
INF 5860 Machine learning for image classification
Repetition of Annes lectures

Anne Solberg
May 26, 2017

The linear regression problem, summary

27.1.2017 INF 5860 3

 

)(minimize :Goal

ˆ
2
1)(:functionCost

..0, :Parameters

ˆ)(:Hypothesis

0

1

20










J

yy
m

J

nj
xyh

m

i
ii

j

T










Gradient descent solution:
repeat until convergence
for j=0:n

),(21 


 Jj
jj






27.1.2017 INF 5860 4

yi- iŷ

Blue: true data points
Red: estimated function

The distance between the true
(blue) and estimated (red) value will
be used to measure how good the
fit is

Logistic regression model

• Want 0≤h(x)≤1
• Let

• This is called the sigmoid
function

10.2.2017 INF 5860 5

 

x

z

T

T

e
Xh

e
zg

xgXh



 













1
1)(

1
1)(

)(

Decisions for logistic regression

• Decide y=1 if h(x)>
0.5, and y=0 otherwise

• g(z)>0.5 if z>0
– Tx>0

g(z)<0.5 if z<0
Tx<0

Tx=0 gives the decision
boundary

10.2.2017 INF 5860 6

 

x

z

T

T

e
Xh

e
zg

xgXh



 













1
1)(

1
1)(

)(

Logistic regression cost

Minimize

Due to the sigmoid function g(z), this is a non-quadratic function,
and non-convex.
Set

10.2.2017 INF 5860 7

  


m

i ii yxhCost
m

J
1

)),((
2
1)(

yprobabilita Mimick
Cost:1)(and 0 yIf

0)(and 0 yif 0 Cost
Cost:0)(and 1 yIf

1)(and 1 yif 0 Cost

0 yif))(1log(

1 yif))(log(
)),((
















xh
xh

xh
xh

xh
xh

yxhCost














We skip deriving this cost,
it is derived by maximizing the
log-likelihood that  fits the data

From 2 to multiple classes: Softmax

• The common generalization to multiple clasess is the softmax
classifier.

• We want to predict the class label yi={1,…C} for sample X(i,:), y
can take one of C discrete values, so it follow a multinomial
distribution.

• This is derived from an assumption that the probability of class
y=k is

• The score or loss function for class i is

10.2.2017 INF 5860 8




 C

j

x

x

T
j

T
k

e

exkypxh

1

),|()(




 
























k

j

iX

iX

i T
j

T
i

e

eL

1

:),(

:),(

log




This is called the cross-entropy loss

Introduction to backpropagation and
computational graphs
• We now have a network architecture

and a cost function.
• A learning algorithm for the net should

give us a way to change the weights in
such a manner that the output is closer
to the correct class labels.

• The activation function should assure
that a small change in weights results in
a small change in ouputs.

• Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

25.2.2017 INF 5860 9

Gradients and partial derivatives

25.2.2017 INF 5860 10

x
q

q
f

x
f

qzfzyxzyxf

xy
y
fyx

x
fyxyxf

y
f

x
fyxyxf

x
y
fy

x
fxyyxf











































:rule chain theuse and andy xq Let)(),,(

)(1)(1),max(),(

11),(

),(

Backwards propagation of gradients

25.2.2017 INF 5860 11

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 12

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

z
f



3

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 13

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

q
f



3

-4

Green numbers: forward propagation
Red numbers: backwards propagation

Backwards propagation of gradients

25.2.2017 INF 5860 14

+

*

x

y

z

q
f

-2

5

-4

3
-12

f
f

 1

3

-4

1*z
y
q

q
f

y
f












-4

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 15

f

x

z

y

Activations

z
L



x
z




y
z




x
z

z
L

x
L











y
z

z
L

y
L











During
backpropagation, the
node will learn

The gate uses chain
rule to redistribute this
gradient to its inputs

z
L



Green numbers: forward propagation
Red numbers: backwards propagation

Activation functions

• Reading material:
– cs231n.github.io/neural-networks-1
– Deep Learning: 6.2.2 and 6.3

• Active area of research, new functions are published annually.
We will consider:
– Sigmoid activation
– Tanh activation
– ReLU activation
– And mention recent alternatives like:

• Leaky ReLU
• Maxout
• ELU

10.3.2017 INF 5860 16

Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi: yi
101, 101: 2

101, 99: 0
xi: yi
1, 1: 2

1, -1: 0

10.3.2017 INF 5860 17

w1 w2

Original

Scale to
zero mean

Error surface

Error surface

Data preprocessing

• Scaling of the features matters:
• If we have the samples

xi: yi
0.2, 10: 2

0.2, -10: 0
xi: yi
1, 1: 2

1, -1: 0

10.3.2017 INF 5860 18

w1 w2

Original

Normalize
to unit variance

Error surface

Error surface

Weight initialization

• Avoid all zero initialization!
– If all weights are equal, they will produce the same gradients and

same outputs, and undergo exactly the same parameter updates.
• They will learn the same thing.

• We break symmetry by initializing the weights to have small random
numbers.

• Initialization is more complicated for deep networks

10.3.2017 INF 5860 19

Batch normalization

• So far, we noticed that normalizing the inputs and the initial weights to
zero mean, unit variance help convergence.

• As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again.
– This is called a covariance shift.

• Batch normalization (Ioffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

• After fully connected layers (or convolutional layers),and before the
nonlinearity, a batch normalization layer is inserted.

• This layer makes the input gaussian with zero mean and unit variance
by applying

10.3.2017 INF 5860 20

 k

kk
k xVar

xx 
ˆ

Dropout
• Presented in

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
• Achieves a similar effect as bagging by randomly setting the output of

a node to zero (by multipying with a random vector of zeros with
probability p).

24.3.2017 INF 5860 21

Example: cat class with nodes detecting
- Eyes
- Ears
- Tail
- Fur
- Legs
- Mouth

Dropout - training

• Choose a dropout probability p
• We can drop both inputs and nodes in hidden layers.
• Create a binary mask for all nodes with probability of zero=p.
• Consider a 3-layer network with dropout in the hidden layers

• Backpropagate as usual, but take into account the drop.

24.3.2017 INF 5860 22

Forward pass of 3‐layer net
H1 = np. maximum(0,np.dot(W1,X)+b1)
U1 = np.random.rand(*H1.shape)<p # first dropout
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *= U2
out = np.dot(W3,H2) +b3

Dropout – predict : naive implementation

• A drop rate of p will scale the outputs during training with a
factor p<1.

• When we predict new data, without considering this scaling, the
outputs will be larger.

• We have to scale the outputs during predict by p:

• Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.

24.3.2017 INF 5860 23

predict
H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3

Inverted dropout

24.3.2017 INF 5860 24

p=0.5
#train
H1 = np.maximum(0,np.dot(W1,X)+b1)
U1 = (np.random.rand(*H1.shape)<p)/p #Scale now
H1 *= U1
H2 = np.maximum(0,np.dot(W2,H1)+b2)
U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2
out = np.dot(W3,H2)+b3

predict
H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)
out = np.dot(W3,H2)+b3

Learning with minibatch gradient descent

• Setting the learning η rate is difficult, and the performance is
sensitive to it.
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration , then leave η  constant:
– η k=(1-) η 0+  η , where =k/,

24.3.2017 INF 5860 25

Gradient descent oscillations

24.3.2017 INF 5860 26

This is how gradient descent moves

η =0.19 η =0.20

Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g.
• Allows velocity to build up in shallow directions, but is

dampened in steep directions because of the sign changes.

24.3.2017 INF 5860 27

v=mu*v - learning_rate*df # Integrate velocity
f += v #Integrate position

Nesterov momentum

• Idea: if we are at point x, with momentum the next estimate is x+mu*v
due to velocity from previous iterations.

• Momentum update has two parts: v=mu*v - learning_rate*df
– One due to velocity, and one due to current gradient

• Since velocity is pushing us to x+mu*v, why not compute the gradient
at point x+mu*v, not point x? (Look ahead)

24.3.2017 INF 5860 28

x_ahead = x + mu*v #Only the velocity part
Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v

AdaGrad updates (DL 8.5.1)

• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors.
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction.

• A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
– Use RMSprop or ADAM instead

24.3.2017 INF 5860 29

Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

RMSprop update

• DL 8.5.2 and
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad.

24.3.2017 INF 5860 30

RMSprop update
decay =0.9
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum

24.3.2017 INF 5860 31

ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
initialize first and second moment variables
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)

