
INF 5860 Machine learning for image classification

Lecture : Neural net: initialization, activations,
normalizations and other practical details
Anne Solberg
March 10, 2017

Mandatory exercise 1
• Available tonight, deadline 31.3.17
• Implementing Softmax-classification
• Implementing 2-layer net with

backpropagation
• Seeing the effect of adding feature extraction

using histogram of gradients.
• Optimizing network parameters on validation

data
– How high accuracy can you get?

10.3.2017 INF 5860 3

The coming weeks
• No weekly exercise set this week as you should work on

Mandatory 1
• Group sessions as normal
• Next lecture: background in image convolution, filters, and filter

banks/multiscale representations.
– Gives a useful background for convolutional nets.

• In two weeks: continue with useful tricks for making learning
work, mainly:

– chapter 8 in Deep Learning
– http://cs231n.github.io/neural_networks-3

10.3.2017 INF 5860 4

Reading material

– Reading material:
• http://cs231n.github.io/neural_networks-2
• Deep Learning 6.2.2 and 6.3 on activation functions
• Deep Learning 8.7.1 on Batch normalization

10.03.2017 INF 5860 5

Today

• Activation functions
• Mini-batch gradient descent
• Data preprocessing
• Weight initialization
• Batch normalization
• Training,validation, and test sets
• Searching for the best parameters

10.3.2017 INF 5860 6

The feedforward net problem

10.3.2017 INF 5860 7

f(xi,(1),…(L)) a(out) J

data loss
Ji

(1),…(L

xi

yi

Regularization loss

Data set X,y
Loss for each sample Ji (softmax or logistic one vs. all)
Regularization loss Jr
Total loss: J= Ji+Jr

)(
2

log11)(
1

1

2)(

1

1

11

1

1

.

jl

i
T
k

i
T
k s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i me

e
ky

m
J

The error surface of a linear neuron
• For a linear neuron with

squared error, the error surface
is a quadratic bowl.

• For neural net loss functions it
is more complex, but can be
approximated by a bowl
locally.

• One of the challenges of
gradient descent is how to
make it converge best possible.

– In two weeks: other parameter
update schemes like rmsprop,
ADAM etc.

10.3.2017 INF 5860 8

Which direction does gradient descent
choose for an ellipse?

Convergence of batch gradient
descent
• Convergence is often slow
• If the error surface locally is like an

ellipse, the gradient is big in the
direction we only want a small change,
and small in the direction we want a
big change.

• With a high learning rate the process
will oscillate and convergence is slow.

• If the gradient is computed from ALL
training samples, there are ways to
speed up the process.

• For large networks, it is normally better
to use mini-batch learning.

10.3.2017 INF 5860 9

Batch gradient descent

• Batch gradient descent computes the loss summed over ALL
training samples before doing gradient descent update.

• This is slow if the training data set is large.

10.3.2017 INF 5860 10

)(
2

log11)(
1

1

2)(

1

1

11

1

1

.

jl

i
T
k

i
T
k s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i me

e
ky

m
J

(l))(D l

Mini batch gradient descent
• Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y_batch = y[sample_ind]
Ji, dgrad_l = loss(X_batch, y_batch, lambda)
for all l

Theta_l -= learning_rate*dgrad_l

• If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

– But the term SGD sometimes also means mini batch gradient descent
• Mandatory exercise 1: implement mini batch gradient descent
• We get back to other parameter update schemes in two weeks
• Common parameter value: 32, 64, 128.
10.3.2017 INF 5860 11

Activation functions
• Reading material:

– cs231n.github.io/neural-networks-1
– Deep Learning: 6.2.2 and 6.3

• Active area of research, new functions are published annually.
We will consider:
– Sigmoid activation
– Tanh activation
– ReLU activation
– And mention recent alternatives like:

• Leaky ReLU
• Maxout
• ELU

10.3.2017 INF 5860 12

Sigmoid activation

• Output between 0 and 1
• Historically popular
• Has some shortcomings

10.3.2017 INF 5860 13

)(1)(()('
1

1)(

zgzgzg
e

zg z

10.3.2017 INF 5860 14

Sigmoid

x

z

Activations

x
z

x

z
z
L

x
L

z
L

What happens when:

x=-10
x=0
x=10

Sigmoid activation
• Sigmoids kill gradients

– Why ? If the input is very small or large,
what happens?

• Not zero-centered
– If all inputs positive, then all gradients

dJ/d will be either positive of negative and
gradient updates often zig-zag

• Somewhat expensive to compute

• Currently : sigmoids are rarely used!

10.3.2017 INF 5860 15

Tanh activation

• Scaled version of
sigmoid

• Output between -1 and 1
• Zero-centered
• Saturates and kill

gradients
• Preferred to sigmoid due

to the zero-centering

10.3.2017 INF 5860 16

)tanh()(zzg

ReLU activation

•

• Rectified Linear Unit
• Does not saturate
• Fast to compute
• Converge fast
• Drawback: can sometimes ‘die’

during training and become
inactive

– If this happens, the gradients will be 0
from that point

– Be careful with the learning rate

10.3.2017 INF 5860 17

 otherwise 0 and
 0z if 1 max(z,0) :ReLU of Derivative

)0,max()(ReLU

 zz

Currently: the best overall recommendation

ReLU

10.3.2017 INF 5860 18

ReLU

x

z

Activations

x
z

x

z
z
L

x
L

z
L

What happens when:

x=-10
x=0
x=10

Leaky ReLU activation

•

• Will not die
• Results are not consistent that

Leaky ReLU is better than ReLU

10.3.2017 INF 5860 19

),01.0max()(ReLULeaky zzz

ELU activation

•

• Will not die
• Benefits of ReLU, but more

expensive to compute

10.3.2017 INF 5860 20

1)-(exp(z)

0z ,)((ELU)it Linear Unal Exponenti

 zz

Maxout activation

•

• Here there are two weights for
each node

• This applies the nonlinearity to
each input product.

• Can be seen as a generalization
of ReLU/Leaky Relu

• Doubles the amount of
parameters per node compared to
ReLU.

10.3.2017 INF 5860 21

),max()(Maxout 2211 bzwbzwz

Activations for output vs. hidden layers

• For classification, where the loss is
either one vs. all logistic or softmax,
the output layer will have:

– Softmax activation for a softmax loss
function

– Sigmoid activation for one vs. All

• When we use ReLU or a different
activation, this is normally for the
hidden layers only

10.3.2017 INF 5860 22

xT

e
x

1
1)(h

: thattionclassifica logistic
fromRemember

Review: Cost function for softmax
neural networks
For a neural net with softmax loss function :

10.03.2017 INF 5860 23

tionTermRegulariza* LossTerm)(

llayer in bias)(without units ofNumber :s
layers ofnumber :L

)(
2

log11)(

1

)x,|KP(y

)x,|2P(y
)x,|1P(y

(x)ha :Output

l

1

1

2)(

1

1

11

1

1

1

L

.

2

1

J

me

e
ky

m
J

e

e

e

e

jl

i
T
k

i
T
k

T
K

T

T

T
k

s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i

x

x

x

K

k

x

Question

You can check your loss function. Set =0.
If you generate random data from n (say n=3) classes with equal
probability, what do you expect the loss to be?

10.03.2017 INF 5860 24

)(
2

log11)(

1

)x,|KP(y

)x,|2P(y
)x,|1P(y

(x)ha :Output

1

1

2)(

1

1

11

1

1

1

L

.

2

1

jl

i
T
k

i
T
k

T
K

T

T

T
k

s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i

x

x

x

K

k

x

me

e
ky

m
J

e

e

e

e

Guidelines for activation function

• Active area of research, recommendations
might change:

• Currently:
– Use ReLU for hidden layers but monitor the

fraction of ‘dead’ units in a network.
– For output: most common with softmax

10.3.2017 INF 5860 25

Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi: yi
101, 101: 2
101, 99: 0

xi: yi
1, 1: 2
1, -1: 0

10.3.2017 INF 5860 26

w1 w2

Original

Scale to
zero mean

Error surface

Error surface

Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi: yi
0.2, 10: 2
0.2, -10: 0

xi: yi
1, 1: 2
1, -1: 0

10.3.2017 INF 5860 27

w1 w2

Original

Normalize
to unit variance

Error surface

Error surface

Common normalization
• Standardize data to zero mean and unit variance
• For each feature m, compute the mean and standdard deviation over the

training data set and let xm = (xm-)/
• Remark: STORE and because new data/test data must have the same

normalization.

10.3.2017 INF 5860 28

Figure from http://cs231n.github.io/neural-networks-2/

Consider whitening the data
• If features are highly correlated, principal component transform

can be considered to whiten the data.
• Drawback: computationally heavy for image data.

– Normally not used for image data

10.3.2017 INF 5860 29

Figure from http://cs231n.github.io/neural-networks-2

Common normalization for image data

• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB.

10.3.2017 INF 5860 30

Weight initialization
• Avoid all zero initialization!

– If all weights are equal, they will produce the same gradients and
same outputs, and undergo exactly the same parameter updates.

• They will learn the same thing.

• We break symmetry by initializing the weights to have small random
numbers.

• Initialization is more complicated for deep networks

10.3.2017 INF 5860 31

Weight initialization
• Consider a neuron with n inputs and (n is called fan-in)
• The variance of z is

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling each weight wi
by , the variance of the output will be 1. (Called Xavier
initialization)

Glorot et al. propose to use: w = np.random.rand(n)*sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.
10.3.2017 INF 5860 32

n

i
ii xwz

1

n

i
ii xwVarzVar

1

)()(

))())((()(xVarwnVarzVar

n/1

Use this
for ReLU

Batch normalization

• So far, we noticed that normalizing the inputs and the initial weights to
zero mean, unit variance help convergence.

• As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again.
– This is called a covariance shift.

• Batch normalization (Ioffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

• After fully connected layers (or convolutional layers),and before the
nonlinearity, a batch normalization layer is inserted.

• This layer makes the input gaussian with zero mean and unit variance
by applying

10.3.2017 INF 5860 33

 k

kk
k xVar

xx
ˆ

• is computed after each mini batch during training.
• This normalization can limit the expressive power of the unit. To

maintain this we rescale to yk

• What? Does this help?
– Yes, because the network can learn k and k during backpropagation, and it learns

faster. Learning without the new parameter scaling must be done through the input
weights and is much more complicated.

• Batch normalization significantly speeds up gradient descent,
and even improved the accuracy. USE IT!

10.3.2017 INF 5860 34

 kk xVar and

kkkk xy ˆ

Batch normalization: training

10.3.2017 INF 5860 35

Batch normalization: test time
• At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).
• Remark: use running average to update

10.3.2017 INF 5860 36

Optimizing hyperparameters

• Training data set: part of data set used in
backpropagation to estimate the weights.

• Validation data set (mean cross-validation): part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

• Test data: used ONCE after fitting all parameters to
estimate the final error rate.

10.3.2017 INF 5860 37

Search strategy: coarse-to-fine

• First stage: run a few epochs (iterations
through all training samples)

• Second stage: longer runs with finer search.
• Parameters like learning rate are

multiplicative, search in log-space

10.3.2017 INF 5860 38

Coarse search
• input_size = 32 * 32 * 3

hidden_size = 50
num_classes = 10
best_acc = -1
for hidden_size in [50, 100, 150]:

for learning_rate in [5e-2, 1e-3, 1e-4]:
for reg in [0.3, 0.4, 0.5, 0.6]:

Train the network
net = TwoLayerNet(input_size, hidden_size, num_classes)
stats = net.train(X_train, y_train, X_val, y_val,

num_iters=1000, batch_size=200,
learning_rate=learning_rate, learning_rate_decay=0.95,
reg=reg, verbose=True)

Predict on the validation set
val_acc = (net.predict(X_val) == y_val).mean()
print 'Hidden size:', hidden_size, 'Learning rate:', learning_rate, 'Reg', reg
print 'Validation accuracy: ', val_acc
if best_acc < val_acc:

best_acc = val_acc
best_net = net

10.3.2017 INF 5860 39

Consider a random grid

10.3.2017 INF 5860 40

Monitor the loss function

10.3.2017 INF 5860 41

Behaviour of loss function

10.3.2017 INF 5860 42

Debug the code

• Take a small subset of the training data
• Verify that you can overfit this subset e.g.

without regularization
– Expect very small loss and training accuracy of

1.00

10.3.2017 INF 5860 43

Study outputs during training

• iteration 0 / 1000: loss 2.303033
• iteration 100 / 1000: loss nan
• iteration 200 / 1000: loss nan
• iteration 300 / 1000: loss nan
• iteration 400 / 1000: loss nan
• iteration 500 / 1000: loss nan
• iteration 600 / 1000: loss nan
• iteration 700 / 1000: loss nan
• iteration 800 / 1000: loss nan
• iteration 900 / 1000: loss nan
• Hidden size: 50 Learning rate: 0.05 Reg 0.6
• Validation accuracy: 0.087
• iteration 0 / 1000: loss 2.302811
• iteration 100 / 1000: loss 1.987349
• iteration 200 / 1000: loss 1.809840
• iteration 300 / 1000: loss 1.734420
• iteration 400 / 1000: loss 1.615647
• iteration 500 / 1000: loss 1.596564
• iteration 600 / 1000: loss 1.730853
• iteration 700 / 1000: loss 1.515625
• iteration 800 / 1000: loss 1.427454
• iteration 900 / 1000: loss 1.501289

10.3.2017 INF 5860 44

Track ratio of weight updates/weight
magnitudes

10.3.2017 INF 5860 45

To be continued….

10.3.2017 INF 5860 46

