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Today

» Regularization strategies

» Variations on stochastic gradient descent learning
* Dropout

« Summarizing the training procedure
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Practical issues

 Mandatory 1 deadline in one week.

* No weekly exercises this week, practical experience in
mandatory exercise.

« A set of theory exercises available after Mandatory 1.

« Midterm course evaluation: your constructive feedback
requested.

« Next week: convolutional nets (finallly © )

24.3.2017 INF 5860



UiO S Department of Informatics
University of Oslo

The feedforward net problem

Regularization loss

oM, ...et
data loss
J
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Data set X,y = ]

Loss for each sample J; (softmax or logistic one vs. all)

Regularization loss J,
Total loss: J= J+AJ,
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Literature

On regularization:
— ¢s231n.github.io/neural-networks-2
— Deep Learning: 7.1

Dropout:
» c¢s231n.github.io/neural-networks-2

— http://imlr.org/papers/volume15/srivastavai4a/srivastavai4a.pdf
Learning, parameter updates: DL Chapter 8.3, 8.5
Local minima and second order methods DL 8.2 and DL 4.3.1)
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L2 regularization
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Keep the weights small unless they
have big derivatives

Tends to prefer many small weights
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L1 regularization
« Cost function J(@):Ji”igil@ﬂ-?l

I= j=1

« L1 regularization has the effect that
many weights are set to zero (or close
to zero).

* The effect of setting many weights to
zero and keeping a few large weights
is feature extraction — select only
some of the input connections.

* For deep learning, this often does not
work as well as L2-regularization.
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Maxnorm regularization

L1 and L2 regularization penalize each weight separately.

* An alternative is to constrain the maximum squared lenght of
the incoming weight vector of each unit.

« |f an update violates this constraint, we scale down the vector
of incoming weights to the allowed length.

 When a unit hits it's limit, the effective weight penalty of all of
it's weights is determined by the big gradients.

— This is more effective than a fixed penalty at pushing irrelevant
weights towards zero.

« Some claim that this method is better than L2-regularization.
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Regularization by early stopping

« Another kind of regularization is early stopping: stopping before
the model can overfit the training data

 Remember that we initialize the weights to small random
numbers.

* As training progresses (without batch normalization), the
weights can grow. Too large weights often leads to overfitting.

* We can monitor the training and validation accuracy, and stop
when the validation accuracy increases systematically over
several steps.
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Regularization by data augmentation

« Given a finite data set, we can make the net generalize better
by adding noise to the data.

« For image data it is common to simulate larger data sets by
affine transforms to
— Shift
— Rotate
— Scale
— Flip

« See e.g. https://keras.io/preprocessing/image/
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From pattern recognition: bagging

« Bagging (bootstrap aggregating) is a technique for reducing
generalization error by combing several models (e.g.
classifiers) training on different data subsets.

« Different subsets (minibatches) of data will normally not result
in the SAME errors on the test set.

« The idea is to train D models and average the predictions/class
estimates by taking the most frequent class among the
predictions.

« This is not practical for large nets because we have to train D
times.
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Dropout

* Presented in

http://imlr.org/papers/volume15/srivastaval4al/srivastavai4a.pdf

* Achieves a similar effect as bagging by randomly setting the output of
a node to zero (by multipying with a random vector of zeros with

probability p).

(b) After applying dropout.

Example: cat class with nodes detecting
- Eyes

- Ears

- Tai—

Fur

Legs

- Motth—

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.

Crossed units have heen dropped.
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Dropout - training

« Choose a dropout probability p

 We can drop both inputs and nodes in hidden layers.

« Create a binary mask for all nodes with probability of zero=p.
« Consider a 3-layer network with dropout in the hidden layers

# Forward pass of 3-layer net

H1 = np. maximum(0,np.dot(W1,X)+b1)

U1 = np.random.rand(*H1.shape)<p # first dropout
H1 *=U1

H2 = np.maximum(0,np.dot(W2,H1)+b2)

U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *=U2

out = np.dot(W3,H2) +b3

« Backpropagate as usual, but take into account the drop.
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Dropout — predict : naive implementation

« A drop rate of p will scale the outputs during training with a
factor p<1.

 When we predict new data, without considering this scaling, the
outputs will be larger.

 We have to scale the outputs during predict by p:

# predict

H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3

Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.
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Inverted dropout

p=0.5

#train

H1 = np.maximum(0,np.dot(W1,X)+b1)

U1 = (np.random.rand(*H1.shape)<p)/p #Scale now

H1*= U1l

H2 = np.maximum(0,np.dot(W2,H1)+b2)

U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2

out = np.dot(W3,H2)+b3

# predict

H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)

out = np.dot(W3,H2)+b3
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Bias regularization

« For linear classification it is important NOT to regularize the
bias parameters.

« For large nets, the effect of regularizing the bias terms if often
neglible, given proper preprocessing.

Bias initialization

* |tis common to initialize the biases to zero, symmetry-breaking
will be done by the small random weight initialization.

24.3.2017 INF 5860
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Recommendations for regularization

Use L2 regularization
Use Dropout with p=0.5 (p can be tuned on validation data).
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Repetition: Batch gradient descent

T
e O X L1

J(@)):—% iZl{yi=k}log ZK: — +A) Z
i=1 k=1 e k Xi =1  i=1

k=1

- Batch gradient descent computes the loss summed over ALL
training samples before doing gradient descent update.

sj+1

pACHS

j=1

e = ®_77D(D
« This is slow if the training data set is large.
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Repetition: Mini batch gradient descent

« Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y _batch = y[sample ind]
Ji, dgrad_| = loss(X_batch, y_batch, lambda)
for all |
Theta | -=learning_rate*dgrad_|

« If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

— But the term SGD sometimes also means mini batch gradient descent
« Common parameter value: 32, 64, 128.
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Learning with minibatch gradient descent

« Recently, a number of methods for improving the convergence
of minibatch gradient descent have been proposed:

— Momentum and Nesterov Momentum
 Momentum is well-established optimization method

— AdaGrad
— RMSProp
— ADAM

24.3.2017 INF 5860
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Learning with minibatch gradient descent

« Setting the learning n rate is difficult, and the performance is
sensitive to it.

— Too low: slow convergence
— Too high: oscillating performance

* |In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration z, then leave n . constan;:

- n,=(1-0) n o+ a n ., where a=k/t,
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Gradient descent oscillations
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Horisontal gradient small, vertical gradient big.
In which direction do we want to move?
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Gradient descent oscillations
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Gradient descent with momentum

v=mu™v - learning_rate*df # Integrate velocity
f+=v #Integrate position

* Physical interpretation: ball rolling downhill
* mu: friction coefficient

 mu normally between 0.5 and 0.99
— Can gradually decrease from 0.5 to 0.99 e.g.

* Allows velocity to build up in shallow directions, but is
dampened in steep directions because of the sign changes.
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Gradient descent with momentum

30

I e — —— 1 1 =
- —

L e — S —
T S ——
e P __““-—-_,___

v | n=0.01
N\ 4
10 \\x_

B e ——— —

=

) vs. regular gradient descent (blue), 100 it.
Notice that momentum overshoots the minimum,but then goes back.
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Nesterov momentum

* |dea: if we are at point x, with momentum the next estimate is x+mu*v
due to velocity from previous iterations.
 Momentum update has two parts: v=mu*v - learning_rate*df
— One due to velocity, and one due to current gradient

» Since velocity is pushing us to x+mu*v, why not compute the gradient
at point x+mu*v, not point x? (Look ahead)

Xx_ahead = x + mu*v #0nly the velocity part
# Evaluate the gradient at x_ahead

vV = mu*v — learning_rate*dx(x_ahead)
X+=V

24.3.2017 INF 5860 27
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Nesterov momentum

 Xx_ahead = x + mu*v #0nly the velocity part
« # Evaluate the gradient at x_ahead
* VvV =mu*v — learning_rate*dx(x_ahead)

° X +=V
)\[ Xx_ahead
10 \ / ]
N
5t X .
X\\\

\_h&.

-2 -1.5 -1 -0.5 0 0.5 1 1.5

24.3.2017 INF 5860 28



UiO S Department of Informatics
University of Oslo

Nesterov momentum

e
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) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.
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Implementing Nesterov

* Notice that Nesterov creates the gradient at x_ahead, while we
go directly from x to x+v.

« It is more convenient to avoid computing the gradient at a
different location by rewriting as:

v_prev = v # Back this up
v=mu * v —learning_rate * dx
X +=-mu*v_prev + (1-mu)*v

24.3.2017 INF 5860
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AdaGrad updates (DL 8.5.1)

* From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
» Keep a cache of elementwise squared gradients g=dx

# Adagrad update
cache += dx™*2
X += -learning_rate * dx/(np.sqgrt(cache)+1e-7)

* Note that x, dx and cache are vectors.

« cache builds of the accumulated gradients in each direction.

— If one direction has large gradient, we will take a smaller step in that
direction.

« A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
— Use RMSprop or ADAM instead

24.3.2017 INF 5860 31
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RMSprop update

« DL8.5.2and
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf

# RMSprop update

decay =0.9

cache = decay*cache + (1-decay)*dx**2

X += -learning_rate * dx/(np.sqrt(cache)+1e-7)

« Here cache is a moving average of the gradients for each weight
»  Works better than AdaGrad.

24.3.2017 INF 5860
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RMSprop update
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Blue: Nesterov
Red: RMSprop
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ADAM update

« DL 8.5.3 and https://arxiv.org/abs/1412.6980
« Like RMSprop but with momentum

# ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001

# initialize first and second moment variables
s=0, r=0

tau = t+1

s = rho1*s + (1-rho1)*dx

r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)

rb =r/(1-rho2**tau)

X = X — eps*sb/(sqrt(rb) +1e-8)

24.3.2017 INF 5860
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Beyond the gradient: Hessian matrices ( DL 4.3.1)

« |f W has N components, we can compute the derivative g of the
cost function J with respect to all N components

« We can compute the derivative of any of these with respect to
the N components again to get the second derivative of
component i with respect to component |.

« The second derivative, H, is then a matrix of size NxN, and is
called the Hessian.

« We approximate the cost function J locally using a second-
order approximation around X, : (g is the vector of derivatives
and H the matrix of second-order derivatives):

J00 = 306)+ (X =% g+ (x =, Hx—x,]
« Remark: storing H for large nets is memory demanding!
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« If we use gradient descent with learning rate g,the new point will
be (X,- € 9). 1,

. Substitute this: Xo—¢8)xJ(X)-eg g+-sg He

+ This will add -sg'g+-#'¢'He to the cost

« This term will be ill-conditioned when %gngHg >—cg'g+

« To check how the learning rate performs, we can monitor the
gradient norm g'g and the term g Hg

« Often, when learning is slow, the gradient norm g'g does not
shrink, but g'Hg grows

« |f this is the case, the learning rate must be shrunk.

24.3.2017 INF 5860 36



UiO S Department of Informatics
University of Oslo

Second-order methods and their limitations (DL 8.6)

 Newton’s method would update x as:

X = X — [Hf (Xt—l)]_IVf (Xy)
« Appears convenient — no parameters!

« Challenge: if we have N parameters/weight, H has size NxN!!
Impossible to invert, hard also to store H' in memory.

« One alternative that approximates H-! and avoid storing it is
Limited Memory BFGS (L-BFGS)
— See https://en.wikipedia.org/wiki/Limited-memory BFGS

— Drawback: only works well for full batch gradient descent, so it
currently not commonly used for large deep nets.
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Local minima for deep nets (DL 8.2)

 The most common challenge in general optimization is that we end up
in a local minima.

« This is not a common problem for deep nets — why?

— The weight space is symmetric, we can get an equivalent model by
exchanging e.g. incoming weight for unit i with incoming weight for unit j,
and swap the output weights correspondingly. This is called model
identifiability.

— Other kinds of identifiability occur when we scale a RelLU input and output
weights correspondingly.

— There are local minima, but we often end up with approximately the samle
value of J.

* Be careful to assume that a local minima is your problem with a deep
net.

— Monitor the gradient norm. If it is not small, you are not in a local minima.

— In addition, other structures can have local minima, as plateaus or saddle
points.
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Training neural nets - summary

Elements to consider:

Network architecture/layers/nodes
Activation functions

Loss function

Data preprocessing

Weight initialization

Batch normalization

Dropout and other types of regularization
Mini-batch gradient descent update schemes
Training, validation, and test sets
Searching for the best parameters
Monitoring the learning process

24.3.2017 INF 5860
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Activation function and loss function

« Use RelLU for hidden layers.
 If assigning an image to ONE class: SOFTMAX loss

« |f multiple labels possible (e.g. this image contains a cat and a
car): Logistic loss one-vs-all.

24.3.2017 INF 5860
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Preprocessing:
Common normalization for image data

« Consider e.g. CIFAR-10 image (32,32,3)

« Two alternatives:

— Subtract the mean image
» Keep track of a mean image of (32,32,3)

— Subtract the mean of each channel (r,g,b...)
» Keep track of the channel mean, 3 values for RGB.

10.3.2017 INF 5860
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Weight initialization

Consider a neuron with n inputs and Z=ZWiXi (n is called fan-in)
The variance of z is _

Var(z) =Var(iwi X;)

It can be shown that
Var(z) = (nVar(w))(Var(x))

If we make sure that Var(w;)=1/n for all i, so by scaling
each weight wi by vi/n , the variance of the output will be
1. (Called Xavier initialization)

Glorot et al. propose to use: w = np.random.rand(n)/sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.
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Batch normalization: training

Input: Values of x over a mini-batch: B = {1 ,,};
Parameters to be learned: v, 3
Output: {y; = BN, s(2;)}
L = o
UB = <1 // mini-batch mean
i=1
gy A 2 i(r — pug)? // mini-batch variance
° " =1 - N
T; il // normalize
\/J% g
Yi < YZ; + B = BN, g(z;) // scale and shift
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Batch normalization: test time

» At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).
« Remark: use runnina averaae to update

Input: Values of x over a mini-batch: B = {z1._,, };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}
— 1 i // mini-batch
— Ti mini-batch mean
BB :l_r i
s 5 - .
R (x; — ug) // mini-batch variance
1=1
A . M - // normalize
\ /O’% g
i —¥Z; + B = BN, a(z:) // scale and shift

10.3.2017 INF 5860
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Optimizing hyperparameters

* Training data set: part of data set used in
backpropagation to estimate the weights.

« Validation data set (mean cross-validation): part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

« Test data: used ONCE after fitting all parameters to
estimate the final error rate.
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Search strategy: coarse-to-fine

« First stage: run a few epochs (iterations through all training
samples)

« Second stage: longer runs with finer search.

« Parameters like learning rate are multiplicative, search in log-
space

« Random sample the grids
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Consider a random grid

Grid Layout

Unimportant parameter

Unimportant parameter

max_count = 100

for count in xrange(max count):

reg = 10**uniform(-5, 5)
lr = 10**uniform(-3, -6)

Random Layout

Important parameter

10.3.2017 INF 5860
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Monitor the loss function

24 . Loss history .
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Regularization

Use L2 regularization
— Consider trying maxnorm

If training from scratch on a deep net: use data augmentation
Use Dropout

24.3.2017 INF 5860
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Minibatch gradient descent update schemes

« Recommendations:
— Gradient descent with Nesterov momentum
— RMSprop
— ADAM

« Careful monitor the loss function, take care in choosing the
learning rate.
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