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Today

• Image filtering
• 2D convolution
• Edge detection filters
• Filtering in the frequency domain

– Lowpass, bandpass, highpass
• Gabor-filters for feature extraction/segmentation

• PURPOSE: give a short background to those without a 
background in image analysis

• Convolutional nets use convolution as the basic operation. 
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Properties of the human visual system

• We can see light intensities over a broad range
– The largest is about 1010 times higher than the lowest we can sense.

• We can only see a certain number of levels simultaneously,
– About 50 different gray levels, but many more colors.

• When we focus on a different area, the eye adapts and we see local
intensity differences.
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Neural processes in the retina  

• Amplifies edges.

• Stimulating one part suspends
other parts.
– See one orientation at a time

• Increased contrast in edges
between uniform regions
– Called Mach band
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Optical illusions
• Illusional contours Straight or curved lines

• Multistable images                    Simultaneous contrast



Image filtering
• One of the most used operations on images
• A filter kernel is applied either in the image domain or 2D 

Fourier domain.
• Applications:

– Image enhancement
– Image restoration
– Image analysis – preprocessing

• Used to:
– Reduce noise
– Enhance sharpness
– Detect edges and other structures
– Detect objects
– Extract texture information
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Spatial filtering

• A filter is given as a matrix:

• The size of the matrix and the coefficients decides the result.  
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Spatial filtering in general
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2-D convolution

• Output image: g. Input image f.

• h is a m×n filter of size m=2w1+1, n=2w2+1
• m and n usually odd. 
• Output image: weighted sum of input image pixels

surrounding pixel (x,y). Weights:h(j,k).
• This operation is done for every pixel in the image
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Step 1: convolution: rotate the image 180 
degrees
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In this case, nothing changes



Step 2: Iterate over all locations where the
filter overlaps the image
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Multiply the image and the mask
Compute the result for location (x,y)
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Mean filters

• 3×3: 

• 5×5:

• 7×7:

• Scale the result by the
sum of the coefficients
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Original
Filtered 3x3
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9x9
25x25
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Gradients 

• Gradient of F along r in direction 

• Largest gradient when

• This is the angle g where

• gx=F/x and gy =F/x are the horisontal and vertical
components of the gradient. 
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Gradient magnitude and direction

• Gradient direction:

• Gradient magnitude
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Gradient-filters
• Prewitt-operator

• Sobel-operator
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Frequency content in images
• Low frequencies

– Small gray level changes
– Homogeneous ares

• High frequencies:
– Large variations
– Edges
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Sinusoids in images

A - amplitude
u - horisontal 

frequency
v - vertical 

frekvency
 - phase
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A=50, u=10, v=0 A=20, u=0, v=10

A=100, u=15, v=5A=100, u=5, v=10A=50, u=10, v=10

Note: u and v are the number of cycles (horisontally and vertically) in the image
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2D Discrete Fouriertransform (DFT)

f(x,y) is a pixel in a NM image
Definition:

This can also be written:

Inverse transform:
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Displaying the Fourier spectrum
• Since F(u,v) is periodic with period N, it is common to 

translate the spectrum such that origo (u=v=0) is in 
the center of the image
– Change quadrants
OR: pre-multiply f(x,y) with (-1)x+y

f(x,y)                                            |F(u,v)|
f(x,y): image domain F(u,v): frequency domain

|F(u,v)| is called the spectrum of f(x,y)
(amplitude spectrum)

Power spectrum: |F(u,v)|2
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2D Fourier spectrum - oriented structure
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The convolution theorem

Convolution in the image domain  Multiplication in the frequency
domain

And the opposite:

Multiplication in the image domain  Convolution in the frequency
domain
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How do we filter out this effect?
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Filtering in the frequency domain

1. Multiply the image by (-1)x+y to center the transform.
2. Compute F(u,v) using the 2D DFT
3. Multiply F(u,v) by a filter H(u,v)
4. Compute the inverse FFT of the result from 3
5. Obtain  the real part from 4.
6. Multiply the result by (-1)x+y 
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The ”ideal” low pass filter
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Example - ideal low pass

Original
r0=0.2 r0=0.3

Warning: Look at these image in high resolution. You should see ringing 
effects in the two rightmost images.  
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Butterworth low pass filter
• Window-functions are used to reduce the ringing effect.
• Butterworth low pass filter of order n:

• D0 describes the point where H(u,v) has decreased to the half of its 
maximum)
– Low filter order (n small): H(u,v) decreases slowly: Little ringing
– High filter order (n large): H(u,v) decreases fast: More ringing

• Other filters can also be used, e.g. Gaussian, Bartlett, Blackman, 
Hamming, Hanning
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Gaussian lowpass filter
22 2/),(),( vuDevuH 
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High pass filtering

• Simple (”Ideal”) high
pass filter:

• Butterworth high pass 
filter:

• Gaussian high pass 
filter:
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Ideal, Butterworth and Gaussian highpass
filters
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Example – Butterworth highpass



34

Bandpass and bandstop filters

• Bandpass filter: Keeps only the energy in a given 
frequency band <Dlow,Dhigh> (or <D0-W/2,D0+ W/2>)

• W is the width of the band
• D0 is its radial center.

• Bandstop filter: Removes all energy in a given 
frequency band <Dlow,Dhigh> 
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Bandstop/bandreject filters

• Ideal

• Butterworth

• Gaussian
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An example of bandstop filtering
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Bandpass filters

• Are defined by 
),(1),( vuHvuH bsbp 

Original
Result after bandpass filtering



Feature extraction from filter 
banks

• Idea: convolve the image with a set of filters to 
extract stuctures with different size and orientations
• In this lecture: Gabor filters, but we could use
other types e.g wavelets
• These are low-level features similar to those
extracted by convolutional net.
• Convolutional nets:

– Estimate the filter coefficients themselves
– Adapts a classifier also.   
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Fourier texture from filter banks
1. Compute the 2D Fourier spectrum of the 

image
2. Design a set of 2D bandpass filters that 

covers the spectrum with varying center 
frequency and orientations.

3. Apply each filter to the input image.
4. Apply a non-linear transform to the filtered 

images with the aim of creating 
homogeneous regions corresponding to 
texture with a certain frequency and 
orientation.

5. Segmentation or  classification based on all 
the images from after applying the non-linear 
transform.
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Gabor-filters - spatial domain 

• A popular method for designing filters. 
• A 2D Gabor function consists of a sinusoidal plane wave of 

some frequency and orientation, modulated by a 2D Gaussian 
envelope, typically in the spatial domain: 

• u0 and  are the frequency and phase of the sinusoid along the 
x-axis (for orientation 0 degrees), and x and y are the width 
of the Gaussian envelope function. 

• A Gabor filter with arbitrary orientation  can be obtained by 
rotating the coordinate system. 
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Gabor-filters for extracting information from the 
Fourier spectrum   

• A 2D Gabor filter H(u’,v’)  with orientation  and 
radial filter center FR in the frequency domain is 
defined by rotating the coordinate system from  
(u,v) to (u’,v’): 

• The filter consists of a sinusoidal wave modulated 
with a 2D Gaussian. They have high resolution both 
in the spatial and the Fourier domain. 

• The filter is specified in terms of radial filter 
bandwidth BR in octaves and angular filter width B
in radians and use the conversion:



Gabor  filters - filter parameters

• The following filter parameters are normally used:
• Orientations: 0, 45, 90, 135
• For an image of size N, radial frequencies

12, 22, 42, 82, 162,....... but the lowest can often be skipped
• The frequencies are one octave apart. 
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Gabor filters: feature images
• The purpose of the non-linear transform is to transform the band-pass filtered

result, which has large amplitude fluctuations with the given frequency in 
regions where the selected frequency has a significant presence in the Fourier
spectrum. 

• The following function is often used: 

• This  will act as a blob detector for regions corresponding high amplitude value
for  the given frequency. 

• This is later combined with computing texture energy as average absolution
deviation in small windows:

• The size of the window is proportional to the average size of the intensity
variations in the image T=N/u0.  43



Sampling the Fourier spectrum with a filter bank of 
Gabor filters

A bank of 24 filters
with different center 
frequencies and 
orientation sample 
the Fourier domain

Orientations: 
0 , 30 , 45 , 60 , 90 , 
120 , 135  and 150 

Frequencies: 
u0=0.1N, 0.15N and 
0.35N
N is the image size.



Gabor filter : example
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Filter with 4 Gabor filters with
equal center frequency and 
Orientation 0, 45, 90 and 135 
degrees



Gabor-filtered images
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0
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Gabor feature images after nonlinear 
transform



Simple feature combination: the average
image
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Example 2: texture segmentation
Can we segment the boundaries between
the 4 textures?
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Gabor-filtered images

17.3.2017 INF 5860 50

0 45

90 135



135

17.3.2017 INF 5860 51

0
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Gabor feature images after nonlinear 
transform



Simple feature combination: the average
image
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• Classification based on these images might be possible, but is 
not stable with respect to size, orientation etc.

• What if the object was a cat? Or horse? 
• We see that this approach builds a set of primities as edges in 

given orientations.
• Filter coefficients must be determined by the used.
• To detect over different scales we could either resample the

images and use one filter set, or use filter sets of different sizes. 
• At least these filters are sensitive to orientation patterns. 
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