
INF 5860 Machine learning for image classification
Lecture 9
Training neural nets part II
Anne Solberg
March 24, 2017

Today

• Regularization strategies
• Variations on stochastic gradient descent learning
• Dropout
• Summarizing the training procedure

24.3.2017 INF 5860 3

Practical issues

• Mandatory 1 deadline in one week.
• No weekly exercises this week, practical experience in

mandatory exercise.
• A set of theory exercises available after Mandatory 1.

• Midterm course evaluation: your constructive feedback
requested.

• Next week: convolutional nets (finallly )

24.3.2017 INF 5860 4

The feedforward net problem

24.3.2017 INF 5860 5

f(xi,(1),…(L)) a(out) J

data loss
Ji

(1),…(L

xi

yi

Regularization loss

Data set X,y
Loss for each sample Ji (softmax or logistic one vs. all)
Regularization loss Jr
Total loss: J= Ji+Jr

 

)(log11)(
1

1

2)(

1

1

11

1

1

.




























































jl

i
T
k

i
T
k s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i

e

e
ky

m
J 

Literature

• On regularization:
– cs231n.github.io/neural-networks-2
– Deep Learning: 7.1

• Dropout:
• cs231n.github.io/neural-networks-2
– http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

• Learning, parameter updates: DL Chapter 8.3, 8.5
• Local minima and second order methods DL 8.2 and DL 4.3.1)

24.3.2017 INF 5860 6

L2 regularization
• Cost function

• Derivative

• Keep the weights small unless they
have big derivatives

• Tends to prefer many small weights

24.3.2017 INF 5860 7

)()(
1

1

2)(

1

1

1

.











jl s

j

l
ji

s

i

L

l
iJJ 

1 ,0 When)(
)(

)(

)(
)()(

l
ji

il
jil

ji

l
jil

ji

i
l
ji

JJ

JJ




















L1 regularization
• Cost function

• L1 regularization has the effect that
many weights are set to zero (or close
to zero).

• The effect of setting many weights to
zero and keeping a few large weights
is feature extraction – select only
some of the input connections.

• For deep learning, this often does not
work as well as L2-regularization.

24.3.2017 INF 5860 8

||)(
1

1

)(

1

1

1

.











jl s

j

l
ji

s

i

L

l
iJJ 

Maxnorm regularization

• L1 and L2 regularization penalize each weight separately.
• An alternative is to constrain the maximum squared lenght of

the incoming weight vector of each unit.
• If an update violates this constraint, we scale down the vector

of incoming weights to the allowed length.
• When a unit hits it’s limit, the effective weight penalty of all of

it’s weights is determined by the big gradients.
– This is more effective than a fixed penalty at pushing irrelevant

weights towards zero.
• Some claim that this method is better than L2-regularization.

24.3.2017 INF 5860 9

Regularization by early stopping

• Another kind of regularization is early stopping: stopping before
the model can overfit the training data

• Remember that we initialize the weights to small random
numbers.

• As training progresses (without batch normalization), the
weights can grow. Too large weights often leads to overfitting.

• We can monitor the training and validation accuracy, and stop
when the validation accuracy increases systematically over
several steps.

24.3.2017 INF 5860 10

Regularization by data augmentation

• Given a finite data set, we can make the net generalize better
by adding noise to the data.

• For image data it is common to simulate larger data sets by
affine transforms to
– Shift
– Rotate
– Scale
– Flip

• See e.g. https://keras.io/preprocessing/image/

24.3.2017 INF 5860 11

From pattern recognition: bagging

• Bagging (bootstrap aggregating) is a technique for reducing
generalization error by combing several models (e.g.
classifiers) training on different data subsets.

• Different subsets (minibatches) of data will normally not result
in the SAME errors on the test set.

• The idea is to train D models and average the predictions/class
estimates by taking the most frequent class among the
predictions.

• This is not practical for large nets because we have to train D
times.

24.3.2017 INF 5860 12

Dropout
• Presented in

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
• Achieves a similar effect as bagging by randomly setting the output of

a node to zero (by multipying with a random vector of zeros with
probability p).

24.3.2017 INF 5860 13

Example: cat class with nodes detecting
- Eyes
- Ears
- Tail
- Fur
- Legs
- Mouth

Dropout - training

• Choose a dropout probability p
• We can drop both inputs and nodes in hidden layers.
• Create a binary mask for all nodes with probability of zero=p.
• Consider a 3-layer network with dropout in the hidden layers

• Backpropagate as usual, but take into account the drop.

24.3.2017 INF 5860 14

Forward pass of 3‐layer net
H1 = np. maximum(0,np.dot(W1,X)+b1)
U1 = np.random.rand(*H1.shape)<p # first dropout
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *= U2
out = np.dot(W3,H2) +b3

Dropout – predict : naive implementation

• A drop rate of p will scale the outputs during training with a
factor p<1.

• When we predict new data, without considering this scaling, the
outputs will be larger.

• We have to scale the outputs during predict by p:

• Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.

24.3.2017 INF 5860 15

predict
H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3

Inverted dropout

24.3.2017 INF 5860 16

p=0.5
#train
H1 = np.maximum(0,np.dot(W1,X)+b1)
U1 = (np.random.rand(*H1.shape)<p)/p #Scale now
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2
out = np.dot(W3,H2)+b3

predict
H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)
out = np.dot(W3,H2)+b3

Bias regularization

• For linear classification it is important NOT to regularize the
bias parameters.

• For large nets, the effect of regularizing the bias terms if often
neglible, given proper preprocessing.

Bias initialization
• It is common to initialize the biases to zero, symmetry-breaking

will be done by the small random weight initialization.

24.3.2017 INF 5860 17

Recommendations for regularization

• Use L2 regularization
• Use Dropout with p=0.5 (p can be tuned on validation data).

24.3.2017 INF 5860 18

Repetition: Batch gradient descent

• Batch gradient descent computes the loss summed over ALL
training samples before doing gradient descent update.

• This is slow if the training data set is large.

24.3.2017 INF 5860 19

 

)(log11)(
1

1

2)(

1

1

11

1

1

.




























































jl

i
T
k

i
T
k s

j

l
ji

s

i

L

l

m

i
K

k

x

xK

k
i

e

e
ky

m
J 

(l))(D l

Repetition: Mini batch gradient descent
• Select randomly a small batch, update, then repeat:

for it in range(num_iterations):
sample_ind = np.random.choice(num_train, batch_size)
X_batch = X[sample_ind]
y_batch = y[sample_ind]
Ji, dgrad_l = loss(X_batch, y_batch, lambda)
for all l

Theta_l -= learning_rate*dgrad_l

• If batch_size=1, this is called online learning, and sometimes Stochastic
Gradient Descent (SGD)

– But the term SGD sometimes also means mini batch gradient descent
• Common parameter value: 32, 64, 128.

24.3.2017 INF 5860 20

Learning with minibatch gradient descent

• Recently, a number of methods for improving the convergence
of minibatch gradient descent have been proposed:
– Momentum and Nesterov Momentum

• Momentum is well-established optimization method
– AdaGrad
– RMSProp
– ADAM

24.3.2017 INF 5860 21

Learning with minibatch gradient descent

• Setting the learning η rate is difficult, and the performance is
sensitive to it.
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration , then leave η  constant:
– η k=(1-) η 0+  η , where =k/,

24.3.2017 INF 5860 22

Gradient descent oscillations

24.3.2017 INF 5860 23

Horisontal gradient small, vertical gradient big.
In which direction do we want to move?

Gradient descent oscillations

24.3.2017 INF 5860 24

This is how gradient descent moves

η =0.19 η =0.20

Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g.
• Allows velocity to build up in shallow directions, but is

dampened in steep directions because of the sign changes.

24.3.2017 INF 5860 25

v=mu*v - learning_rate*df # Integrate velocity
f += v #Integrate position

Gradient descent with momentum

24.3.2017 INF 5860 26

Momentum with mu=0.9 (green) vs. regular gradient descent (blue), 100 it.
Notice that momentum overshoots the minimum,but then goes back.

η =0.01

Nesterov momentum

• Idea: if we are at point x, with momentum the next estimate is x+mu*v
due to velocity from previous iterations.

• Momentum update has two parts: v=mu*v - learning_rate*df
– One due to velocity, and one due to current gradient

• Since velocity is pushing us to x+mu*v, why not compute the gradient
at point x+mu*v, not point x? (Look ahead)

24.3.2017 INF 5860 27

x_ahead = x + mu*v #Only the velocity part
Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v

Nesterov momentum

24.3.2017 INF 5860 28

• x_ahead = x + mu*v #Only the velocity part
• # Evaluate the gradient at x_ahead
• v = mu*v – learning_rate*dx(x_ahead)
• x += v

x
x_ahead

New x

Nesterov momentum

24.3.2017 INF 5860 29

Momentum (green) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.

Implementing Nesterov

• Notice that Nesterov creates the gradient at x_ahead, while we
go directly from x to x+v.

• It is more convenient to avoid computing the gradient at a
different location by rewriting as:

24.3.2017 INF 5860 30

• v_prev = v # Back this up
• v = mu * v – learning_rate * dx
• x += -mu*v_prev + (1-mu)*v

AdaGrad updates (DL 8.5.1)

• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors.
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction.

• A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
– Use RMSprop or ADAM instead

24.3.2017 INF 5860 31

Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

RMSprop update

• DL 8.5.2 and
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad.

24.3.2017 INF 5860 32

RMSprop update
decay =0.9
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

RMSprop update

24.3.2017 INF 5860 33

Blue: Nesterov
Red: RMSprop

ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum

24.3.2017 INF 5860 34

ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
initialize first and second moment variables
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)

Beyond the gradient: Hessian matrices (DL 4.3.1)

• If W has N components, we can compute the derivative g of the
cost function J with respect to all N components

• We can compute the derivative of any of these with respect to
the N components again to get the second derivative of
component i with respect to component j.

• The second derivative, H, is then a matrix of size NxN, and is
called the Hessian.

• We approximate the cost function J locally using a second-
order approximation around x0 : (g is the vector of derivatives
and H the matrix of second-order derivatives):

• Remark: storing H for large nets is memory demanding!

24.3.2017 INF 5860 35

   TTT xxxxxxxJxJ 0000 2
1)()()( Hg

• If we use gradient descent with learning rate ,the new point will
be (x0-  g).

• Substitute this:
• This will add to the cost
• This term will be ill-conditioned when

• To check how the learning rate performs, we can monitor the
gradient norm and the term

• Often, when learning is slow, the gradient norm does not
shrink, but grows

• If this is the case, the learning rate must be shrunk.

24.3.2017 INF 5860 36

Hgggggx TTxJJ 2
00 2

1)() ( 

Hgggg TT 2

2
1  

 ggHgg TT
2
1 2 

ggT HggT

ggT

HggT

Second-order methods and their limitations (DL 8.6)

• Newton’s method would update x as:

• Appears convenient – no parameters!
• Challenge: if we have N parameters/weight, H has size NxN!!

Impossible to invert, hard also to store H-1 in memory.
• One alternative that approximates H-1 and avoid storing it is

Limited Memory BFGS (L-BFGS)
– See https://en.wikipedia.org/wiki/Limited-memory_BFGS
– Drawback: only works well for full batch gradient descent, so it

currently not commonly used for large deep nets.

24.3.2017 INF 5860 37

 )()(1
1

11 


  tttt xfxHfxx

Local minima for deep nets (DL 8.2)
• The most common challenge in general optimization is that we end up

in a local minima.
• This is not a common problem for deep nets – why?

– The weight space is symmetric, we can get an equivalent model by
exchanging e.g. incoming weight for unit i with incoming weight for unit j,
and swap the output weights correspondingly. This is called model
identifiability.

– Other kinds of identifiability occur when we scale a ReLU input and output
weights correspondingly.

– There are local minima, but we often end up with approximately the samle
value of J.

• Be careful to assume that a local minima is your problem with a deep
net.

– Monitor the gradient norm. If it is not small, you are not in a local minima.
– In addition, other structures can have local minima, as plateaus or saddle

points.
24.3.2017 INF 5860 38

Training neural nets - summary
Elements to consider:
• Network architecture/layers/nodes
• Activation functions
• Loss function
• Data preprocessing
• Weight initialization
• Batch normalization
• Dropout and other types of regularization
• Mini-batch gradient descent update schemes
• Training, validation, and test sets
• Searching for the best parameters
• Monitoring the learning process
24.3.2017 INF 5860 39

Activation function and loss function

• Use ReLU for hidden layers.
• If assigning an image to ONE class: SOFTMAX loss
• If multiple labels possible (e.g. this image contains a cat and a

car): Logistic loss one-vs-all.

24.3.2017 INF 5860 40

Preprocessing:
Common normalization for image data
• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB.

10.3.2017 INF 5860 41

Weight initialization

• Consider a neuron with n inputs and (n is called fan-in)
• The variance of z is

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling
each weight wi by , the variance of the output will be
1. (Called Xavier initialization)

Glorot et al. propose to use: w = np.random.rand(n)/sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.

10.3.2017 INF 5860 42





n

i
ii xwz

1





n

i
ii xwVarzVar

1

)()(

))())((()(xVarwnVarzVar 

n/1

Batch normalization: training

10.3.2017 INF 5860 43

Batch normalization: test time
• At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).
• Remark: use running average to update

10.3.2017 INF 5860 44

Optimizing hyperparameters

• Training data set: part of data set used in
backpropagation to estimate the weights.

• Validation data set (mean cross-validation): part of
the data set used to find the best values of the
hyperparameters, e.g. number of nodes and learning
rate.

• Test data: used ONCE after fitting all parameters to
estimate the final error rate.

10.3.2017 INF 5860 45

Search strategy: coarse-to-fine

• First stage: run a few epochs (iterations through all training
samples)

• Second stage: longer runs with finer search.
• Parameters like learning rate are multiplicative, search in log-

space
• Random sample the grids

10.3.2017 INF 5860 46

Consider a random grid

10.3.2017 INF 5860 47

Monitor the loss function

10.3.2017 INF 5860 48

Regularization

• Use L2 regularization
– Consider trying maxnorm

• If training from scratch on a deep net: use data augmentation
• Use Dropout

24.3.2017 INF 5860 49

Minibatch gradient descent update schemes

• Recommendations:
– Gradient descent with Nesterov momentum
– RMSprop
– ADAM

• Careful monitor the loss function, take care in choosing the
learning rate.

24.3.2017 INF 5860 50

