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Today’s topics

» Self-study: Linear algebra (Chapter 2)

» Linear regression
— Deep Learning Chap 5.1

 [ntroduction to loss functions and
minimization

* Read section1-3 in http://cs229.stanford.edu/notes/cs229-notes1.pdf

« Gradient descent
 Briefly about polynomial regression
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Introduction

* Linear regression has many similarities to neural
nets, and it is easy to explain the role of learning a
loss function on a data set.

» Classification can be viewed as a regression
problem.
— Classification: estimate the class label k=1....K
— Regression: estimate a continuous variable y
— Both methods use training data to estimate the parameters.
« Linear mappings 07x are the fundament in both.
This is also the basic operation of a node in a neural net
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The linear regression problem

» Task T: predict the true values y based .
on data vector x from a training data set. ‘ Training set }

* In regression, we want to predicty (a
continuous number) based on data x.

— Example: predict the development of the
population in Norway based on
measurements from 1990-2010.

* Predictions are based on the estimated :
values, and a linear hypothesis X Hypothe&s}

(Learning algorithrrq

A straight line | Hypothesis Y = w'x

Estimategl value

 Learning will be based on comparing y y
and Y
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Linear regression: training data set

Want to estimate y
based on data x.

X Yi : -
X y  Given m training
2 2
X=1 . Y=\ . samples where x and y
X, | Y, are known.

* If x;has one variable pr.
sample (e.g. one gray
level), this is called
univariate regression.
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Error measure for learning linear
regression: Mean square error(MSE)

* Mean square error over the training data set

« Training data: a set of m samples x={x;i,i==1..m}

* X, can consist of one of more variables/features, e.g.
several measurements.

I &Gy )
JO)=MSE=2_3 (5 -¥)

y— y||§ L2-norm

In vector form :L
2m

: = .
0 is the parameter we want to fit, the parameters of a line
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Goal: find w that minimize MSE

* Forregression, there is
an analytical solution to
this, because MSE is a
(W' -y, quadratic function.

* We minimize the error by
derivation, and setting the
derivative to zero.

* For large data sets, it will
be better to solve this
iteratively using gradient
descent optimization.

m

1 . 2
MSE = — —y ) =
2mz(y' |)

i=1

b
5[
INgE
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Towards an iterative solution: try different
values of w and see how they fit

Try wel3
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See how the loss (MSE) changes with
varying w for y=wx

Plat the loss functioni=error] as a function of w
a0
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Example of J(0°2,01) for a general line

(y= 6" x+ 67
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Since we know the formula for J(6°,0), we can plot

it

« Make a grid of
values for 60,01

« Compute J(6°,0")
and visualize

* Note: only valid for
this data set x,,..x,
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 Alternatively, we
can plot the
contours of J(09,0)

* Now we need an
algorithm to find the
minimum.
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Gradient descent minimization

» Let's see how gradient descent can be used
to find w that mimize MSE.

» Read Section 4.3 in Deep Learning.
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Gradient descent intuition

Start from a point and take a step downhill in the steepest possible direction
Repeat this until we end up in a local minimum
If I start from a neighboring point;|'should end in-the same minimum

10

20 a0
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Gradient descent intuition

If we start from a different point we might end up in another local minimum
For finding the direction, compute the local-derivative in the point
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Iterative minimization outline

« Have a function J(06°,0") (can be generalized to more than two

parameters)
«  Want to find 69,061 that minimize J(6°,6")
e OQOutline

1.  Start with some value of 62,0' (e.g. 6°=0,0" =0)

2.  Compute J(0°,0") for the given value of 62,6 and change 6°,0" in a
manner that will decrease J(6°,0")

3. Repeat step 2 until we hopefully end up in a minimum
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lllustration of gradients/derivatives
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h /
L5~ Global minimum at z = 0. s
AN Since f'(z) = 0, gradient y
1.0k ~ descent halts here. p ]
N e
~ s
0.5 .
™~ -~
-, -

0.0 S

- For = < 0, we have f'(x) ; For z > 0, we have f'(x) =],

) so we can decrease f by so we can decrease f by
—0.5 | moving rightward. moving leftward. -
—1.0} —

() — L2
— . flz)=3a
15l y |
— fla)=x
—9.1 ] ] ] ] ] I I
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

27.1.2017 INF 5860 19




UiO ¢ Department of Informatics
University of Oslo

Gradient descent principle

+ Given a function f
* The directional derivative in direction u is the slope of f in direction u.
» To iteratively minimize f, we want to find the direction in which f decreases the

fastest: min u'V, f (x)

uuu=1

= min Jul [V, f (x)], cos

« Ignoring terms that do not depend on u, and using [|ul?=1, this is simplified to
min,cos(0), where 0 is the angle between u and the gradient.

« This is mimized when u points in the opposite direction as the gradient.
+ So we can minimize f by taking a step in the direction of the negative
gradient.

» The gradient descent propose a new point X'=X—g&gV f(x) where ¢ is the
learning rate. X

* |If ¢ is too small, the algorithm converges too slow.
» lteis too large, it may fail to converge, or diverge.
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Back to linear regression

J{w) 1 Initial

Gradient
. weight ',i
« The simplest case \f

. N ) ///:’ obal cost minimum
Hypothesis Yy = w'x N7y~

w

* Gives a function of one variable w

« Considering an offset b:

Hypothesis Yy =w'x +b
* Gives a function of two variables w and b
|
-~ .
o, S

2120 N . e 2
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Gradient descent for linear regression

6 =w
* Let 9{92 :b}be the parameter vector for the unknown two
parameters w and b (Model: wTx+b)
 We want the minimize the criterion function
J(040,)=MSE

Sy P e LS Wby
MSE_ZmZ(yl yl) ZmZ(W X|+b yl)

« Two parameters w, and b.

« Compute the derivative of J(0, 0,) with respect two each of
them, and set the derivative to 0.

» Note that this is quadratic (and convex) function so there are no
local minima.
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Gradient descent for linear regression
Univariate x — a single feature/gray level

5 - Here we use
—JW,h)=———> (W X, +b -y, i
o S b =—— 2mZ( i the chain rule

:%Z(W X; +b_yi>(i

0 o 1 >
EJ(W,b)—%%Z(W X, +b—yi)

=%Z(W X; +b—yi)

* Here we sum the gradient over all x; in the training data set.
* This is called batch gradient descent.
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Gradient descent algorithm for one
variable x

Gradient descent Linear regression model
repeat until convergence y=w'x+b
for j=0:1 _ 0% 10y

0

0'=0'—5—53(0,0,)

Update 0, 6, simultaneously

20,0) =5 25,4 =5 T wx b=y,
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Gradient descent example on the
whiteboard
! I 26.0)=— (5.~ 1.
x=|2| y=|15 '
HRE

0
Compute the loss function for 8 = [J

Compute 4 after one iteration

27.1.2017 INF 5860
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The linear regression problem, one variable

Hypothesis: h(@)=y=0"+80'x

Parameters: 6° and 6"

: I &G
Cost function: J(6°,0") = —Z(yi -, )2
2mis
Goal: minimize J(6°,6")
6°.,6'
Gradient descent solution:
repeat until convergence

for j=0:1
o' =06’ 0 J(4,.,6
= —gﬁ 6,,0,)
27.1.2017 INF 5860
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Back to the example

25
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The result from gradient descent (-3.63,.16)

25
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The value of J overlaid the values of 69,01
after every 50th iteration

4
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J as a function of iterations

Cost J as a function of iterations

BA

1 1
0 a00 1000 1500
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Multiple features/variables x.

« Example: predict house price as function of 4 features (size, number of
bedrooms, number of floor, age):

Size (feet?) Number of Number of Age (years) | Price (1000%)
X1 bedrooms floors x4 y
x2 x3

2104 5 1 45 460

1416 3 2 41 232

1534 3 2 30 315

852 2 1 36 178

* Notation:

— n. number of features
— X;: vector of n features for sample i
— X : value of feature j for sample i
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* Hypothesis:

h,(X)=60° +60'xV + x> + x> + *x?

Anexample:h,(x) =80 +0.1x" +0.01x* +3x® —2x¥
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Linear regression with multiple
variables

So, if we want to predict y based on n measured features, x(),
x@ x@.... x

Example: color image with R,G,B values n=3)
Y= 0 +0' XV +0* x?+6° xO +...+ 0" x™
Trick: For convenience, define x(©=1 for compact notation

00

1
0-| ¢

x® =1

Xl(l)

Xis a (n+1)x1 matrix
6 is a (n+1)x1 matrix
0T is a 1x(n+1) matrix

X =

Xi(n)

gn

= 0°X 0 +6' XV 467 XD + 60X 4.4 "X

=0"x

<<
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Generalize the gradient descent to
more features/variables

Gradient descent
repeat until convergence

0 =¢" _ng(yi_yi)Xi(O)
m= 1 X ;1 .
‘](91):7Z(yi_yi) ZEZ(Q Xi_yi)Z

0 =0~ 35y m

0 =0 oY (5, -y X

Remember that x0=1
Update all 6/ simultaneously
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Multivariate gradient descent

Gradient descent
repeat until convergence
for j=0:n
1 1
- IO =Y G-y =2 -y S
o' =6’ —ng(HTxi—yi)xi(” mzi: mzi:

m-=
Remember that x%=1
Update all 6j simultaneously
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Implementing gradient descent

» For simplicity: keep a for-loop over j for the n
features to estimate

6! =0’ —g%Z(@Txi —y, )xi“"

* The sum over all samples x; can be done on
vectors using np.sum() and other vector
operations.

27.1.2017 INF 5860
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Gradient descent in practice: finding
the learning rate

* How do we make sure that the optimization runs

correctly?
— Make sure J decreases! Plot J as a function of the number
of parameters
» Computation of J should be vectorized

‘]('90’91):%2(% _yi)2 :%Z(WTXi +b_yi)2

— If ¢ is too small: slow convergence
— If gis too large: may not decrease, may not converge

— ¢ is a number between 0 and 1, often close to O (try
0.001,...0.01,....0.1,....1)

27.1.2017 INF 5860
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Solving the regression problem
analytically using the normal equation

« Aggregate all the m n-dimensional training
samles into a matrix X (called design matrix)

1 |all n features for training samle 1

1 | alln features for training sample 2

1 alln features for training sample m

Note the
column : _
of I'sin  XTX will be size nxn
X

27.1.2017 INF 5860

true value for training samle 1

true value for training sample 2

true value for training sample m

X: matrix with m rows (nof samples) and n columns (mxn)

0=(X"X)'XTy
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Comparing gradient descent with the

normal equation

Gradient descent
* Need to choose ¢
* Needs many iterations

» Works well even when n is
large (for images of size
256x256 n=2562

27.1.2017 INF 5860

Normal equation

No need to choose ¢
No iterations

Need to compute (XTX)
(size nxn)

Slow if n is very large

XTX can be non-invertible
e.g. if features are linearly
dependent (then use
pseudo-inverse)

39
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Gradient descent and feature scaling

92

271

What if the features have » Scale the data so they have the
different scale? same mean=0 and standard
x'=size in square feet (0-2000) deviation c=1)

x2=number of bedrooms (1-5) « (x"-u') ¢’ (mean of feature 1

over all samples in data set).
. (XZ_HZ)/ 02

Draw J as a function of 6i

92

0 0
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Some statistics beyond the least squares loss function

Statistician will derive the least square loss function based on the
maximum likelihood principle.

Here is a very short introduction to how:

Assume the measurements y, are random variables related to x; as:
yi =0"% +7,

n; is a noise term, Gaussian noise with zero mean and variance c?

_ 1 77i2
P(’?.)— mexp[_ Zo_zj
The yi’s will then have the conditional distribution

(v, GTXa)Z]

1
X,0) = _
PO 1%.0) =7 zexp{ PP
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Some statistics beyond the least squares loss function

+ Given m samples, how likely is a certain value of 6?

» This is studied in terms of the likelihood function L(6,X,y) given the training data
set.

L(0)=L(0,X,y)=p(y| X,0)

How likely is it that we observe y for a

. o iyen value 0 of and the data X.
* When the noise r; is independent from sam 1846 sample-we-ge D

L@=]] ply X.ﬁ)‘ﬁ%exp(—_(y' —zizxi) J
i=l V2o

i=1

* The «best guess» of 0 is the value of 6 that maximize the likehoodfunction L(0)
+ Oftenitis easier to optimize the logarithm of the likelihood, called log-likelihoood
» It can be shown that maximizing L is equivalent to minimizing the MSE loss

function.
27..017 INF 5860 42
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The linear regression problem, summary

Hypothesis: h(@)=9=0"x

Parameters: 6, j=0.n
: 1 Gy
Cost function: J(0°)=—>(§,-y,)
2mig
Goal: minimize J (6)
00

Gradient descent solution:
repeat until convergence
for j=0:n

0 =0 —gaa 3(6,,6,)
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Summary continued

» Take care to find a good value of the learning
rate!

— Visualize J as a function of iterations

« Consider feature scaling if the range of the
features are different
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Polynomial regression

« If a linear model is not sufficient, we can extend to allow higher-
order terms or cross-terms between the variables by changing
our hypothesis hy(x)

h,(x)=6"+6'x' +6°(x')* + & (x')’...
h,(X) = 6° +0'x' + 0*\/x"

20

- Eruth
_ — Estimate
20 a
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The danger of overfitting

A higher-order model can easily overfit the training data

15
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Overfitting for classification

» Overfitting must be avoided for classifiation also — this is partly
why we start with simple linear models
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Learning goals — linear regression

Be able to set up the problem:
— Hypothesis, parameters, cost function, goal

* Understand gradient descent for this problem

* From exercises:
— Be able to solve by hand simple problems

— Implement gradient descent to solve the linear regression
problem.

» Know the practical details about feature scaling and
setting the learning rate.

27.1.2017 INF 5860

48

UiO s Department of Informatics
University of Oslo

Next two weeks:

* Next week: The challenge of generalization
— The art of not overfitting to training data in general

* In two week we continue with:
— From regression to classification
— Logistic regression
* Regression to solve a 2-class classification problem.
— Generalizing to K classes

» Softmax
» Support vector machine classifiers

— Reading material
» http://cs231n.github.io/classification/
» http://cs229.stanford.edu/notes/cs229-notes1.pdf
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