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The linear regression problem, summary
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Blue: true data points
Red: estimated function

The distance between the true 
(blue) and estimated (red) value will
be used to measure how good the
fit is



Logistic regression model

• Want 0≤h(x)≤1
• Let

• This is called the sigmoid 
function

10.2.2017 INF 5860 5

 

x

z

T

T

e
Xh

e
zg

xgXh



 













1
1)(

1
1)(

)(



Decisions for logistic regression

• Decide y=1 if h(x)> 
0.5, and y=0 otherwise

• g(z)>0.5 if z>0
– Tx>0

g(z)<0.5 if z<0
Tx<0

Tx=0 gives the decision
boundary
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Logistic regression cost

Minimize

Due to the sigmoid function g(z), this is a non-quadratic function, 
and non-convex.
Set 
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We skip deriving this cost,
it is derived by maximizing the
log-likelihood that  fits the data



From 2 to multiple classes: Softmax

• The common generalization to multiple clasess is the softmax
classifier.

• We want to predict the class label yi={1,…C} for sample X(i,:), y 
can take one of C discrete values, so it follow a multinomial
distribution. 

• This is derived from an assumption that the probability of class
y=k is

• The score or loss function for class i is 
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Introduction to backpropagation and 
computational graphs
• We now have a network architecture

and a cost function. 
• A learning algorithm for the net should

give us a way to change the weights in 
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in 
a small change in ouputs.

• Backpropagation use partial derivatives 
to compute the derivative of the cost
function J with respect to all the
weights. 
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Gradients and partial derivatives
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Backwards propagation of gradients
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Backwards propagation of gradients
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Backwards propagation of gradients
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Backwards propagation of gradients
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Activation functions

• Reading material:
– cs231n.github.io/neural-networks-1
– Deep Learning: 6.2.2 and 6.3

• Active area of research, new functions are published annually. 
We will consider:
– Sigmoid activation
– Tanh activation
– ReLU activation
– And mention recent alternatives like:

• Leaky ReLU
• Maxout
• ELU
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Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi:    yi
101, 101: 2

101, 99:   0
xi:    yi
1, 1: 2

1, -1:  0
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Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi:    yi
0.2, 10:    2

0.2, -10:   0
xi:    yi
1, 1: 2

1, -1:  0
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Weight initialization

• Avoid all zero initialization! 
– If all weights are equal, they will produce the same gradients and 

same outputs, and undergo exactly the same parameter updates. 
• They will learn the same thing. 

• We break symmetry by initializing the weights to have small random 
numbers. 

• Initialization is more complicated for deep networks
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Batch normalization

• So far, we noticed that normalizing the inputs and the initial weights to 
zero mean, unit variance help convergence. 

• As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again. 
– This is called a covariance shift. 

• Batch normalization (Ioffe and Szegedy) 
https://arxiv.org/abs/1502.03167 countereffects this.

• After fully connected layers (or convolutional layers),and before the
nonlinearity,  a batch normalization layer is inserted. 

• This layer makes the input gaussian with zero mean and unit variance
by applying

10.3.2017 INF 5860 20

 k

kk
k xVar

xx 
ˆ



Dropout
• Presented in 

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
• Achieves a similar effect as bagging by randomly setting the output of

a node to zero (by multipying with a random vector of zeros with
probability p). 

24.3.2017 INF 5860 21

Example: cat class with nodes detecting
- Eyes
- Ears
- Tail
- Fur
- Legs
- Mouth



Dropout - training

• Choose a dropout probability p
• We can drop both inputs and nodes in hidden layers. 
• Create a binary mask for all nodes  with probability of zero=p.
• Consider a 3-layer network with dropout in the hidden layers

• Backpropagate as usual, but take into account the drop.
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# Forward pass of 3‐layer net
H1 = np. maximum(0,np.dot(W1,X)+b1)
U1 = np.random.rand(*H1.shape)<p    # first dropout
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *= U2
out = np.dot(W3,H2) +b3



Dropout – predict : naive implementation

• A drop rate of p will scale the outputs during training with a 
factor p<1.

• When we predict new data, without considering this scaling, the
outputs will be larger. 

• We have to scale the outputs during predict by p:

• Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.
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# predict
H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3



Inverted dropout
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p=0.5
#train
H1 = np.maximum(0,np.dot(W1,X)+b1)
U1 = (np.random.rand(*H1.shape)<p)/p #Scale now
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2
out = np.dot(W3,H2)+b3 

# predict
H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)
out = np.dot(W3,H2)+b3



Learning with minibatch gradient descent

• Setting the learning η rate is difficult, and the performance is 
sensitive to it. 
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration , then leave η  constant:
– η k=(1-) η 0+  η , where =k/,   
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Gradient descent oscillations
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This is how gradient descent moves

η =0.19 η =0.20



Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g. 
• Allows velocity to build up in shallow directions, but is 

dampened in steep directions because of the sign changes.  
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v=mu*v - learning_rate*df # Integrate velocity
f += v                             #Integrate position



Nesterov momentum

• Idea: if we are at point x, with momentum the next estimate is  x+mu*v 
due to velocity from previous iterations.

• Momentum update has two parts: v=mu*v - learning_rate*df
– One due to velocity, and one due to current gradient

• Since velocity is pushing us to x+mu*v, why not compute the gradient 
at point x+mu*v, not point x? (Look ahead)

24.3.2017 INF 5860 28

x_ahead = x + mu*v #Only the velocity part
# Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v



AdaGrad updates (DL 8.5.1)

• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors. 
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction. 

• A problem with AdaGrad is that cache builds up larger and 
larger, and the step size can be smaller and smaller. 
– Use RMSprop or ADAM instead
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# Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



RMSprop update

• DL 8.5.2 and 
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad. 
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# RMSprop update
decay =0.9 
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum
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# ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
# initialize first and second moment variables 
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)


