UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification

Lecture : Neural net: initialization, activations,
normalizations and other practical details

Anne Solberg
March 10, 2017

UiO S Department of Informatics
University of Oslo

Mandatory exercise 1
« Available tonight, deadline 31.3.17

mp
mp
pac

ementing Softmax-classification
ementing 2-layer net with

Kpropagation

Seeing the effect of adding feature extraction
using histogram of gradients.

Optimizing network parameters on validation
data

— How high accuracy can you get?

10.3.2017

INF 5860

UiO S Department of Informatics
University of Oslo

The coming weeks

* No weekly exercise set this week as you should work on
Mandatory 1

« Group sessions as normal

« Next lecture: background in image convolution, filters, and filter
banks/multiscale representations.

— Gives a useful background for convolutional nets.

* In two weeks: continue with useful tricks for making learning
work, mainly:
— chapter 8 in Deep Learning
— http://cs231n.github.io/neural_networks-3

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Reading material

— Reading material:
 http://cs231n.github.io/neural_networks-2
« Deep Learning 6.2.2 and 6.3 on activation functions
« Deep Learning 8.7.1 on Batch normalization

10.03.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Today

 Activation functions

* Mini-batch gradient descent

« Data preprocessing

« Weight initialization

« Batch normalization
 Training,validation, and test sets

« Searching for the best parameters

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

The feedforward net problem

Regularization loss

eM),...et
data loss
J
| f(x,0),...0W)> glou) J
X
y| _ K Op X, _ L-1 s S+l
3@) =L > > 1y, =k}log Ke — | |+ ~ > Y @Dy

m = Ze Ok X 2miT T OE

Data set X,y ! -

Loss for each sample J; (softmax or logistic one vs. all)

Regularization loss J,
Total loss: J= J+AJ,

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

The error surface of a linear neuron

 For a linear neuron with

squared error, the error surface | il 1f— Gradien
is a quadratic bowl. \ﬂ

« For neural net loss functions it /i B
is more complex, but can be A
approximated by a bowl w]
locally.

« One of the challenges of
gradient descent is how to

make it converge best possible.

— In two weeks: other parameter
update schemes like rmsprop,
ADAM etc.

\ 7
—30 L L L L
—30 —20 —10 0 10/ 20

1

Which direction does gradient descent
choose for an ellipse?

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Convergence of batch gradient
descent

Convergence is often slow

If the error surface locally is like an
ellipse, the gradient is big in the
direction we only want a small change,
and small in the direction we want a
big change.

With a high learning rate the process
will oscillate and convergence is slow.

If the gradient is computed from ALL
training samples, there are ways to
speed up the process.

For large networks, it is normally better
to use mini-batch learning.

10.3.2017 INF 5860

(=

UiO S Department of Informatics
University of Oslo

Batch gradient descent

Op X,
e

S i+l

a0
1(®,-i)’

L-1 S

J(®)=—% iZl{yi =k }log + A >

K T
i=1 k=1 Ze O 2miT IO
k=1

« Batch gradient descent computes the loss summed over ALL
training samples before doing gradient descent update.

b =- UD(I)

« This is slow if the training data set is large.

10.3.2017 INF 5860

10

UiO S Department of Informatics
University of Oslo

Mini batch gradient descent

« Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y _batch = y[sample ind]
Ji, dgrad_| = loss(X_batch, y_batch, lambda)
for all |
Theta | -=learning_rate*dgrad_|

« If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

— But the term SGD sometimes also means mini batch gradient descent
« Mandatory exercise 1: implement mini batch gradient descent
« We get back to other parameter update schemes in two weeks

« Common parameter value: 32, 64, 128.
10.3.2017 INF 5860

1"

UiO S Department of Informatics
University of Oslo

Activation functions

« Reading material:
— c¢s231n.github.io/neural-networks-1
— Deep Learning: 6.2.2 and 6.3

« Active area of research, new functions are published annually.
We will consider:

— Sigmoid activation
— Tanh activation
— RelLU activation

— And mention recent alternatives like:
 Leaky RelLU
* Maxout
- ELU

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Sigmoid activation

9(2) ==
+e
9'(2) =9(2)(1-9(2)

* QOutput between 0 and 1
* Historically popular
* Has some shortcomings

10.3.2017 INF 5860

09

0.8 r

0.7

0.6

0.5}

04rF

03[

0.2 r

01

13

UiO S Department of Informatics

University of Oslo
X Activations
@L_@L@Z nf:u.;.:.;'.;'u;;.;s;u
OX 07 OX 0Z

Sigmoid

OX

What happens when: oL
x=-10 oz
x=0
x=10

10.3.2017 INF 5860

14

UiO S Department of Informatics
University of Oslo

09

Sigmoid activation "~

0.8

0.6

Sigmoids kill gradients -
— Why ? If the input is very small or large, "

0.3

what happens? 02

0.1

Not zero-centered e

— If all inputs positive, then all gradients I
dJ/d® will be either positive of negative and gradient

update

gradient updates often zig-zag directions
Somewhat expensive to compute —— ._Zgzag path

gradient
update

]
directions lv

Currently : sigmoids are rarely used!

10.3.2017 INF 5860 15

uUiO s

Department of Informatics
University of Oslo

Tanh activation

g(2z) = tanh(z)
Scaled version of
sigmoid
Output between -1 and 1
Zero-centered

Saturates and Kill
gradients

Preferred to sigmoid due
to the zero-centering

10.3.2017 INF 5860

0.8 r

06

0.4 r

02}

021

-0.4 1

06

-0.8 -

16

UiO S Department of Informatics
University of Oslo

RelLU activation

ReLU(z) = max(z,0)
. Derivative of ReLU : max(z,0)=1if z>0

and 0 otherwise

» Rectified Linear Unit
 Does not saturate
 Fastto compute

« Converge fast

« Drawback: can sometimes ‘die’
during training and become
inactive

— If this happens, the gradients will be 0
from that point

— Be careful with the learning rate

—
(=]

| © - M w £ [52] [=2] -~ (=] [(=]

RelU

10.3.2017 INF 5860

Currently: the best overall recommendation

17

UiO S Department of Informatics
University of Oslo

RelLU

X Activations
oL oL oz
OX 01 OX oz
OX
What happens when:
=-10
x=0

x=10

10.3.2017 INF 5860

RelLU

oL
0z

18

UiO S Department of Informatics
University of Oslo

Leaky ReLU activation

Leaky ReLU

Leaky ReLU(z) = max(0.01z, z) i
[] 6
« Will not die 2|

 Results are not consistent that
Leaky RelLU is better than ReLU

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

ELU activation

Exponential Linear Unit (ELU)(z) =2z, z>0
a(exp(z) - 1)

« Will not die

 Benefits of ReLU, but more
expensive to compute

f(x)

10.3.2017 INF 5860

~ELU
== | Ral U
- RelU
= SRelU

4":
» ;‘
."T
F 4
F i
£
A r

20

UiO S Department of Informatics
University of Oslo

Maxout activation

Maxout(z) = max(w,z +b,,w,z +b,)

* Here there are two weights for
each node

« This applies the nonlinearity to
each input product.

« Can be seen as a generalization
of ReLU/Leaky Relu

« Doubles the amount of
parameters per node compared to
RelLU.

10.3.2017 INF 5860

21

UiO S Department of Informatics
University of Oslo

Activations for output vs. hidden layers

* For classification, where the loss is
either one vs. all logistic or softmax,
the output layer will have:

— Softmax activation for a softmax loss
Remember from

function
— Sigmoid activation for one vs. All logistic classification that :
« When we use ReLU or a different h(X) = —

activation, this is normally for the 1+e*

hidden layers only

10.3.2017 INF 5860 22

UiO S Department of Informatics
University of Oslo

Review: Cost function for softmax
neural networks

For a neural net with softmax loss function :

P(y=1|x,®) e
P(y =2|x,0) 1 o &*

Output:a" =hy(x) =

P(y=K|x,0)| &k

T
O X

1(©)= -1 331y, = k}log

K
m| 55 k= Ze O 2miyg T a3

k=1

L : number of layers
s, : Number of units (without bias) in layer |

J(®) = LossTerm + A * RegularizationTerm
10.03.2017 INF 5860 23

UiO S Department of Informatics
University of Oslo

Question

You can check your loss function. Set A=0.

If you generate random data from n (say n=3) classes with equal
probability, what do you expect the loss to be?

| P(y=1|x,0) |
P(y=2|x,0
Output :a* =hy(x) =| | :|X) |2
| P(y=K|x,0)
1 m K ®Ixi
J(©)=——|> > 1y, =k{log =
M =G Ze O

10.03.2017

k=1

INF 5860

@Ix

e

k=1

1
K

A
_|__
2m

o] x

T
®,X

®TKX

L-1 5

2 2

=1 =l

s+l

> (@)

j=1

24

UiO S Department of Informatics
University of Oslo

Guidelines for activation function

 Active area of research, recommendations
might change:

« Currently:

— Use RelLU for hidden layers but monitor the
fraction of ‘dead’ units in a network.

— For output: most common with softmax

10.3.2017 INF 5860

25

UiO S Department of Informatics
University of Oslo

Data preprocessing

« Scaling of the features matters:

 |f we have the samples

XIl: Yyl
-~ 101, 101: 2 /
Original
101, 99: O
. . Error surface
Xi: i

Scale to 1, 1.2 Q

zero mean 1, -1: 0
Error surface

10.3.2017 INF 5860

26

UiO S Department of Informatics
University of Oslo

Data preprocessing

« Scaling of the features matters:

 |f we have the samples
XIl: Yyl

. 0.2,10: 2 O
Original
0.2,-10: O
. . Error surface
Xi: i

Normalize 1 , 1.2 Q

to unit variance 1 , -1: 0
Error surface

10.3.2017 INF 5860

27

UiO S Department of Informatics
University of Oslo

Common normalization

 Standardize data to zero mean and unit variance

* For each feature m, compute the mean p and standdard deviation ¢ over the
training data set and let x, = (X,- 1)/ o

 Remark: STORE p and ¢ because new data/test data must have the same
normalization.

original data zero-centered data normalized data

Figure from http://cs231 n.github.io/neural—networks—Z/

10.3.2017 INF 5860 28

UiO S Department of Informatics
University of Oslo

Consider whitening the data

 |f features are highly correlated, principal component transform
can be considered to whiten the data.

« Drawback: computationally heavy for image data.

— Normally not used for image data
original data decorrelated data whitened data

LY

Figure from http://cs231n.github.io/neural-networks-2

10.3.2017 INF 5860 29

UiO S Department of Informatics
University of Oslo

Common normalization for image data

« Consider e.g. CIFAR-10 image (32,32,3)

e Two alternatives:

— Subtract the mean image
« Keep track of a mean image of (32,32,3)

— Subtract the mean of each channel (r,g,b...)
« Keep track of the channel mean, 3 values for RGB.

10.3.2017 INF 5860 30

UiO S Department of Informatics
University of Oslo

Weight initialization

 Avoid all zero initialization!

— If all weights are equal, they will produce the same gradients and
same outputs, and undergo exactly the same parameter updates.
* They will learn the same thing.

 We break symmetry by initializing the weights to have small random
numbers.

» [|nitialization is more complicated for deep networks

10.3.2017 INF 5860 31

UiO S Department of Informatics
University of Oslo

Weight initialization
» Consider a neuron with n inputs and Z=iWiXi (n is called fan-in)
 The variance of z is _
Var(z) =Var(iwi X;)
* It can be shown that

Var(z) = (nVar(w))(Var(x))

» If we make sure that Var(w,)=1/n for all i, so by scaling each weight wi
by /1/n, the variance of the output will be 1. (Called Xavier
initialization)

Use this
for ReLU

Glorot et al. propose to use: w = np.random.rand(n)*sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.

10.3.2017 INF 5860

32

UiO S Department of Informatics
University of Oslo

Batch normalization

« So far, we noticed that normalizing the inputs and the initial weights to
zero mean, unit variance help convergence.

» As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again.

— This is called a covariance shift.

« Batch normalization (loffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

« After fully connected layers (or convolutional layers),and before the
nonlinearity, a batch normalization layer is inserted.

« This layer makes the input gaussian with zero mean and unit variance
by applying _,

X, =
‘ ar(x,)

10.3.2017 INF 5860 33

UiO S Department of Informatics
University of Oslo

4 andVar(x, Js computed after each mini batch during training.

* This normalization can limit the expressive power of the unit. To
maintain this we rescale to y,

Y = 7K + By

What? Does this help?

— Yes, because the network can learn y, and B, during backpropagation, and it learns
faster. Learning without the new parameter scaling must be done through the input
weights and is much more complicated.

- Batch normalization significantly speeds up gradient descent,
and even improved the accuracy. USE IT!

10.3.2017 INF 5860 34

UiO S Department of Informatics
University of Oslo

Batch normalization: training

Input: Values of x over a mini-batch: B = {1 ,,};
Parameters to be learned: v, 3
Output: {y; = BN, s(2;)}
L = o
UB = <1 // mini-batch mean
i=1
gy A 2 i(r — pug)? // mini-batch variance
° " =1 - N
T; il // normalize
\/J% g
Yi < YZ; + B = BN, g(z;) // scale and shift

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Batch normalization: test time

» At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).
« Remark: use runnina averaae to update

Input: Values of x over a mini-batch: B = {z1._,, };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}
— 1 i // mini-batch
— Ti mini-batch mean
BB :l_r i
s 5 - .
R (x; — ug) // mini-batch variance
1=1
A . M - // normalize
\ /O’% g
i —¥Z; + B = BN, a(z:) // scale and shift

10.3.2017 INF 5860

36

UiO S Department of Informatics
University of Oslo

Optimizing hyperparameters

* Training data set: part of data set used in
backpropagation to estimate the weights.

« Validation data set (mean cross-validation): part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

« Test data: used ONCE after fitting all parameters to
estimate the final error rate.

10.3.2017 INF 5860 37

UiO S Department of Informatics
University of Oslo

Search strategy: coarse-to-fine

 First stage: run a few epochs (iterations
through all training samples)

« Second stage: longer runs with finer search.

« Parameters like learning rate are
multiplicative, search in log-space

10.3.2017 INF 5860

38

UiO S Department of Informatics
University of Oslo

Coarse search

 input_size=32%*32*3
hidden_size = 50
num_classes = 10
best _acc = -1
for hidden_size in [50, 100, 150]:
for learning_rate in [5e-2, 1e-3, 1e-4]:
forregin [0.3, 0.4, 0.5, 0.6]:
Train the network
net = TwolLayerNet(input_size, hidden_size, num_classes)
stats = net.train(X_train, y_train, X_val, y_val,
num_iters=1000, batch_size=200,
learning_rate=learning_rate, learning_rate_decay=0.95,
reg=reg, verbose=True)
Predict on the validation set
val_acc = (net.predict(X_val) ==y _val).mean()
print 'Hidden size:', hidden_size, 'Learning rate:', learning_rate, 'Reg’, reg
print 'Validation accuracy: ', val_acc
if best_acc <val_acc:
best acc =val acc

best net = net
10.3.2017 INF 5860

39

UiO S Department of Informatics
University of Oslo

Consider a random grid

max_count = 100

for count in xrange(max count):

reg = 10**uniform(-5, 5)
lr = 10**uniform(-3, -6)

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

10.3.2017 INF 5860

40

UiO S Department of Informatics
University of Oslo

Monitor the loss function

24 . Loss history . .

23F

2.2}

Loss

19}

1.8

0 200 400 600 800 1000

0.35 Classificatiokt\e%iﬂﬂracy history

=
w
o

0.25

=
b
o

Clasification accuracy

0.15

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
Epoch

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Behaviour of loss function

low learning rate

high learning rate

\

10.3.2017 epﬁch

good learning rate

Y

42

UiO S Department of Informatics
University of Oslo

Debug the code

« Take a small subset of the training data

« Verify that you can overfit this subset e.qg.
without regularization

— Expect very small loss and training accuracy of
1.00

10.3.2017 INF 5860

43

UiO S Department of Informatics
University of Oslo

Study outputs during training

. iteration 0 / 1000: loss 2.303033
. iteration 100 / 1000: loss nan
. iteration 200 / 1000: loss nan
. iteration 300 / 1000: loss nan
. iteration 400 / 1000: loss nan
. iteration 500 / 1000: loss nan
. iteration 600 / 1000: loss nan
. iteration 700 / 1000: loss nan
. iteration 800 / 1000: loss nan
. iteration 900 / 1000: loss nan

. Hidden size: 50 Learning rate: 0.05 Reg 0.6
. Validation accuracy: 0.087

. iteration 0 / 1000: loss 2.302811

. iteration 100 / 1000: loss 1.987349
. iteration 200 / 1000: loss 1.809840
. iteration 300 / 1000: loss 1.734420
. iteration 400 / 1000: loss 1.615647
. iteration 500 / 1000: loss 1.596564
. iteration 600 / 1000: loss 1.730853
. iteration 700 / 1000: loss 1.515625
. iteration 800 / 1000: loss 1.427454
. iteration 900 / 1000: loss 1.501289

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Track ratio of weight updates/weight
magnitudes

assume parameter vector W and its gradient vector dW
param scale = np.linalg.norm(W. ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

rint update scale / param scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

10.3.2017 INF 5860

45

UiO S Department of Informatics
University of Oslo

To be continued....

10.3.2017 INF 5860

46

