

UiO **Department of Informatics** University of Oslo

> INF 5860 Machine learning for image classification Lecture 2 : Linear classification and regression – part 1: Regression Anne Solberg

January 27, 2017

ifi

UiO **Department of Informatics** University of Oslo

Today's topics

- Self-study: Linear algebra (Chapter 2)
- Linear regression
 - Deep Learning Chap 5.1
- Introduction to loss functions and minimization
- Read section1-3 in http://cs229.stanford.edu/notes/cs229-notes1.pdf
- Gradient descent
- Briefly about polynomial regression

Introduction

- Linear regression has many similarities to neural nets, and it is easy to explain the role of learning a loss function on a data set.
- Classification can be viewed as a regression problem.
 - Classification: estimate the class label k=1....K
 - Regression: estimate a continuous variable y
 - Both methods use training data to estimate the parameters.
- Linear mappings $\theta^T x$ are the fundament in both.

INF 5860

This is also the basic operation of a node in a neural net

27.1.2017

UiO : Department of Informatics University of Oslo

The linear regression problem

- Task T: predict the true values y based on data vector x from a training data set.
- In regression, we want to predict y (a continuous number) based on data x.
 - Example: predict the development of the population in Norway based on measurements from 1990-2010.
- Predictions are based on the estimated values, and a linear hypothesis

A straight line

Hypothesis : $\hat{y} = w^T \mathbf{x}$

- Learning will be based on comparing y and \hat{y}

27.1.2017

5

Linear regression: training data set

INF 5860

- Want to estimate y based on data x.
- Given m training samples where x and y are known.
- If x_i has one variable pr. sample (e.g. one gray level), this is called univariate regression.

27.1.2017

27.1.2017

7

Error measure for learning linear regression: Mean square error(MSE)

- · Mean square error over the training data set
- Training data: a set of m samples x={x_i'i,i==1..m}
- x_i can consist of one of more variables/features, e.g. several measurements.

$$J(\theta) = MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

In vector form : $\frac{1}{2m} \|\hat{\mathbf{y}} - \mathbf{y}\|_2^2$ L2 - norm
 θ is the parameter we want to fit, the parameters of a line

27.1.2017

INF 5860

UiO: Department of Informatics University of Oslo Goal: find w that minimize MSE

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (w^T x_i - y_i)^2$$

 For regression, there is an analytical solution to this, because MSE is a quadratic function. 8

- We minimize the error by derivation, and setting the derivative to zero.
- For large data sets, it will be better to solve this iteratively using gradient descent optimization.

INF 5860

Towards an iterative solution: try different values of w and see how they fit

UiO **Department of Informatics** University of Oslo

See how the loss (MSE) changes with varying w for y=wx

UiO : Department of Informatics University of Oslo

Example of $J(\theta^0, \theta^1)$ for a general line $(y = \theta^1 x + \theta^0)$

UiO : Department of Informatics University of Oslo

Since we know the formula for $J(\theta^0, \theta^1)$, we can plot it

- Make a grid of values for θ⁰,θ¹
- Compute J(θ⁰,θ¹) and visualize
- Note: only valid for this data set x₁,..x_m

UiO : Department of Informatics University of Oslo

Alternatively, we can plot the contours of J(θ⁰,θ¹)

 Now we need an algorithm to find the minimum.

27.1.2017

INF 5860

UiO : Department of Informatics University of Oslo

Gradient descent minimization

- Let's see how gradient descent can be used to find w that mimize MSE.
- Read Section 4.3 in Deep Learning.

Gradient descent intuition

Start from a point and take a step downhill in the steepest possible direction Repeat this until we end up in a local minimum

If I start from a neighboring point, I should end in the same minimum

27.1.2017

UiO : Department of Informatics University of Oslo

Gradient descent intuition

If we start from a different point we might end up in another local minimum For finding the direction, compute the local derivative in the point

Iterative minimization outline

- Have a function J(θ⁰,θ¹) (can be generalized to more than two parameters)
- Want to find θ^0, θ^1 that minimize $J(\theta^0, \theta^1)$
- Outline
 - 1. Start with some value of θ^0 , θ^1 (e.g. $\theta^0=0$, $\theta^1=0$)
 - 2. Compute $J(\theta^0, \theta^1)$ for the given value of θ^0, θ^1 and change θ^0, θ^1 in a manner that will decrease $J(\theta^0, \theta^1)$
 - 3. Repeat step 2 until we hopefully end up in a minimum

```
27.1.2017
```

INF 5860

UiO : Department of Informatics University of Oslo

Illustration of gradients/derivatives

Gradient descent principle

- Given a function f
- The directional derivative in direction u is the slope of f in direction u.
- To iteratively minimize f, we want to find the direction in which f decreases the fastest: $\min_{u,u^T u=1} \mathbf{u}^T \nabla_x f(\mathbf{x})$

 $= \min_{\mathbf{x} \in T_{x} = 1} \left\| \mathbf{u} \right\|_{2} \left\| \nabla_{\mathbf{x}} f(\mathbf{x}) \right\|_{2} \cos \theta$

- Ignoring terms that do not depend on u, and using $||u||^2=1$, this is simplified to min_ucos(θ), where θ is the angle between **u** and the gradient.
- This is mimized when u points in the opposite direction as the gradient.
- So we can minimize f by taking a step in the direction of the <u>negative</u> <u>gradient</u>.
- The gradient descent propose a new point $x' = x \varepsilon \nabla_x f(x)$ where ε is the learning rate.
- If ε is too small, the algorithm converges too slow.
- It ϵ is too large, it may fail to converge, or diverge. 27.1.2017 INF 5860

UiO **Contemporation** University of Oslo

27.1.2017

Back to linear regression

· The simplest case

Hypothesis : $\hat{y} = w^T \mathbf{x}$

- · Gives a function of one variable w
- Considering an offset b:

Hypothesis : $\hat{y} = w^T \mathbf{x} + b$

· Gives a function of two variables w and b

Gradient descent for linear regression

- Let $\theta = \begin{bmatrix} \theta_1 = w \\ \theta_2 = b \end{bmatrix}$ be the parameter vector for the unknown two parameters w and b (Model: w^Tx+b)
- We want the minimize the criterion function $J(\theta_1 \theta_2)$ =MSE

$$MSE = \frac{1}{2m} \sum_{i} (\hat{y}_{i} - y_{i})^{2} = \frac{1}{2m} \sum_{i} (w^{T} x_{i} + b - y_{i})^{2}$$

INF 5860

- Two parameters w, and b.
- Compute the derivative of $J(\theta_1, \theta_2)$ with respect two each of them, and set the derivative to 0.
- Note that this is quadratic (and convex) function so there are no local minima.

UiO **: Department of Informatics**

University of Oslo

Gradient descent for linear regression Univariate x – a single feature/gray level

$$\frac{\partial}{\partial w} J(w,b) = \frac{\partial}{\partial w} \frac{1}{2m} \sum_{i} (w \ x_{i} + b - y_{i})^{2}$$

$$= \frac{2}{2m} \sum_{i} (w \ x_{i} + b - y_{i}) x_{i}$$

$$\frac{\partial}{\partial b} J(w,b) = \frac{\partial}{\partial w} \frac{1}{2m} \sum_{i} (w \ x_{i} + b - y_{i})^{2}$$

$$= \frac{2}{2m} \sum_{i} (w \ x_{i} + b - y_{i})$$

Here we use the chain rule

- Here we sum the gradient over all x_i in the training data set.
- This is called batch gradient descent.

27.1.2017

Gradient descent algorithm for one variable x

Gradient descent repeat until convergence for j=0:1

$$\theta^{j} = \theta^{j} - \varepsilon \frac{\partial}{\partial \theta^{j}} J(\theta_{1}, \theta_{2})$$

$$\hat{y} = w^T \mathbf{x} + b$$
$$= \theta^0 + \theta^1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i} (w^T x_i + b - y_i)^2$$

Update
$$\theta_{1,\theta_{2}}$$
 simultaneously

27.1.2017

INF 5860

24

UiO : Department of Informatics University of Oslo

Gradient descent example on the whiteboard

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad y = \begin{bmatrix} 1 \\ 1.5 \\ 2.5 \end{bmatrix}$$

Compute the loss function for $\theta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Compute θ after one iteration

$$J(\theta_1, \theta_2) = \frac{1}{m} \sum_i (\hat{y}_i - y_i)^2$$

The linear regression problem, one variable

Hypothesis: $h(\theta) = \hat{y} = \theta^0 + \theta^1 x$ Parameters: θ^0 and θ^1 Cost function: $J(\theta^0, \theta^1) = \frac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2$ Goal: minimize $J(\theta^0, \theta^1)$ Gradient descent solution: repeat until convergence for j=0:1 $\theta^j = \theta^j - \varepsilon \frac{\partial}{\partial \theta^j} J(\theta_1, \theta_2)$ INF 5860

26

UiO **Department of Informatics** University of Oslo

Back to the example

27.1.2017

The result from gradient descent (-3.63,.16)

UiO : Department of Informatics University of Oslo

The value of J overlaid the values of θ^0, θ^1 after every 50th iteration

29

J as a function of iterations

UiO : Department of Informatics University of Oslo

Multiple features/variables x.

 Example: predict house price as function of 4 features (size, number of bedrooms, number of floor, age):

Size (feet²) X ¹	Number of bedrooms x ²	Number of floors x ³	Age (years) x ⁴	Price (1000\$) У
2104	5	1	45	460
1416	3	2	41	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- n. number of features
- x_i : vector of n features for sample i
- x_i^j: value of feature j for sample i

UiO : Department of Informatics University of Oslo

• Hypothesis:

$$h_{\theta}(x) = \theta^{0} + \theta^{1} x^{(1)} + \theta^{2} x^{(2)} + \theta^{3} x^{(3)} + \theta^{4} x^{(4)}$$

An example : $h_{\theta}(x) = 80 + 0.1 x^{(1)} + 0.01 x^{(2)} + 3 x^{(3)} - 2 x^{(4)}$

27.1.2017

INF 5860

32

UiO : Department of Informatics University of Oslo

Linear regression with multiple variables

- So, if we want to predict y based on n measured features, x⁽¹⁾, x⁽²⁾, x⁽³⁾.... x⁽ⁿ⁾
- Example: color image with R,G,B values (n=3)

$$\hat{y} = \theta^0 + \theta^1 x^{(1)} + \theta^2 x^{(2)} + \theta^3 x^{(3)} + \dots + \theta^n x^{(n)}$$

• Trick: For convenience, define $x^{(0)}=1$ for compact notation

$$x_{i} = \begin{bmatrix} x_{i}^{(0)} = 1 \\ x_{i}^{(1)} \\ \vdots \\ x_{i}^{(n)} \end{bmatrix} \theta = \begin{bmatrix} \theta^{0} \\ \theta^{1} \\ \vdots \\ \theta^{n} \end{bmatrix}$$
 X is a (n+1)x1 matrix
 θ is a (n+1)x1 matrix
 θ^{T} is a 1x(n+1) matrix
 $\hat{y} = \theta^{0} x^{(0)} + \theta^{1} x^{(1)} + \theta^{2} x^{(2)} + \theta^{3} x^{(3)} + \dots + \theta^{n} x^{(n)}$
 $= \theta^{T} x$

27.1.2017

INF 5860

Generalize the gradient descent to more features/variables

Gradient descent repeat until convergence

$$\theta^{0} = \theta^{0} - \varepsilon \frac{1}{m} \sum_{i} (\hat{y}_{i} - y_{i}) x_{i}^{(0)}$$

$$\theta^{1} = \theta^{1} - \varepsilon \frac{1}{m} \sum_{i} (\hat{y}_{i} - y_{i}) x_{i}^{(1)}$$

$$\theta^{2} = \theta^{2} - \varepsilon \frac{1}{m} \sum_{i} (\hat{y}_{i} - y_{i}) x_{i}^{(2)}$$

$$\vdots$$

$$J(\theta_{1}) = \frac{1}{m} \sum_{i} (\hat{y}_{i} - y_{i})^{2} = \frac{1}{m} \sum_{i} (\theta^{T} x_{i} - y_{i})^{2}$$

Remember that $x^0=1$ Update all θ^j simultaneously

27.1.2017

INF 5860

34

UiO **Department of Informatics** University of Oslo

Multivariate gradient descent

Gradient descent repeat until convergence for j=0:n

$$\theta^{j} = \theta^{j} - \varepsilon \frac{1}{m} \sum_{i} \left(\theta^{T} x_{i} - y_{i} \right) x_{i}^{(j)}$$

$$J(\theta_1) = \frac{1}{m} \sum_{i} (\hat{y}_i - y_i)^2 = \frac{1}{m} \sum_{i} (\theta^T x_i - y_i)^2$$

Remember that $x^0=1$ Update all θ j simultaneously

Implementing gradient descent

• For simplicity: keep a for-loop over j for the n features to estimate

$$\theta^{j} = \theta^{j} - \varepsilon \frac{1}{m} \sum_{i} (\theta^{T} x_{i} - y_{i}) x_{i}^{(j)}$$

INF 5860

 The sum over all samples x_i can be done on vectors using np.sum() and other vector operations.

27.1.2017

Gradient descent in practice: finding the learning rate

- How do we make sure that the optimization runs correctly?
 - Make sure J decreases! Plot J as a function of the number of parameters
 - Computation of J should be vectorized

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i} (\hat{y}_i - y_i)^2 = \frac{1}{m} \sum_{i} (w^T x_i + b - y_i)^2$$

- If ε is too small: slow convergence
- If ϵ is too large: may not decrease, may not converge
- ε is a number between 0 and 1, often close to 0 (try 0.001,...0.01,....0.1,....1)

Solving the regression problem analytically using the normal equation

Aggregate all the m n-dimensional training samles into a matrix X (called design matrix)

INE 5860

```
27.1.2017
```

UiO : Department of Informatics University of Oslo

Comparing gradient descent with the normal equation

Gradient descent

- Need to choose ε
- Needs many iterations
- Works well even when n is large (for images of size 256x256 n=256²

Normal equation

- No need to choose ε
- No iterations
- Need to compute (X^TX)⁻¹ ٠ (size nxn)
- Slow if n is very large •
- X^TX can be non-invertible e.g. if features are linearly dependent (then use pseudo-inverse)

Gradient descent and feature scaling

- What if the features have different scale?
- x¹=size in square feet (0-2000)
- x²=number of bedrooms (1-5)
- Draw J as a function of θ^j
- Scale the data so they have the same mean=0 and standard deviation σ=1)
- (x¹-μ¹)/ σ¹ (mean of feature 1 over all samples in data set).

UiO : Department of Informatics University of Oslo

Some statistics beyond the least squares loss function

- Statistician will derive the least square loss function based on the maximum likelihood principle.
- Here is a very short introduction to how:
- Assume the measurements y_i are random variables related to x_i as: $y_i = \theta^T x_i + \eta_i$
- η_i is a noise term, Gaussian noise with zero mean and variance σ^2

$$p(\eta_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\eta_i^2}{2\sigma^2}\right)$$

• The yi's will then have the conditional distribution

$$p(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)$$

Some statistics beyond the least squares loss function

- Given m samples, how likely is a certain value of θ?
- This is studied in terms of the likelihood function L(θ,X,y) given the training data set.

$$L(\theta) = L(\theta, X, y) = p(y \mid X, \theta)$$

How likely is it that we observe y for a given value 0 of and the data X

• When the noise η_i is independent from sample to sample, we get

$$L(\theta) = \prod_{i=1}^{m} p(y_i \mid x_i, \theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)$$

- The «best guess» of θ is the value of θ that maximize the likehood function L(θ)
- · Often it is easier to optimize the logarithm of the likelihood, called log-likelihoood
- It can be shown that maximizing L is equivalent to minimizing the MSE loss function.

27..017

INF 5860

UiO : Department of Informatics University of Oslo

The linear regression problem, summary

Hypothesis: $h(\theta) = \hat{y} = \theta^T x$ Parameters: $\theta^j, j = 0..n$ Cost function: $J(\theta^0) = \frac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2$ Goal: minimize $J(\theta)$ Gradient descent solution: repeat until convergence for j=0:n

$$\theta^{j} = \theta^{j} - \varepsilon \frac{\partial}{\partial \theta^{j}} J(\theta_{1}, \theta_{2})$$

27.1.2017

INF 5860

Summary continued

Take care to find a good value of the learning rate!

- Visualize J as a function of iterations

• Consider feature scaling if the range of the features are different

27.1.2017	INF 5860	44

UiO : Department of Informatics University of Oslo

Polynomial regression

• If a linear model is not sufficient, we can extend to allow higherorder terms or cross-terms between the variables by changing our hypothesis $h_{\theta}(x)$

$$h_{\theta}(x) = \theta^{0} + \theta^{1}x^{1} + \theta^{2}(x^{1})^{2} + \theta^{3}(x^{1})^{3}..$$

$$h_{\theta}(x) = \theta^{0} + \theta^{1}x^{1} + \theta^{2}\sqrt{x^{1}}$$

$$\int_{-10}^{0} \frac{1}{-10} \frac{$$

INF 5860

The danger of overfitting

A higher-order model can easily overfit the training data


```
UiO : Department of Informatics
University of Oslo
```

Overfitting for classification

 Overfitting must be avoided for classifiation also – this is partly why we start with simple linear models

Learning goals – linear regression

- Be able to set up the problem:
 - Hypothesis, parameters, cost function, goal
- Understand gradient descent for this problem
- From exercises:
 - Be able to solve by hand simple problems
 - Implement gradient descent to solve the linear regression problem.
- Know the practical details about feature scaling and setting the learning rate.

INF 5860

UiO : Department of Informatics University of Oslo

Next two weeks:

- Next week: The challenge of generalization
 - The art of not overfitting to training data in general
- In two week we continue with:
 - From regression to classification
 - Logistic regression
 - Regression to solve a 2-class classification problem.
 - Generalizing to K classes
 - Softmax
 - Support vector machine classifiers
 - Reading material
 - <u>http://cs231n.github.io/classification/</u>
 - http://cs229.stanford.edu/notes/cs229-notes1.pdf