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Training neural nets part II
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March 24, 2017



Today

• Regularization strategies
• Variations on stochastic gradient descent learning
• Dropout
• Summarizing the training procedure
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Practical issues

• Mandatory 1 deadline in one week.
• No weekly exercises this week, practical experience in 

mandatory exercise.
• A set of theory exercises available after Mandatory 1.

• Midterm course evaluation: your constructive feedback 
requested.

• Next week: convolutional nets (finallly  ) 
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The feedforward net problem
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f(xi,(1),…(L))  a(out) J

data loss
Ji

(1),…(L

xi

yi

Regularization loss

Data set X,y
Loss for each sample Ji (softmax or logistic one vs. all)
Regularization loss Jr
Total loss: J= Ji+Jr
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Literature

• On regularization: 
– cs231n.github.io/neural-networks-2
– Deep Learning: 7.1

• Dropout:  
• cs231n.github.io/neural-networks-2
– http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

• Learning, parameter updates: DL Chapter 8.3, 8.5
• Local minima and second order methods DL 8.2 and DL 4.3.1)
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L2 regularization
• Cost function

• Derivative

• Keep the weights small unless they
have big derivatives 

• Tends to prefer many small weights
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L1 regularization
• Cost function

• L1 regularization has the effect that
many weights are set to zero (or close
to zero). 

• The effect of setting  many weights to 
zero and keeping a few large weights
is feature extraction – select only
some of the input connections. 

• For deep learning, this often does not 
work as well as L2-regularization.
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Maxnorm regularization

• L1 and L2 regularization penalize each weight separately. 
• An alternative is to constrain the maximum squared lenght of

the incoming weight vector of each unit.
• If an update violates this constraint, we scale down the vector

of incoming weights to the allowed length. 
• When a unit hits it’s limit, the effective weight penalty of all of

it’s weights is determined by the big gradients. 
– This is more effective than a fixed penalty at pushing irrelevant 

weights towards zero. 
• Some claim that this method is better than L2-regularization. 
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Regularization by early stopping

• Another kind of regularization is early stopping: stopping before
the model can overfit the training data

• Remember that we initialize the weights to small random 
numbers. 

• As training progresses (without batch normalization), the
weights can grow. Too large weights often leads to overfitting. 

• We can monitor the training and validation accuracy, and stop 
when the validation accuracy increases systematically over 
several steps. 

24.3.2017 INF 5860 10



Regularization by data augmentation

• Given a finite data set, we can make the net generalize better
by adding noise to the data. 

• For image data it is common to simulate larger data sets by 
affine transforms to
– Shift
– Rotate
– Scale
– Flip

• See e.g. https://keras.io/preprocessing/image/
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From pattern recognition: bagging

• Bagging (bootstrap aggregating) is a technique for reducing
generalization error by combing several models (e.g. 
classifiers) training on different data subsets.

• Different subsets (minibatches) of data will normally not result
in the SAME errors on the test set.

• The idea is to train D models and average the predictions/class
estimates by taking the most frequent class among the
predictions. 

• This is not practical for large nets because we have to train D 
times.  
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Dropout
• Presented in 

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
• Achieves a similar effect as bagging by randomly setting the output of

a node to zero (by multipying with a random vector of zeros with
probability p). 
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Example: cat class with nodes detecting
- Eyes
- Ears
- Tail
- Fur
- Legs
- Mouth



Dropout - training

• Choose a dropout probability p
• We can drop both inputs and nodes in hidden layers. 
• Create a binary mask for all nodes  with probability of zero=p.
• Consider a 3-layer network with dropout in the hidden layers

• Backpropagate as usual, but take into account the drop.
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# Forward pass of 3‐layer net
H1 = np. maximum(0,np.dot(W1,X)+b1)
U1 = np.random.rand(*H1.shape)<p    # first dropout
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *= U2
out = np.dot(W3,H2) +b3



Dropout – predict : naive implementation

• A drop rate of p will scale the outputs during training with a 
factor p<1.

• When we predict new data, without considering this scaling, the
outputs will be larger. 

• We have to scale the outputs during predict by p:

• Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.
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# predict
H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3



Inverted dropout
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p=0.5
#train
H1 = np.maximum(0,np.dot(W1,X)+b1)
U1 = (np.random.rand(*H1.shape)<p)/p #Scale now
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2
out = np.dot(W3,H2)+b3 

# predict
H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)
out = np.dot(W3,H2)+b3



Bias regularization

• For linear classification it is important NOT to regularize the
bias parameters.

• For large nets, the effect of regularizing the bias terms if often
neglible, given proper preprocessing. 

Bias initialization
• It is common to initialize the biases to zero, symmetry-breaking 

will be done by the small random weight initialization.
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Recommendations for regularization

• Use L2 regularization
• Use Dropout with p=0.5 (p can be tuned on validation data).
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Repetition: Batch gradient descent

• Batch gradient descent computes the loss summed over ALL 
training samples before doing gradient descent update.

• This is slow if the training data set is large. 
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Repetition: Mini batch gradient descent
• Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y_batch = y[sample_ind]
Ji, dgrad_l = loss(X_batch, y_batch, lambda)
for all l

Theta_l -= learning_rate*dgrad_l

• If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

– But the term SGD sometimes also means mini batch gradient descent
• Common parameter value: 32, 64, 128.
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Learning with minibatch gradient descent

• Recently, a number of methods for  improving the convergence
of minibatch gradient descent have been proposed:
– Momentum and Nesterov Momentum

• Momentum is well-established optimization method
– AdaGrad
– RMSProp
– ADAM
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Learning with minibatch gradient descent

• Setting the learning η rate is difficult, and the performance is 
sensitive to it. 
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration , then leave η  constant:
– η k=(1-) η 0+  η , where =k/,   
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Gradient descent oscillations
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Horisontal gradient small, vertical gradient big.
In which direction do we want to move?



Gradient descent oscillations
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This is how gradient descent moves

η =0.19 η =0.20



Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g. 
• Allows velocity to build up in shallow directions, but is 

dampened in steep directions because of the sign changes.  
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v=mu*v - learning_rate*df # Integrate velocity
f += v                             #Integrate position



Gradient descent with momentum
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Momentum with mu=0.9 (green) vs. regular gradient descent (blue), 100 it.
Notice that momentum overshoots the minimum,but then goes back.

η =0.01



Nesterov momentum

• Idea: if we are at point x, with momentum the next estimate is  x+mu*v 
due to velocity from previous iterations.

• Momentum update has two parts: v=mu*v - learning_rate*df
– One due to velocity, and one due to current gradient

• Since velocity is pushing us to x+mu*v, why not compute the gradient 
at point x+mu*v, not point x? (Look ahead)
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x_ahead = x + mu*v #Only the velocity part
# Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v



Nesterov momentum
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• x_ahead = x + mu*v #Only the velocity part
• # Evaluate the gradient at x_ahead
• v = mu*v – learning_rate*dx(x_ahead)
• x += v

x
x_ahead

New x



Nesterov momentum
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Momentum (green) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.



Implementing Nesterov

• Notice that Nesterov creates the gradient at x_ahead, while we
go directly from x to x+v. 

• It is more convenient to avoid computing the gradient at a 
different location by rewriting as: 
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• v_prev = v # Back this up
• v = mu * v – learning_rate * dx
• x += -mu*v_prev + (1-mu)*v 



AdaGrad updates (DL 8.5.1)

• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors. 
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction. 

• A problem with AdaGrad is that cache builds up larger and 
larger, and the step size can be smaller and smaller. 
– Use RMSprop or ADAM instead
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# Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



RMSprop update

• DL 8.5.2 and 
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad. 
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# RMSprop update
decay =0.9 
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



RMSprop update
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Blue: Nesterov
Red: RMSprop



ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum
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# ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
# initialize first and second moment variables 
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)



Beyond the gradient: Hessian matrices ( DL 4.3.1)

• If W has N components, we can compute the derivative g of the
cost function J with respect to all N components

• We can compute the derivative of any of these with respect to 
the N components again to get the second derivative of
component i with respect to component j.

• The second derivative, H,  is then a matrix of size NxN, and is 
called the Hessian. 

• We approximate the cost function J locally using a second-
order  approximation around x0 : (g is the vector of derivatives 
and H the matrix of second-order derivatives):

• Remark: storing H for large nets is memory demanding!
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• If we use gradient descent with learning rate ,the new point will
be (x0-  g).

• Substitute this:
• This will add to the cost
• This term will be ill-conditioned when

• To check how the learning rate performs, we can monitor the
gradient norm         and the term 

• Often,  when learning is slow, the gradient norm        does not 
shrink, but grows

• If this is the case, the learning rate must be shrunk. 
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Second-order methods and their limitations (DL 8.6)

• Newton’s method would update x as:

• Appears convenient – no parameters!
• Challenge: if we have N parameters/weight, H has size NxN!! 

Impossible to invert, hard also to store H-1 in memory.
• One alternative that approximates H-1 and avoid storing it is 

Limited Memory BFGS (L-BFGS)
– See https://en.wikipedia.org/wiki/Limited-memory_BFGS
– Drawback: only works well for full batch gradient descent, so it 

currently not commonly used for large deep nets.   
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Local minima for deep nets (DL 8.2)
• The most common challenge in general optimization is that we end up 

in a local minima.
• This is not a common problem for deep nets – why?

– The weight space is symmetric, we can get an equivalent model by 
exchanging e.g. incoming weight for unit i with incoming weight for unit j, 
and swap the output weights correspondingly.  This is called model
identifiability.

– Other kinds of identifiability occur when we scale a ReLU input and output 
weights correspondingly. 

– There are local minima, but we often end up with approximately the samle 
value of J.

• Be careful to assume that a local minima is your problem with a deep
net. 

– Monitor the gradient norm. If it is not small, you are not in a local minima. 
– In addition, other structures can have local minima, as plateaus or saddle

points.
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Training neural nets - summary
Elements to consider:
• Network architecture/layers/nodes
• Activation functions
• Loss function
• Data preprocessing
• Weight initialization
• Batch normalization
• Dropout and other types of regularization
• Mini-batch gradient descent update schemes
• Training, validation, and test sets
• Searching for the best parameters
• Monitoring the learning process
24.3.2017 INF 5860 39



Activation function and loss function

• Use ReLU for hidden layers. 
• If assigning an image to ONE class: SOFTMAX loss
• If multiple labels possible (e.g. this image contains a cat and a 

car): Logistic loss one-vs-all. 
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Preprocessing:
Common normalization for image data
• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image 
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB. 
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Weight initialization

• Consider a neuron with n inputs and               (n is called fan-in) 
• The variance of z is 

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling
each weight wi by        , the variance of the output will be 
1. (Called Xavier initialization)

Glorot et al. propose to use:  w = np.random.rand(n)/sqrt(2/n)  for ReLU
because of the max-operation that will alter the distribution.
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Batch normalization: training 
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Batch normalization: test time 
• At test time: mean/std is computed for the ENTIRE TRAINING  set, not 

mini batches used during backprop (you should store these).
• Remark: use running average to update
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Optimizing hyperparameters

• Training data set: part of data set used in 
backpropagation to estimate the weights.

• Validation data set (mean cross-validation):  part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

• Test data: used ONCE after fitting all parameters to 
estimate the final error rate. 
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Search strategy: coarse-to-fine

• First stage: run a few epochs (iterations through all training 
samples)

• Second stage: longer runs with finer search.
• Parameters like learning rate are multiplicative, search in log-

space
• Random sample the grids
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Consider a random grid 

10.3.2017 INF 5860 47



Monitor the loss function
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Regularization

• Use L2 regularization
– Consider trying maxnorm

• If training from scratch on a deep net: use data augmentation
• Use Dropout
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Minibatch gradient descent update schemes

• Recommendations: 
– Gradient descent with Nesterov momentum
– RMSprop
– ADAM

• Careful monitor the loss function, take care in choosing the
learning rate. 
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