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Mandatory exercise 1
• Available tonight, deadline 31.3.17
• Implementing Softmax-classification
• Implementing 2-layer net with

backpropagation
• Seeing the effect of adding feature extraction

using histogram of gradients.
• Optimizing network parameters on validation

data
– How high accuracy can you get?
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The coming weeks
• No weekly exercise set this week as you should work on 

Mandatory 1
• Group sessions as normal
• Next lecture: background in image convolution, filters, and filter 

banks/multiscale representations. 
– Gives a useful background for convolutional nets.

• In two weeks: continue with useful tricks for making  learning
work, mainly:

– chapter 8 in Deep Learning
– http://cs231n.github.io/neural_networks-3
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Reading material

– Reading material: 
• http://cs231n.github.io/neural_networks-2
• Deep Learning 6.2.2 and 6.3 on activation functions
• Deep Learning 8.7.1 on Batch normalization
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Today

• Activation functions
• Mini-batch gradient descent
• Data preprocessing
• Weight initialization
• Batch normalization
• Training,validation, and test sets
• Searching for the best parameters
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The feedforward net problem
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f(xi,(1),…(L))  a(out) J

data loss
Ji

(1),…(L

xi

yi

Regularization loss

Data set X,y
Loss for each sample Ji (softmax or logistic one vs. all)
Regularization loss Jr
Total loss: J= Ji+Jr
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The error surface of a linear neuron
• For a linear neuron with

squared error, the error surface
is a quadratic bowl. 

• For neural net loss functions it 
is more complex, but can be 
approximated by a bowl 
locally.

• One of the challenges of
gradient descent is how to 
make it converge best possible.

– In two weeks: other parameter 
update schemes like rmsprop, 
ADAM etc.  
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Which direction does gradient descent
choose for an ellipse?



Convergence of batch gradient 
descent
• Convergence is often slow
• If the error surface locally is like an 

ellipse, the gradient is big in the
direction we only want a small change, 
and small in the direction we want a 
big change. 

• With a high learning rate the process
will oscillate and convergence is slow. 

• If the gradient is computed from ALL 
training samples, there are ways to 
speed up the process.

• For large networks, it is normally better
to use mini-batch learning.  
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Batch gradient descent

• Batch gradient descent computes the loss summed over ALL 
training samples before doing gradient descent update.

• This is slow if the training data set is large. 
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Mini batch gradient descent
• Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y_batch = y[sample_ind]
Ji, dgrad_l = loss(X_batch, y_batch, lambda)
for all l

Theta_l -= learning_rate*dgrad_l

• If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

– But the term SGD sometimes also means mini batch gradient descent
• Mandatory exercise 1: implement mini batch gradient descent
• We get back to other parameter update schemes in two weeks
• Common parameter value: 32, 64, 128.
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Activation functions
• Reading material:

– cs231n.github.io/neural-networks-1
– Deep Learning: 6.2.2 and 6.3

• Active area of research, new functions are published annually. 
We will consider:
– Sigmoid activation
– Tanh activation
– ReLU activation
– And mention recent alternatives like:

• Leaky ReLU
• Maxout
• ELU
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Sigmoid activation

• Output between 0 and 1
• Historically popular
• Has some shortcomings
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Sigmoid activation
• Sigmoids kill gradients

– Why ? If the input is very small or large, 
what happens?

• Not zero-centered
– If all inputs positive, then all gradients 

dJ/d will be either positive of negative and 
gradient updates often zig-zag

• Somewhat expensive to compute

• Currently : sigmoids are rarely used! 
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Tanh activation

• Scaled version of
sigmoid

• Output between -1 and 1
• Zero-centered
• Saturates and kill 

gradients
• Preferred to sigmoid due 

to the zero-centering

10.3.2017 INF 5860 16

)tanh()( zzg 



ReLU activation

•

• Rectified Linear Unit
• Does not saturate
• Fast to compute
• Converge fast
• Drawback: can sometimes ‘die’ 

during training and become
inactive

– If this happens, the gradients will be 0 
from that point

– Be careful with the learning rate
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Currently: the best overall recommendation



ReLU
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Leaky ReLU activation

•

• Will not die
• Results are not consistent that

Leaky ReLU is better than ReLU
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ELU activation

•

• Will not die
• Benefits of ReLU, but more 

expensive to compute
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Maxout activation

•

• Here there are two weights for 
each node

• This applies the nonlinearity to 
each input  product. 

• Can be seen as a generalization
of ReLU/Leaky Relu

• Doubles the amount of
parameters per node compared to 
ReLU. 
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Activations for output vs. hidden layers

• For classification, where the loss is 
either one vs. all logistic or softmax, 
the output layer will have:

– Softmax activation for a softmax loss 
function

– Sigmoid activation for one vs. All 

• When we use ReLU or a different 
activation, this is normally for the
hidden layers only
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Review: Cost function for softmax
neural networks
For a neural net with softmax loss function :
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Question

You can check your loss function. Set =0. 
If you generate random data from n (say n=3) classes with equal
probability, what do you expect the loss to be?
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Guidelines for activation function

• Active area of research, recommendations
might change:

• Currently:
– Use ReLU for hidden layers but monitor the

fraction of ‘dead’ units in a network. 
– For output: most common with softmax
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Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi:    yi
101, 101: 2
101, 99:   0

xi:    yi
1, 1: 2
1, -1:  0
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Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi:    yi
0.2, 10:    2
0.2, -10:   0

xi:    yi
1, 1: 2
1, -1:  0
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Common normalization
• Standardize data to zero mean and unit variance
• For each feature m, compute the mean  and standdard deviation  over the

training data set and let xm = (xm- )/ 
• Remark: STORE  and  because new data/test data must have the same 

normalization.

10.3.2017 INF 5860 28
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Consider whitening the data
• If features are highly correlated,  principal component transform

can be considered to whiten the data. 
• Drawback: computationally heavy for image data.

– Normally not used for image data
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Figure from http://cs231n.github.io/neural-networks-2



Common normalization for image data

• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image 
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB. 
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Weight initialization
• Avoid all zero initialization! 

– If all weights are equal, they will produce the same gradients and 
same outputs, and undergo exactly the same parameter updates. 

• They will learn the same thing. 

• We break symmetry by initializing the weights to have small random 
numbers. 

• Initialization is more complicated for deep networks
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Weight initialization
• Consider a neuron with n inputs and               (n is called fan-in) 
• The variance of z is 

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling each weight wi
by        , the variance of the output will be 1. (Called Xavier
initialization)

Glorot et al. propose to use:  w = np.random.rand(n)*sqrt(2/n)  for ReLU
because of the max-operation that will alter the distribution.
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Batch normalization

• So far, we noticed that normalizing the inputs and the initial weights to 
zero mean, unit variance help convergence. 

• As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again. 
– This is called a covariance shift. 

• Batch normalization (Ioffe and Szegedy) 
https://arxiv.org/abs/1502.03167 countereffects this.

• After fully connected layers (or convolutional layers),and before the
nonlinearity,  a batch normalization layer is inserted. 

• This layer makes the input gaussian with zero mean and unit variance
by applying
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• is computed after each mini batch during training.
• This normalization can limit the expressive power of the unit. To 

maintain this we rescale to yk

• What? Does this help? 
– Yes, because the network can learn k and k during backpropagation, and it learns

faster. Learning  without the new parameter scaling must be done through the input 
weights and is much more complicated.

• Batch normalization significantly speeds up gradient descent, 
and even improved the accuracy.  USE IT! 
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Batch normalization: training 
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Batch normalization: test time 
• At test time: mean/std is computed for the ENTIRE TRAINING  set, not 

mini batches used during backprop (you should store these).
• Remark: use running average to update
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Optimizing hyperparameters

• Training data set: part of data set used in 
backpropagation to estimate the weights.

• Validation data set (mean cross-validation):  part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

• Test data: used ONCE after fitting all parameters to 
estimate the final error rate. 
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Search strategy: coarse-to-fine

• First stage: run a few epochs (iterations
through all training samples)

• Second stage: longer runs with finer search.
• Parameters like learning rate are

multiplicative, search in log-space
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Coarse search
• input_size = 32 * 32 * 3

hidden_size = 50
num_classes = 10
best_acc = -1
for hidden_size in [50, 100, 150]:

for learning_rate in [5e-2, 1e-3, 1e-4]:
for reg in [0.3, 0.4, 0.5, 0.6]:

# Train the network
net = TwoLayerNet(input_size, hidden_size, num_classes)
stats = net.train(X_train, y_train, X_val, y_val,

num_iters=1000, batch_size=200,
learning_rate=learning_rate, learning_rate_decay=0.95,
reg=reg, verbose=True)

# Predict on the validation set
val_acc = (net.predict(X_val) == y_val).mean()
print 'Hidden size:', hidden_size, 'Learning rate:', learning_rate, 'Reg', reg
print 'Validation accuracy: ', val_acc
if best_acc < val_acc:

best_acc = val_acc
best_net = net
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Consider a random grid 
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Monitor the loss function
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Behaviour of loss function
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Debug the code

• Take a small subset of the training data
• Verify that you can overfit this subset e.g. 

without regularization
– Expect very small loss and training accuracy of

1.00
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Study outputs during training

• iteration 0 / 1000: loss 2.303033
• iteration 100 / 1000: loss nan
• iteration 200 / 1000: loss nan
• iteration 300 / 1000: loss nan
• iteration 400 / 1000: loss nan
• iteration 500 / 1000: loss nan
• iteration 600 / 1000: loss nan
• iteration 700 / 1000: loss nan
• iteration 800 / 1000: loss nan
• iteration 900 / 1000: loss nan
• Hidden size: 50 Learning rate: 0.05 Reg 0.6
• Validation accuracy:  0.087
• iteration 0 / 1000: loss 2.302811
• iteration 100 / 1000: loss 1.987349
• iteration 200 / 1000: loss 1.809840
• iteration 300 / 1000: loss 1.734420
• iteration 400 / 1000: loss 1.615647
• iteration 500 / 1000: loss 1.596564
• iteration 600 / 1000: loss 1.730853
• iteration 700 / 1000: loss 1.515625
• iteration 800 / 1000: loss 1.427454
• iteration 900 / 1000: loss 1.501289
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Track ratio of weight updates/weight
magnitudes
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To be continued….
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