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Today

* Image filtering
« 2D convolution
« Edge detection filters
 Filtering in the frequency domain
— Lowpass, bandpass, highpass
« Gabor-filters for feature extraction/segmentation

« PURPOSE: give a short background to those without a
background in image analysis

« Convolutional nets use convolution as the basic operation.
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Properties of the human visual system

* We can see light intensities over a broad range
— The largest is about 107° times higher than the lowest we can sense.

« We can only see a certain number of levels simultaneously,
— About 50 different gray levels, but many more colors.

 When we focus on a different area, the eye adapts and we see local
intensity differences.

17.03.17 INF 5860



UiO S Department of Informatics

University of Oslo

Neural processes in the retina

I

Actual intensity

F117.03.11
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Amplifies edges.

Stimulating one part suspends
other parts.

— See one orientation at a time

Increased contrast in edges
between uniform regions

— Called Mach band
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Optical illusions

 lllusional contours Straight or curved lines

"
N/

AR

 Multistable imaaes Simultaneous contrast
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Image filtering

* One of the most used operations on images

« Afilter kernel is applied either in the image domain or 2D
Fourier domain.
« Applications:
— Image enhancement
— Image restoration
— Image analysis — preprocessing
» Used to:
— Reduce noise
— Enhance sharpness
— Detect edges and other structures
— Detect objects
— Extract texture information

17.3.2017 INF 5860
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Spatial filtering

« Afilter is given as a matrix:

1/9)1/9)1/9

1/911/91/9

« The size of the matrix and the coefficients decides the result.
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Spatial filtering in general

leage origin

\ Filter mas|

Image pixels

w(-1,-1)f w(-1.0)

w(0,0)

w(l,—1) | w(1,0) | w1

fx-Ly-1

For—Ly) | fle— 1,y 1) Fiter coefficients

fxy-1)

fix+1l,y=D| fix+1,y) |[fix+1ly+1)

Pixels of image

section under filter

FIGURE 3.28 The mechanics of linear spatial filtering using a 3 X 3 filter mask. The form chosen to denote
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.
17.3.2017 INF 5860



UiO S Department of Informatics
University of Oslo

2-D convolution

Output image: g. Input image f.

g y) =Y Y h(i.k)fx=jy-k)

j=—w k=-w,

X+W,  Y+W,

= > D h(x=j,y-k)f(j.k)

j=xow k=y—w,

h is a m xn filter of size m=2w,+1, n=2w,+1
m and n usually odd.

Output image: weighted sum of input image pixels
surrounding pixel (x,y). Weights:h(j,k).

This operation is done for every pixel in the image

F17.2.06 INF 2310
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Step 1: convolution: rotate the image 180
degrees

1/911/911/9

1/911/911/9

1/911/911/9

In this case, nothing changes
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Step 2: lterate over all locations where the
filter overlaps the image

1/9)1/9]11/9

1/9)1/9]11/9

1/911/9 1.9 3 | 2 1

514]5]3
4]11]11]°2
6

213 |2

Multiply the image and the mask
Compute the result for location (x,y)
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Mean filters
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* Scale the result by the
sum of the coefficients

13



UiO S Department of Informatics
University of Oslo

Original

Filtered 3x3
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9x9

25x25
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Gradients

Gradient of F along r in direction 6

oF oF 8x+8F oy
or oxor oyor

E—Ecosﬁ +isin9

o ox oy

Largest gradient when i(@j
00\ or

This is the angle 6, where

—Esinﬁg +Ecosﬁg =0 Ecos@g =isin6?g
OX oy oy OX

g,=0F/3x and g, =6F/6x are the horisontal and vertical
components of the gradient.
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Gradient magnitude and direction

e Gradient direction:

sin @
Jy — J = tan 6,

g, cosf,

« Gradient magnitude

ar

max

(aFj =lgi+9;]"
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Gradient-filters

* Prewitt-operator

Hx(ia J) -

10
10

« Sobel-operator

Hx(ia J) -

(1 0

1 0
2 0
1 0

—1]

—1
—1

-1
-2
—1

H,(, )=

H,(,])=




UiO S Department of Informatics
University of Oslo

Frequency content in

 Low frequencies
— Small gray level changes
— Homogeneous ares
« High frequencies:
— Large variations
— Edges

images
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Sinusoids in |mages

f(x,y)=128+ Acos(zﬁ(ux-wy)
A - amplitude
u - horisontal
frequency A=50,u=10,v=0  A=20,u=0, v=10
v - vertical
frekvency
¢ - phase / % /
A=50, u=10, v=10 A=100, u=5, v=10 A=100, u=15, v=5

Note: u and v are the number of cycles (horisontally and vertically) in the image
20
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2D Discrete Fouriertransform (DFT)

f(x,y) is a pixel in a NxM image
Definition: Sy

F(U V)__ZZ f(X y)e j2r(ux/M+vy/N)

x=0 y=0

el =cos@+ jsin @

This can also be written:

1 M-1N-1

F(u,v)= VN
x=0

f (X, y)[cos(2z(ux/M +vy/N))— jsin(2z(ux/M +vy/N))]

=0

<

Inverse transform:

—1N-1

f()( y) ZZ F(U V)ej27Z(UX/|V|+Vy/N)
u=0 v=0
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Displaying the Fourier spectrum

« Since F(u,v) is periodic with period N, it is common to
translate the spectrum such that origo (u=v=0) is in
the center of the image

— Change quadrants
OR: pre-multiply f(x,y) with (-1)*Y

f(x,y)
f(x,y): image domain F(u,v): frequency domain
|F(u,v)| is called the spectrum of f(x,y)
(amplitude spectrum)
Power spectrum: |F(u,v)|?
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2D Fourier spectrum - oriented structure
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The convolution theorem

f(X,y)*h(x,y)< F(u,v)-H(u,v)

Convolution in the image domain < Multiplication in the frequency
domain

F(X,y)-h(X,y) < F(u,v)*H(u,v)
And the opposite:

Multiplication in the image domain < Convolution in the frequency
domain

24
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How do we filter out this effect?

25
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Filtering in the frequency domain

Multiply the image by (-1)**Yto center the transform.
Compute F(u,v) using the 2D DFT

Multiply F(u,v) by a filter H(u,v)

Compute the inverse FFT of the result from 3
Obtain the real part from 4.

Multiply the result by (-1)x*Y

S o
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The "ideal” low pass filter

H(u, v) - H(u, v)
L

U+

= D(u, v)

alb e

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.

27



UiO S Department of Informatics
University of Oslo

Example - ideal low pass

Original

r,=0.2 r,=0.3

Warning: Look at these image in high resolution. You should see ringing
effects in the two rightmost images.
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Butterworth low pass filter

« Window-functions are used to reduce the ringing effect.
» Butterworth low pass filter of order n:

1
HV= [D(u,v)/D, [

« D,describes the point where H(u,v) has decreased to the half of its
maximum)

— Low filter order (n small): H(u,v) decreases slowly: Little ringing
— High filter order (n large): H(u,v) decreases fast: More ringing

« Other filters can also be used, e.g. Gaussian, Bartlett, Blackman,
Hamming, Hanning
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Gaussian lowpass filter

H (U,V)z e—Dz(u,v)/zaz

H(u, v) H(u, v)

D() =10
2 D(I = 2()
D, = 40

/ D,= 100

D(u, v)

0.667

abec

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,.
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High pass filtering

« Simple ("ldeal”) high
pass filter:

* Butterworth high pass
filter:

« (Gaussian high pass
filter:

H. (Uv)= 0,D(u,v) < D,,
w11, D(u,v) > D,

or
H,, (u,v)=l-H(u,v)

1

H, .(UuVv)=
(U V) 1+[D, / D(u,v)["

iy 2
thG(u,v):l—e D?(u,v)/2D;
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Ideal, Butterworth and Gaussian highpass

filters

D(u, )

D(u, w)

H (u, v) H(u,v)
L oo
=" )
u
H(u, v) Hu, v)
A v 1
- Ly
H(u, v) H(u, v)
f v 10
u4" I .y

D(u, »)

§

u

ghi
FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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Example — Butterworth highpass

abc

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained

with an [HPE
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Bandpass and bandstop filters

« Bandpass filter: Keeps only the energy in a given
frequency band <D,,,,Dygn> (0or <Dy-W/2,Dy+ W/2>)

« W is the width of the band

* D, is its radial center.

« Bandstop filter: Removes all energy in a given
frequency band <D,,,,Dygn>
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Bandstop/bandreject filters

e |deal 1 if D(u,v)< DO—\%V
H,(u,v)=<0 1f DO-%S D(u,v) < DO+%
1 if D(U,v)> D0+V7V
 Butterworth 1, w.v- : _
D(u, V)W }
1+ — 5
D" (u,v)—- Dy

2
1| D*(u,v)-Dg
2| D(u,v)W

* Gaussian H, (u,v)=1-¢
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An example of bandstop filtering

ab
cd

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1).(d) Result of
filtering.
(Original image
courtesy of
NASA.)
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Bandpass filters

« Are defined by
pr(u,v): 1-H,(u,v)

Original

Result after bandpass filtering
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Feature extraction from filter
banks

« ldea: convolve the image with a set of filters to
extract stuctures with different size and orientations

 In this lecture: Gabor filters, but we could use
other types e.g wavelets

 These are low-level features similar to those
extracted by convolutional net.
«  Convolutional nets:

— Estimate the filter coefficients themselves

— Adapts a classifier also.
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Fourier texture from filter banks

1. Compute the 2D Fourier spectrum of the
image

2. Design a set of 2D bandpass filters that
covers the spectrum with varying center
frequency and orientations.

3. Apply each filter to the input image.

4. Apply a non-linear transform to the filtered
images with the aim of creating
homogeneous regions corresponding to
texture with a certain frequency and
orientation. _—

5. Segmentation or classification based on all  coodines
the images from after applying the non-linear
transform.

Q Irput Image

Bank of Gabor Filters

-~ 7 |

{ ' '

Nonlinaarity

i ¢

fr—

.

iltered
mages

Response
Images

‘ealure
mages
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Gabor-filters - spatial domain

« A popular method for designing filters.

« A 2D Gabor function consists of a sinusoidal plane wave of
some frequency and orientation, modulated by a 2D Gaussian
envelope, typically in the spatial domain:

2 2

h(x,y)= exp{—%{x—z + y_2:|} cos(21; X+ ¢)

oy O,
* U, and ¢ are the frequency and phase of the sinusoid along the

x-axis (for orientation 0 degrees), and o, and o, are the width
of the Gaussian envelope function.

« A Gabor filter with arbitrary orientation 6 can be obtained by
rotating the coordinate system.
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Gabor-filters for extracting information from the

Fourier spectrum

« A 2D Gabor filter H(u',v’) with orientation 6 and
radial filter center Frin the frequency domain is

defined by rotating the coordinate system from
(u,v) to (Uu’,Vv'):

1 = 14

Hu' v')= A

w'=ticos@+vsinl, v=—usin@+vcosl

« The filter consists of a sinusoidal wave modulated
with a 2D Gaussian. They have high resolution both
in the spatial and the Fourier domain.

» The filter is specified in terms of radial filter
bandwidth Bg in octaves and angular filter width B,
in radians and use the conversion:

B 1 2t —] P _ tan(B,/2)

7 = , 0, =
© o J-2log/2) 2% +1°* —2log(1/2) "
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Gabor filters - filter parameters

« The following filter parameters are normally used:
« Orientations: 0, 45, 90, 135

« For animage of size N, radial frequencies
N2, 2N2, 442, 842, 162, ....... but the lowest can often be skipped

 The frequencies are one octave apart.
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Gabor filters: feature images

The purpose of the non-linear transform is to transform the band-pass filtered
result, which has large amplitude fluctuations with the given frequency in
regions where the selected frequency has a significant presence in the Fourier
spectrum.

The following function is often used:

1 — e—2at

¥(t) = tanh(a t) = T,

This will act as a blob detector for regions corresponding high amplitude value
for the given frequency.

This is later combined with computing texture energy as average absolution
deviation in small windows:

wny)=1m L Woeb)l,

(a,b)GW;y

The size of the window is proportional to the average size of the intensity
variations in the image T=N/uO. 43



UiO S Department of Informatics
University of Oslo

Sampling the Fourier spectrum with a filter bank of

Gabor filters
A bank of 24 filters
50+ with different center
frequencies and
i orientation sample
00 | ommesomss e the Fourier domain
Orientations:
150} 0°,30°,45°,60°,90°,
: 120 °,135°and 150 °
200 Frequencies:
u,=0.1N, 0.15N and
0.35N
50 L N is the image size.

el e | S Watad
a0 100 200
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Gabor filter : example

17.3.2017 INF 5860

Filter with 4 Gabor filters with
equal center frequency and
Orientation 0, 45, 90 and 135
degrees
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Gabor-filtered images

17.3.2017 INF 5860 1 35
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Gabor feature images after nonlinear
transform

17.3.2017 INF 5860
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Simple feature combination: the average
image

17.3.2017 INF 5860
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1on
1eS

texture segmentati

Example 2

between

Can we segment the boundar

the 4 teug’?

| s B e
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Gabor-filtered images
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Gabor feature images after nonlinear
transform

17.3.2017 INF 5860 1 35
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Simple feature combination: the average
image

17.3.2017 INF 5860
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« Classification based on these images might be possible, but is
not stable with respect to size, orientation etc.

« What if the object was a cat? Or horse?

« We see that this approach builds a set of primities as edges in
given orientations.

 Filter coefficients must be determined by the used.

« To detect over different scales we could either resample the
images and use one filter set, or use filter sets of different sizes.

« At least these filters are sensitive to orientation patterns.
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