ (Mean square error in this example)
Compute the partial derivatives with respect to $\theta^{(1)}$ and $\theta^{(2),} \frac{\partial E}{\partial \theta^{(1)} 1}$ and $\frac{\partial E}{\partial \theta^{(2)}}$ and use use gradient descent to update $\theta^{(1)}$
and $\theta^{(2)}$

UiO : Department of Informatics

$$
\begin{aligned}
& \frac{\partial E}{\partial \theta^{(2)}}=\frac{\partial E}{\partial a^{(2)}} \frac{\partial a_{2}^{(2)}}{\partial \theta^{(2)}}=\left(a^{(2)}-y\right) \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z_{2}^{(2)}}{\partial \theta^{(2)}} \\
& =\left(a^{(2)}-y\right) \frac{\partial a_{2}^{(2)}}{\partial z^{(2)}} a^{(1)}
\end{aligned}
$$

$a^{(2)}$ applies the sigmoid function $g(z)$ so $\frac{\partial a^{(2)}}{\partial z^{(2)}}=g^{\prime}\left(z^{(2)}\right)=g\left(z^{(2)}\right)\left(1-g\left(z^{(2)}\right)\right)$

UiO : Department of Informatics

University of Oslo

$$
\begin{aligned}
& \frac{\partial E}{\partial \theta^{(1)}}=\frac{\partial E}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial \theta^{(1)}}=\left(a^{(2)}-y\right) \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(1)}} \\
& =\left(a^{(2)}-y\right) g\left(z^{(2)}\right)\left(1-g\left(z^{(2)}\right)\right) \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial \theta^{(1)}} \\
& =\left(a^{(2)}-y\right) g\left(z^{(2)}\right)\left(1-g\left(z^{(2)}\right)\right) \theta^{(2)} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial_{1}^{(1)}} \\
& =\left(a^{(2)}-y\right) g\left(z^{(2)}\right)\left(1-g\left(z^{(2)}\right)\right) \theta^{(2)} g\left(z^{(1)}\right)\left(1-g\left(z_{1}^{(1)}\right)\right) \frac{\partial z^{(1)}}{\partial \theta^{(1)}} \\
& \left(a^{(2)}-y\right) g\left(z^{(2)}\right)\left(1-g\left(z^{(2)}\right)\right) \theta^{(2)} g\left(z^{(1)}\right)\left(1-g\left(z^{(1)}\right)\right) x
\end{aligned}
$$

$a^{(1)}$ applies the sigmoid function $g(z)$ so $\frac{\partial a^{(1)}}{\partial z^{(1)}}=g^{\prime}\left(z^{(1)}\right)=g\left(z^{(1)}\right)\left(1-g\left(z^{(1)}\right)\right)$

From scalars to vectors

- In the example x was a scalar, and $\frac{\partial E}{\partial \theta}$ was a vector with one element pr. weight.
- When working with vector input, for each layer $\frac{\partial E}{\partial \theta^{\prime}}$ will be a matrix.
- Deriving the vector/matrix version of backpropagation is more tedious, but follows the same principle.
- A good source is
http://neuralnetworksanddeeplearning.com/chap2.html
- We now present the vector algorithm

Backpropagation algorithm for a single training sample (x_{i}, y_{i})

For now, ignore the regularization (set $\lambda=0$)
For a 3-layer net :
Let $\delta_{\mathrm{j}}^{(3)}=a_{j}^{(3)}-y_{j}$
Let $\delta^{(3)}=a^{(3)}-y$ be the vector of $\delta_{\mathrm{j}}^{(3)} j=1, . . s_{j}$, where s_{j} is the number of nodes in layer j
Compute $\delta^{(2)}=\left(\left(\Theta^{(3)}\right)^{T} \delta^{(3)}\right) \cdot * g^{\prime}\left(z^{(2)}\right)$

$$
\delta^{(1)}=\left(\left(\Theta^{(2)}\right)^{T} \delta^{(2)}\right) \cdot * g^{\prime}\left(z^{(1)}\right)
$$

Note that this is the elementwise product, or
Hadamard-product of two vectors

With this notation, $\frac{\partial \mathrm{J}}{\partial \Theta_{i j}^{(l)}}=a_{j}^{(l)} \delta_{i}^{I+1}$

Derivative of loss function

- In backpropagation, we need the derivative of the loss functions with respect to the activation of the output layer $a_{i}{ }^{\mathrm{L}}$.
- If we ignore the regularization term, the derivative of the logistic loss function for sample i can be shown to be ($\mathrm{a}_{\mathrm{i}}^{\mathrm{L}-y_{i}}$)
- See http://stats.stackexchange.com/questions/219241/gradient-for-logistic-loss-function
- For softmax, ignoring the regularization term, the derivative of the softmax loss is also ($a_{i}^{L}-y_{i}$)
- See http://math.stackexchange.com/questions/945871/derivative-of-softmax-loss-function

NOTE: $a_{i}{ }^{L}$ is computed differently

UiO : Department of Informatics

University of Oslo

Notice that the bias nodes do not receive input from previous layer. Thus, they should NOT be used in backpropagation

Including the regularization term

$J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}(i) \log h_{\theta k}(X(i,:))+\left(1-y_{k}(i)\right) \log \left(1-h_{\theta k}(X(i, ;))\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{i}} \sum_{j=1}^{s_{j}+1}\left(\Theta_{j i}^{(l)}\right)^{2}$
$J(\Theta)=$ LossTerm $+\lambda *$ RegularizationTerm
Backpropagation update including the regularization:
$\frac{\partial \mathrm{J}}{\partial \Theta_{\mathrm{ij}}^{(\mathrm{Ij}}}=D_{i j}^{(I)}=\frac{1}{m} \Delta_{i j}^{(I)} \quad$ for $\mathrm{j}=0$, here the convention is that we do not regularize the bias terms
$\frac{\partial \mathrm{J}}{\partial \Theta_{\mathrm{ij}}^{(1)}}=D_{i j}^{(I)}=\frac{1}{m} \Delta_{i j}^{(I)}+\frac{\lambda}{\mathrm{m}} \Theta_{\mathrm{ij}}^{(\mathrm{I})} \quad$ for $\mathrm{j}=\geq 1$
Note that i is indexed from 1 , and j from 0 (it gets input from the bias in the previous layer)
Remark: softmax will have the same regularization term

Backpropagation with a loop over training data

$$
\begin{aligned}
& \text { Training set }\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right), \ldots . .\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)\right\} \\
& \text { Set } \Delta_{\mathrm{ij}}^{(1)}=0 \text { for all } \mathrm{i}, \mathrm{j}, 1 \\
& \text { for } \mathrm{i}=1 \text { : } \mathrm{m} \\
& \text { Set } a^{(0)}=x_{i} \\
& \text { Do forward propagation to compute } \mathrm{a}^{(0)}, l=1, \ldots . L-1 \\
& \text { Compute } \delta_{k}^{(\mathrm{L}-1)}=a_{k}^{(\mathrm{LL-1})}-y i n d(k)_{i} \text {, yind is an indicator function, }=1 \text { if } \mathrm{y}_{\mathrm{i}}=\mathrm{k} \text { and } 0 \text { otherwise } \\
& \text { Compute } \delta^{(\mathrm{LL}-2)}, \ldots . \delta^{(1)} \text { as } \delta^{(1)}=\left(\left(\Theta^{(1)}\right)^{T} \delta^{(1+1)}\right) \cdot * g^{\prime}\left(z^{(1)}\right) \\
& \text { Set } \Delta_{\mathrm{ij}}^{(1)}=\Delta_{\mathrm{ij}}^{(1)}+\mathrm{a}_{\mathrm{j}}^{(1)} \delta_{i}^{(1+1)} \\
& D_{i j}^{(1)}=\frac{1}{m} \Delta_{i j}^{(1)}+\lambda \Theta_{i j}^{(l)} \text {, if } j \neq 0 \\
& D_{i j}^{(i)}=\frac{1}{m} \Delta_{i j}^{(1)}, \quad \text { if } \mathrm{j}=0 \\
& \text { Here, } \frac{\partial \mathrm{J}}{\partial \Theta_{i j}^{(1)}}=\mathrm{D}_{\mathrm{ij}}^{(1)}
\end{aligned}
$$

Checking dimensions

$$
\delta^{(2)}=\left(\left(\Theta^{(2)}\right)^{T} \delta^{(3)}\right) \cdot * g^{\prime}\left(z^{(2)}\right)
$$

- Note that in backpropagation, we use Θ^{\top}
- When implementing this shape() is your best friend \odot
- Think of a net with one hidden layer (layer 1) with 25 nodes + bias, and output layer with 10 nodes (10 classes)
- $\Theta^{(2)}$ has dimension 10×26 including bias, and $\left(\Theta^{(2)}\right)^{\top}$ is 26×10
- $\delta^{(2)}$ has dimension 10×1
- REMARK: we can either ignore the bias terms in backpropagation, or compute $\delta_{0}{ }^{(1)}$ also (resulting in a 26×1 vector), but later ignore the $\delta_{0}{ }^{(1)}$ values
- When doing backpropagation from layer 2 to layer 1, ignore the bias in (index 0 of layer 2) and backpropagate $\left(\Theta^{(2)}\right)^{\top}(1: 25,0: 9)$
- $\delta^{(1)}$ then has dimension $[(25 \times 10) \times(10 \times 1)] \cdot *(25 \times 1)=25 \times 1$

Assumptions behind backpropragation

1. The loss function should be expressed as a sum or average over all training samles.

- This is true for all the functions we have studied so far
- We will be able to compute $\frac{\partial L}{\partial \Theta_{i j}^{\prime}}$ for a single training example, and then average over all samples.

Output: $h_{\Theta}(x) \in R^{K}$
$J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}(i) \log h_{\theta k}(X(i,:))+\left(1-y_{k}(i)\right) \log \left(1-h_{\theta k}(X(i,:))\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{j}+1}\left(\Theta_{j i}^{(l)}\right)^{2}$
L: number of layers
s_{1} : Number of units (without bias) in layer 1

Assumptions behind backpropragation

2. The loss function must be expressed as a function of the outputs of the net.

- This allows us to change the weights and measure how similar y_{i} and the output $h_{\Theta}(x)$ is.

Output: $h_{\Theta}(x) \in R^{K}$
$L(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}(i) \log h_{\partial k}(X(i,:))+\left(1-y_{k}(i)\right) \log \left(1-h_{\theta k}(X(i,:))\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{j}+1}\left(\Theta_{j i}^{(l)}\right)^{2}$
L: number of layers
s_{1} : Number of units (without bias) in layer 1

Gradient checking

- When implementing backpropagation, we use gradient checking to verify the implementation.
- When the code works, we turn off gradient checking.
- But what is it?

Gradient checking: numerical estimation of the gradient

- The gradient of a function is defined as:

$$
\frac{d}{d \theta} J(\theta)=\lim _{\varepsilon \rightarrow 0} \frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon}
$$

- When we have the cost function implemented, we can easily approximate the gradient θ as

$$
\frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon}
$$

Procedure for gradient checking

- 'Unroll' $\Theta_{1}, \Theta_{2}, \ldots$ into a 1-d vector $\theta=\left[\theta_{1}, \ldots . \theta_{n}\right]$
- Approximate

$$
\begin{aligned}
& \frac{\partial J}{\partial \theta_{1}}=\frac{J\left(\theta_{1}+\varepsilon, \theta_{2}, \ldots . \theta_{n}\right)-J\left(\theta_{1}-\varepsilon, \theta_{2}, \ldots . \theta_{n}\right)}{2 \varepsilon} \\
& \frac{\partial J}{\partial \theta_{2}}=\frac{J\left(\theta_{1}, \theta_{2}+\varepsilon, \ldots . \theta_{n}\right)-J\left(\theta_{1}, \theta_{2}-\varepsilon, \ldots . \theta_{n}\right)}{2 \varepsilon} \\
& \vdots \\
& \frac{\partial J}{\partial \theta_{n}}=\frac{J\left(\theta_{1}, \theta_{2}, \ldots . \theta_{n}+\varepsilon\right)-J\left(\theta_{1}, \theta_{2}, \ldots . \theta_{n}-\varepsilon\right)}{2 \varepsilon}
\end{aligned}
$$

- Check that the difference between this partial derivative and the one from backpropagation is smaller than a threshold.

Regarding gradient checking:

- Computing the approximated gradient is computationally much slower than backpropagation:
- Use gradient checking for a small example when debugging the backpropagation code.
- Once it works, turn off gradient checking and proceed with training the entire data set.

Random initialization of weights

- All weights must be initialized to small, but different random numbers.
- More on why next week.

Training a neural network

- Choose an architecture:
- Number of inputs: dimension of feature vector or image
- Number of outputs: number of classes
- 1-2 hidden layers.
- For simplicity: use the same number of nodes in each hidden layer
- More on practial details in the next two lectures.

Training a network

1. Randomly initialize each weight to small numbers
2. Implement forward propagation to get the output
3. Implement code to compute the cost function $\mathrm{J}(\theta)$
4. Implement backprop to compute the partial derivatives for $\mathrm{i}=1$:m

Perform forward propagation and backpropagation for sample x_{i}, y_{i}
5. Use gradient checking to compate numerical estimates and backpropagation gradients. Afterward, disable gradient checking.
6. Use gradient descent (or optimization methods) with backpropagation to minimize J.

Weekly exercise:

- A detailed programming exercise, with descriptions on the operations, will be available.
- Implementing backpropagation is central to Mandatory exercise 1
- No solution in python will be given, but test data with known results.

Next weeks:

- Training in practice, useful tricks.
- Babysitting the training process
- Parameter updates
- Activation functions
- Weight initialization
- Preprocessing
- Evaluation

Main reading material: http://cs231n.github.io/neural-networks-3/

