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Today’s topics

• Self-study: Linear algebra (Chapter 2)

• Linear regression
– Deep Learning Chap 5.1

• Introduction to loss functions and 
minimization

• Read section1-3 in http://cs229.stanford.edu/notes/cs229-notes1.pdf

• Gradient descent

• Briefly about polynomial regression



Introduction

• Linear regression has many similarities to neural 
nets, and it is easy to explain the role of learning a 
loss function on a data set. 

• Classification can be viewed as a regression
problem. 
– Classification: estimate the class label k=1….K

– Regression: estimate a continuous variable y

– Both methods use training data to estimate the parameters.

• Linear mappings Tx are the fundament in both.

This is also the basic operation of a node in a neural net 
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The linear regression problem
• Task T: predict the true values y based

on data vector x from a training data set. 

• In regression, we want to predict y (a 
continuous number) based on data x. 

– Example: predict the development of the
population in Norway based on
measurements from 1990-2010. 

• Predictions are based on the estimated
values, and a linear hypothesis

• Learning will be based on comparing y 
and 
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Linear regression: training data set
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• Want to estimate y
based on data x.

• Given m training 
samples where x and y 
are known.

• If xi has one variable pr. 
sample (e.g. one gray 
level), this is called
univariate regression.
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Blue: true data points
Red: estimated function

The distance between the true 
(blue) and estimated (red) value will
be used to measure how good the
fit is



Error measure for learning linear 
regression: Mean square error(MSE)

• Mean square error over the training data set

• Training data: a set of m samples x={xi
,i,i==1..m}

• xi can consist of one of more variables/features, e.g. 
several measurements. 
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• For regression, there is 
an analytical solution to 
this, because MSE is a 
quadratic function. 

• We minimize the error by 
derivation, and setting the
derivative to zero. 

• For large data sets, it will
be better to solve this
iteratively using gradient 
descent optimization. 
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Towards an iterative solution: try different 
values of w and see how they fit
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See how the loss (MSE) changes with
varying w for y=wx
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Example of J(0,1) for a general line 
(y= 1 x+ 0)
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Since we know the formula for J(0,1), we can plot 
it

• Make a grid of
values for 0,1

• Compute J(0,1) 
and visualize

• Note: only valid for 
this data set x1,..xm

27.1.2017 INF 5860 13



• Alternatively, we
can plot the
contours of J(0,1)

• Now we need an 
algorithm to find the
minimum. 

27.1.2017 INF 5860 14

Gradient descent minimization

• Let’s see how gradient descent can be used 
to find w that mimize MSE. 

• Read Section 4.3 in Deep Learning. 
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Gradient descent intuition
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*

Start from a point and take a step downhill in the steepest possible direction
Repeat this until we end up in a local minimum
If I start from a neighboring point, I should end in the same minimum

Gradient descent intuition
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*

If we start from a different point we might end up in another local minimum
For finding the direction, compute the local derivative in the point



Iterative minimization outline

• Have a function J(0,1) (can be generalized to more than two
parameters)

• Want to find 0,1 that minimize J(0,1)

• Outline
1. Start with some value of 0,1 (e.g. 0=0,1 =0) 

2. Compute J(0,1) for the given value of 0,1 and change 0,1 in a 
manner that will decrease J(0,1)

3. Repeat step 2 until we hopefully end up in a minimum
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Illustration of gradients/derivatives
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Gradient descent principle
• Given a function f

• The directional derivative in direction u is the slope of f in direction u. 

• To iteratively minimize f, we want to find the direction in which f decreases the
fastest: 

• Ignoring terms that do not depend on u, and using ||u||2=1, this is simplified to 
minucos(), where  is the angle between u and the gradient. 

• This is mimized when u points in the opposite direction as the gradient.

• So we can minimize f by taking a step in the direction of the negative 
gradient. 

• The gradient descent propose a new point where  is the
learning rate. 

• If  is too small, the algorithm converges too slow. 

• It  is too large, it may fail to converge, or diverge. 
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Back to linear regression

• The simplest case

• Gives a function of one variable w

• Considering an offset b:    

• Gives a function of two variables w and b
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Gradient descent for linear regression

• Let               be the parameter vector for the unknown two
parameters w and b (Model: wTx+b) 

• We want the minimize the criterion function
J(1,2)=MSE

• Two parameters w, and b. 

• Compute the derivative of J(1,2) with respect two each of
them, and set the derivative to 0. 

• Note that this is quadratic (and convex) function so there are no
local minima. 
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Gradient descent for linear regression
Univariate x – a single feature/gray level

• Here we sum the gradient over all xi in the training data set. 

• This is called batch gradient descent.
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Here we use
the chain rule
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Gradient descent algorithm for one
variable x 
Gradient descent

repeat until convergence

for j=0:1

Update 1,2 simultaneously

Linear regression model
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Gradient descent example on the
whiteboard
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The linear regression problem, one variable 
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Gradient descent solution:
repeat until convergence
for j=0:1
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Back to the example
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Cost function J



The result from gradient descent (-3.63,.16)
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The value of J overlaid the values of 0,1

after every 50th iteration
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J as a function of iterations
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Multiple features/variables x.
• Example: predict house price as function of 4 features (size, number of

bedrooms, number of floor, age):

• Notation: 
– n. number of features

– xi : vector of n features for sample i 

– xi
j : value of feature j for sample i 
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Size (feet2)
X1

Number of
bedrooms
x2

Number of
floors
x3

Age (years)
x4

Price (1000$)
y

2104 5 1 45 460

1416 3 2 41 232

1534 3 2 30 315

852 2 1 36 178



• Hypothesis: 
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Linear regression with multiple 
variables
• So, if we want to predict y  based on n measured features, x(1), 

x(2), x(3)….. x(n) 

• Example: color image with R,G,B values (n=3)

• Trick: For convenience, define x(0)=1 for compact notation
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X is a (n+1)x1 matrix
 is a (n+1)x1 matrix
T   is a 1x(n+1) matrix



Generalize the gradient descent to 
more features/variables
Gradient descent

repeat until convergence

Remember that x0=1

Update all j simultaneously
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Multivariate gradient descent

Gradient descent

repeat until convergence

for j=0:n

Remember that x0=1

Update all j simultaneously
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Implementing gradient descent

• For simplicity: keep a for-loop over j for the n 
features to estimate

• The sum over all samples xi can be done on
vectors using np.sum() and other vector
operations. 
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Gradient descent in practice: finding
the learning rate
• How do we make sure that the optimization runs 

correctly? 
– Make sure J decreases! Plot J as a function of the number

of parameters 
• Computation of J should be vectorized

– If  is too small: slow convergence

– If  is too large: may not decrease, may not converge

–  is a number between 0 and 1, often close to 0 (try
0.001,…0.01,….0.1,….1)
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Solving the regression problem 
analytically using the normal equation

• Aggregate all the m n-dimensional training 
samles into a matrix X (called design matrix)
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X: matrix with m rows (nof samples) and n columns (mxn)
XTX will be size nxn

Note the
column
of 1’s in 
X

Comparing gradient descent with the
normal equation

Gradient descent
• Need to choose 
• Needs many iterations

• Works well even when n is 
large (for images of size
256x256 n=2562

Normal equation
• No need to choose 
• No iterations

• Need to compute (XTX)-1

(size nxn)

• Slow if n is very large

• XTX can be non-invertible
e.g. if features are linearly
dependent (then use
pseudo-inverse)
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Gradient descent and feature scaling

• What if the features have 
different scale?

• x1=size in square feet (0-2000)

• x2=number of bedrooms (1-5)

• Draw J as a function of j

2

• Scale the data so they have the
same mean=0 and standard 
deviation =1)

• (x1-1)/ 1 (mean of feature 1 
over all samples in data set).

• (x2-2)/ 2
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Some statistics beyond the least squares loss function

• Statistician will derive the least square loss function based on the
maximum likelihood principle. 

• Here is a very short introduction to how:

• Assume the measurements yi are random variables related to xi as: 

• i is a noise term, Gaussian noise with zero mean and variance 2

• The yi’s will then have the conditional distribution
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Some statistics beyond the least squares loss function

• Given m samples, how likely is a certain value of ?

• This is studied in terms of the likelihood function L(,X,y) given the training data 
set.

• When the noise i is independent from sample to sample, we get

• The «best guess» of  is the value of  that maximize the likehoodfunction L()

• Often it is easier to optimize the logarithm of the likelihood, called log-likelihoood

• It can be shown that maximizing L is equivalent to minimizing the MSE loss 
function.
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The linear regression problem, summary
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Gradient descent solution:
repeat until convergence
for j=0:n
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Summary continued

• Take care to find a good value of the learning
rate!
– Visualize J as a function of iterations

• Consider feature scaling if the range of the
features are different
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Polynomial regression

• If a linear model is not sufficient, we can extend to allow higher-
order terms or cross-terms between the variables by changing
our hypothesis h(x)
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The danger of overfitting
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A higher-order model can easily overfit the training data

Overfitting for classification
• Overfitting must be avoided for classifiation also – this is partly

why we start with simple linear models
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Learning goals – linear regression

• Be able to set up the problem:
– Hypothesis, parameters, cost function, goal

• Understand  gradient descent for this problem

• From exercises:
– Be able to solve by hand simple problems 

– Implement gradient descent to solve the linear regression
problem.

• Know the practical details about feature scaling and 
setting the learning rate. 
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Next two weeks:

• Next week: The challenge of generalization
– The art of not overfitting to training data in general

• In two week we continue with: 
– From regression to classification

– Logistic regression
• Regression to solve a 2-class classification problem. 

– Generalizing to K classes
• Softmax

• Support vector machine classifiers

– Reading material
• http://cs231n.github.io/classification/

• http://cs229.stanford.edu/notes/cs229-notes1.pdf
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