UiO: Department of Informatics

University of Oslo

INF 5860 Machine learning for image classification
Lecture 2 : Linear classification and regression

- part 1: Regression

Anne Solberg
January 27, 2017

Today's topics

- Self-study: Linear algebra (Chapter 2)
- Linear regression
- Deep Learning Chap 5.1
- Introduction to loss functions and minimization
- Read section1-3 in http://cs229.stanford.edu/notes/cs229-notes1.pdf
- Gradient descent
- Briefly about polynomial regression

Introduction

- Linear regression has many similarities to neural nets, and it is easy to explain the role of learning a loss function on a data set.
- Classification can be viewed as a regression problem.
- Classification: estimate the class label $\mathrm{k}=1 . . . \mathrm{K}$
- Regression: estimate a continuous variable y
- Both methods use training data to estimate the parameters.
- Linear mappings $\theta^{\top} x$ are the fundament in both.

This is also the basic operation of a node in a neural net

UiO: Department of Informatics
 University of Osio

The linear regression problem

- Task T: predict the true values y based on data vector \mathbf{x} from a training data set.
- In regression, we want to predict y (a continuous number) based on data \mathbf{x}.
- Example: predict the development of the population in Norway based on measurements from 1990-2010.
- Predictions are based on the estimated values, and a linear hypothesis
A straight line
Hypothesis
$: \hat{y}=w^{T} \mathbf{x}$
- Learning will be based on comparing y and \hat{y}

Linear regression: training data set

- Want to estimate y

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$ based on data \mathbf{x}.

- Given m training samples where x and y are known.
- If x_{i} has one variable pr. sample (e.g. one gray level), this is called univariate regression.

UiO: Department of Informatics

University of Oslo

Error measure for learning linear regression: Mean square error(MSE)

- Mean square error over the training data set
- Training data: a set of m samples $\mathbf{x}=\left\{x_{i} i, i==1 . . m\right\}$
- x_{i} can consist of one of more variables/features, e.g. several measurements.
$J(\theta)=M S E=\frac{1}{2 m} \sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}$
In vector form: $\frac{1}{2 m}\|\hat{\mathbf{y}}-\mathbf{y}\|_{2}^{2} \quad$ L2- norm
θ is the parameter we want to fit, the parameters of a line

Goal: find w that minimize MSE

$$
\text { MSE }=\frac{1}{2 m} \sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{2 m} \sum_{i=1}^{m}\left(w^{T} x_{i}-y_{i}\right)^{2}
$$

- For regression, there is an analytical solution to this, because MSE is a quadratic function.
- We minimize the error by derivation, and setting the derivative to zero.
- For large data sets, it will be better to solve this iteratively using gradient descent optimization.

Towards an iterative solution: try different values of w and see how they fit

See how the loss (MSE) changes with varying \mathbf{w} for $\mathbf{y}=\mathbf{w x}$

Example of $\mathrm{J}\left(\theta^{0}, \theta^{1}\right)$ for a general line

 ($y=\theta^{1} x+\theta^{0}$)

Since we know the formula for $J\left(\theta^{0}, \theta^{1}\right)$, we can plot it

- Make a grid of values for θ^{0}, θ^{1}
- Compute $\mathrm{J}\left(\theta^{0}, \theta^{1}\right)$ and visualize
- Note: only valid for this data set $\mathrm{x}_{1}, . . \mathrm{x}_{\mathrm{m}}$

- Alternatively, we can plot the contours of $J\left(\theta^{0}, \theta^{1}\right)$
- Now we need an algorithm to find the minimum.

Gradient descent minimization

- Let's see how gradient descent can be used to find w that mimize MSE.
- Read Section 4.3 in Deep Learning.

Gradient descent intuition

Start from a point and take a step downhill in the steepest possible direction Repeat this until we end up in a local minimum
If I start from a neighboring point, I should end in the same minimum

UiO: Depertment of Informatics
 University of Osio

Gradient descent intuition

If we start from a different point we might end up in another local minimum For finding the direction, compute the local derivative in the point

Iterative minimization outline

- Have a function $\mathrm{J}\left(\theta^{0}, \theta^{1}\right)$ (can be generalized to more than two parameters)
- Want to find θ^{0}, θ^{1} that minimize $J\left(\theta^{0}, \theta^{1}\right)$
- Outline

1. Start with some value of θ^{0}, θ^{1} (e.g. $\theta^{0}=0, \theta^{1}=0$)
2. Compute $J\left(\theta^{0}, \theta^{1}\right)$ for the given value of θ^{0}, θ^{1} and change θ^{0}, θ^{1} in a manner that will decrease $J\left(\theta^{0}, \theta^{1}\right)$
3. Repeat step 2 until we hopefully end up in a minimum

Illustration of gradients/derivatives

Gradient descent principle

- Given a function f
- The directional derivative in direction u is the slope of f in direction u.
- To iteratively minimize f, we want to find the direction in which f decreases the fastest:

$$
\begin{aligned}
& \min _{u, u^{T} u=1} \mathbf{u}^{\mathrm{T}} \nabla_{x} f(\mathbf{x}) \\
& =\min _{u, u^{T} u=1}\|\mathbf{u}\|_{2}\left\|\nabla_{x} f(\mathbf{x})\right\|_{2} \cos \theta
\end{aligned}
$$

- Ignoring terms that do not depend on u, and using $\| u^{\|}=1$, this is simplified to $\min _{\mathbf{u}} \cos (\theta)$, where θ is the angle between \mathbf{u} and the gradient.
- This is mimized when u points in the opposite direction as the gradient.
- So we can minimize f by taking a step in the direction of the negative gradient.
- The gradient descent propose a new point $x^{\prime}=x-\varepsilon \nabla_{x} f(x)$ where ε is the learning rate.
- If ε is too small, the algorithm converges too slow.
- It ε is too large, it may fail to converge, or diverge.

UiO: Depertment of Informatics
 Univerxity of Osio

Back to linear regression

- The simplest case

Hypothesis $\quad: \hat{y}=w^{T} \mathbf{x}$

- Gives a function of one variable w
- Considering an offset b :

Hypothesis $\quad: \hat{y}=w^{T} \mathbf{x}+b$

- Gives a function of two variables w and b

Gradient descent for linear regression

- Let $\theta=\left[\begin{array}{c}\theta_{1}=w \\ \theta_{2}=b\end{array}\right]$ be the parameter vector for the unknown two parameters w and b (Model: $w^{\top} x+b$)
- We want the minimize the criterion function $J\left(\theta_{1}, \theta_{2}\right)=\mathrm{MSE}$

$$
\text { MSE }=\frac{1}{2 m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{2 m} \sum_{i}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

- Two parameters w , and b .
- Compute the derivative of $J\left(\theta_{1}, \theta_{2}\right)$ with respect two each of them, and set the derivative to 0 .
- Note that this is quadratic (and convex) function so there are no local minima.

Gradient descent for linear regression Univariate x - a single feature/gray level

$$
\begin{array}{ll}
\frac{\partial}{\partial w} J(w, b)=\frac{\partial}{\partial w} \frac{1}{2 m} \sum_{i}\left(w x_{i}+b-y_{i}\right)^{2} & \begin{array}{l}
\text { Here we use } \\
\text { the chain rule }
\end{array} \\
=\frac{2}{2 m} \sum_{i}\left(w x_{i}+b-y_{i}\right) x_{i} & \\
\frac{\partial}{\partial b} J(w, b)=\frac{\partial}{\partial w} \frac{1}{2 m} \sum_{i}\left(w x_{i}+b-y_{i}\right)^{2} & \\
=\frac{2}{2 m} \sum_{i}\left(w x_{i}+b-y_{i}\right) &
\end{array}
$$

- Here we sum the gradient over all x_{i} in the training data set.
- This is called batch gradient descent.

Gradient descent algorithm for one variable x

Gradient descent
repeat until convergence
for $\mathrm{j}=0$: 1

$$
\theta^{\prime}=\theta^{\prime}-\varepsilon \frac{\partial}{\partial \theta^{j}} J\left(\theta_{1}, \theta_{2}\right)
$$

Linear regression model

$$
\begin{aligned}
& \hat{y}=w^{T} \mathbf{x}+b \\
& =\theta^{0}+\theta^{1} x
\end{aligned}
$$

$$
J\left(\theta_{0}, \theta_{1}\right)=\frac{1}{2 m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{2 m} \sum_{i}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

Update θ_{1}, θ_{2} simultaneously

UiO 8 Department of Informatics
 University of Oslo

Gradient descent example on the whiteboard

$x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad y=\left[\begin{array}{c}1 \\ 1.5 \\ 2.5\end{array}\right]$
Compute the loss function for $\theta=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Compute θ after one iteration

The linear regression problem, one variable

Hypothesis: $\quad h(\theta)=\hat{y}=\theta^{0}+\theta^{1} x$
Parameters: $\quad \theta^{0}$ and θ^{1}
Cost function: $J\left(\theta^{0}, \theta^{1}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}$
Goal: $\quad \underset{\theta^{0}, \theta^{1}}{\operatorname{minimize}} J\left(\theta^{0}, \theta^{1}\right)$
Gradient descent solution:
repeat until convergence
for $\mathrm{j}=0$: 1

$$
\theta^{j}=\theta^{j}-\varepsilon \frac{\partial}{\partial \theta^{j}} J\left(\theta_{1}, \theta_{2}\right)
$$

Back to the example

Cost function J

The result from gradient descent (-3.63,.16)

The value of J overlaid the values of θ^{0}, θ^{1} after every 50th iteration

J as a function of iterations

UiO: Depertment of Informatics
 University of Oslo

Multiple features/variables x.

- Example: predict house price as function of 4 features (size, number of bedrooms, number of floor, age):

Size (feet ${ }^{\mathbf{2}}$) $\mathbf{X}^{\mathbf{1}}$	Number of bedrooms $\mathbf{x}^{\mathbf{2}}$	Number of floors \mathbf{x}^{3}	Age (years) \mathbf{x}^{4}	Price (1000\$) \mathbf{y}
2104	5	1	45	460
1416	3	2	41	232
1534	3	2	30	315
852	2	1	36	178

- Notation:
- n . number of features
- $\quad x_{i}$: vector of n features for sample i
$-\quad x_{i}^{j}$: value of feature j for sample i

- Hypothesis:

$h_{\theta}(x)=\theta^{0}+\theta^{1} x^{(1)}+\theta^{2} x^{(2)}+\theta^{3} x^{(3)}+\theta^{4} x^{(4)}$
An example: $h_{\theta}(x)=80+0.1 x^{(1)}+0.01 x^{(2)}+3 x^{(3)}-2 x^{(4)}$

UiO: Department of Informatics
 University of Osio

Linear regression with multiple variables

- So, if we want to predict y based on n measured features, $x^{(1)}$, $x^{(2)}, x^{(3)}$. $x^{(n)}$
- Example: color image with $\mathrm{R}, \mathrm{G}, \mathrm{B}$ values $(\mathrm{n}=3)$

$$
\hat{y}=\theta^{0}+\theta^{1} x^{(1)}+\theta^{2} x^{(2)}+\theta^{3} x^{(3)}+\cdots+\theta^{n} x^{(n)}
$$

- Trick: For convenience, define $x^{(0)}=1$ for compact notation

$$
\begin{aligned}
& x_{x}=\left[\begin{array}{c}
x_{1}^{(0)}=1 \\
x_{1}^{(1)}
\end{array}\right] \quad \theta=\left[\begin{array}{c}
\theta^{0} \\
\theta^{\prime}
\end{array}\right] \quad \mathrm{X} \text { is a }(\mathrm{n}+1) \mathrm{x} 1 \text { matrix } \\
& \theta \text { is a }(n+1) \times 1 \text { matrix } \\
& \theta^{\top} \text { is a } 1 x(n+1) \text { matrix } \\
& \hat{y}=\theta^{0} x^{(0)}+\theta^{1} x^{(1)}+\theta^{2} x^{(2)}+\theta^{3} x^{(3)}+\cdots+\theta^{n} x^{(n)} \\
& =\theta^{T} x
\end{aligned}
$$

Generalize the gradient descent to more features/variables

Gradient descent
repeat until convergence

$$
\begin{array}{ll}
\theta^{0}=\theta^{0}-\varepsilon \frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{(0)} & J\left(\theta_{1}\right)=\frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{m} \sum_{i}\left(\theta^{T} x_{i}-y_{i}\right)^{2} \\
\theta^{1}=\theta^{1}-\varepsilon \frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{(1)} & \\
\theta^{2}=\theta^{2}-\varepsilon \frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{(2)} &
\end{array}
$$

Remember that $\mathrm{x}^{0}=1$
Update all θ^{j} simultaneously

Multivariate gradient descent

Gradient descent
repeat until convergence
for $\mathrm{j}=0$:n

$$
\theta^{j}=\theta^{j}-\varepsilon \frac{1}{m} \sum_{i}\left(\theta^{T} x_{i}-y_{i}\right) x_{i}^{(j)} \quad J\left(\theta_{i}\right)=\frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{m} \sum_{i}\left(\theta^{T} x_{i}-y_{i}\right)^{2}
$$

Remember that $x^{0}=1$
Update all θ j simultaneously

Implementing gradient descent

- For simplicity: keep a for-loop over j for the n features to estimate

$$
\theta^{j}=\theta^{j}-\varepsilon \frac{1}{m} \sum_{i}\left(\theta^{T} x_{i}-y_{i}\right) x_{i}^{(j)}
$$

- The sum over all samples x_{i} can be done on vectors using np.sum() and other vector operations.

Gradient descent in practice: finding the learning rate

- How do we make sure that the optimization runs correctly?
- Make sure J decreases! Plot J as a function of the number of parameters
- Computation of J should be vectorized

$$
J\left(\theta_{0}, \theta_{1}\right)=\frac{1}{m} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{m} \sum_{i}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

- If ε is too small: slow convergence
- If ε is too large: may not decrease, may not converge
- ε is a number between 0 and 1 , often close to 0 (try $0.001, \ldots .0 .01, \ldots .0 .1, \ldots .1)$

Solving the regression problem analytically using the normal equation

- Aggregate all the m n-dimensional training samles into a matrix X (called design matrix)
$\mathbf{X}=\left[\begin{array}{cc}1 & \text { all } \mathrm{n} \text { features for training samle } 1 \\ 1 & \begin{array}{c}\text { all } \mathrm{n} \text { features for training sample } 2 \\ \vdots \\ 1\end{array} \\ 1 & \text { all } \mathrm{n} \text { features for training sample } \mathrm{m}\end{array}\right] \quad y=\left[\begin{array}{c}\text { true value for training samle } 1 \\ \text { true value for training sample } 2 \\ \vdots \\ \text { true value for training sample } \mathrm{m}\end{array}\right]$

Note the

 column of 1 's in XX : matrix with m rows (nof samples) and n columns (mxn) $X^{\top} X$ will be size $n x n$

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

Comparing gradient descent with the normal equation

Gradient descent

- Need to choose ε
- Needs many iterations
- Works well even when n is large (for images of size $256 \times 256 \mathrm{n}=256^{2}$

Normal equation

- No need to choose ε
- No iterations
- Need to compute ($\left.\mathrm{X}^{\top} \mathrm{X}\right)^{-1}$ (size nxn)
- Slow if n is very large
- $X^{\top} X$ can be non-invertible e.g. if features are linearly dependent (then use pseudo-inverse)

Gradient descent and feature scaling

- What if the features have different scale?
- $x^{1}=$ size in square feet ($0-2000$)
- $x^{2}=n u m b e r ~ o f ~ b e d r o o m s ~(1-5) ~$
- Draw J as a function of θ^{j}

- Scale the data so they have the same mean=0 and standard deviation $\sigma=1$)
- $\left(x^{1}-\mu^{1}\right) / \sigma^{1} \quad$ (mean of feature 1 over all samples in data set).
- $\left(x^{2}-\mu^{2}\right) / \sigma^{2}$

UiO: Department of Informatics
 University of Osio

Some statistics beyond the least squares loss function

- Statistician will derive the least square loss function based on the maximum likelihood principle.
- Here is a very short introduction to how:
- Assume the measurements y_{i} are random variables related to x_{i} as:

$$
y_{i}=\theta^{T} x_{i}+\eta_{i}
$$

- η_{i} is a noise term, Gaussian noise with zero mean and variance σ^{2}

$$
p\left(\eta_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{n_{i}^{2}}{2 \sigma^{2}}\right)
$$

- The yi's will then have the conditional distribution

$$
p\left(y_{i} \mid x_{i}, \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

UiO: Department of Informatics

Some statistics beyond the least squares loss function

- Given m samples, how likely is a certain value of θ ?
- This is studied in terms of the likelihood function $L(\theta, X, y)$ given the training data set.

$$
L(\theta)=L(\theta, X, y)=p(y \mid X, \theta)
$$

How likely is it that we observe y for a

- When the noise η_{i} is independent from sample to sample, we wet data X.

$$
L(\theta)=\prod_{i=1}^{m} p\left(y_{i} \mid x_{i}, \theta\right)=\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- The «best guess» of θ is the value of θ that maximize the likehoodfunction $L(\theta)$
- Often it is easier to optimize the logarithm of the likelihood, called log-likelihoood
- It can be shown that maximizing L is equivalent to minimizing the MSE loss function.

UiO: Department of Informatics
 University of Oslo

The linear regression problem, summary

Hypothesis: $\quad h(\theta)=\hat{y}=\theta^{T} x$
Parameters: $\quad \theta^{j}, j=0 . . n$
Cost function: $J\left(\theta^{0}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}$
Goal: $\quad \underset{\theta^{0}}{\operatorname{minimize}} J(\theta)$
Gradient descent solution:
repeat until convergence
for $\mathrm{j}=0$:n

$$
\theta^{j}=\theta^{j}-\varepsilon \frac{\partial}{\partial \theta^{j}} J\left(\theta_{1}, \theta_{2}\right)
$$

Summary continued

- Take care to find a good value of the learning rate!
- Visualize J as a function of iterations
- Consider feature scaling if the range of the features are different

Polynomial regression

- If a linear model is not sufficient, we can extend to allow higherorder terms or cross-terms between the variables by changing our hypothesis $h_{\theta}(x)$

$$
\begin{aligned}
& h_{\theta}(x)=\theta^{0}+\theta^{1} x^{1}+\theta^{2}\left(x^{1}\right)^{2}+\theta^{3}\left(x^{1}\right)^{3} \ldots \\
& h_{\theta}(x)=\theta^{0}+\theta^{1} x^{1}+\theta^{2} \sqrt{x^{1}}
\end{aligned}
$$

The danger of overfitting

A higher-order model can easily overfit the training data

Overfitting for classification

- Overfitting must be avoided for classifiation also - this is partly why we start with simple linear models

Learning goals - linear regression

- Be able to set up the problem:
- Hypothesis, parameters, cost function, goal
- Understand gradient descent for this problem
- From exercises:
- Be able to solve by hand simple problems
- Implement gradient descent to solve the linear regression problem.
- Know the practical details about feature scaling and setting the learning rate.

Next two weeks:

- Next week: The challenge of generalization
- The art of not overfitting to training data in general
- In two week we continue with:
- From regression to classification
- Logistic regression
- Regression to solve a 2-class classification problem.
- Generalizing to K classes
- Softmax
- Support vector machine classifiers
- Reading material

- http://cs231n.github.io/classification/

- http://cs229.stanford.edu/notes/cs229-notes1.pdf

