UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification
Repetition of Annes lectures

Anne Solberg
May 26, 2017

UiO S Department of Informatics
University of Oslo

The linear regression problem, summary

Hypothesis: h(8)=9=0"x

Parameters: €', j=0..n
Cost function: J(6°)= LZ (9, -v,)
2m 5
Goal: minimize J (6)
90

Gradient descent solution:
repeat until convergence
for j=0:n

i i a
0'=0'—c—-3(6,0,)

27.1.2017 INF 5860

UiO S Department of Informatics

University of Oslo
E I I I I I I 1
5| Blue: true data points]
Red: estimated function
4+ i
It l
5L The dista | the true
R and estimated (red) value will
be used to measure how good the

T fit is '
|:| 1 1 1 1 1 1 1

0 1 2 3 5 B 7 : 3

27.1.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Logistic regression model

* Want O<h,y(x)=1
+ Let

h,(X)=g(0"x)

9(2) =

l+e™

1
he(x): _
l1+e

o' x

 This is called the sigmoid
function

10.2.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Decisions for logistic regression

* Decide y=1 if hy(x)> * g(2)>0.5ifz>0
0.5, and y=0 otherwise — 0™x>0
9(z)<0.5 if z<0
h,(X)=g(6"x) 0Tx<0
0= | ~
1+e 6Tx=0 gives the decision
1
h,(X) = T boundary

l+e?”

10.2.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Logistic regression cost

Minimize 3(0) = %Zi’: (Cost(h, (%), y,))

Due to the sigmoid function g(z), this is a non-quadratic function,
and non-convex.

Set .
—log(h,(x)) if y=1
Cost(h, (x),y)={ _ &N Y
—log(l1-h,(x)) if y =0
Cost=0if y =land h,(x) =1 We skip deriving this cost,
If y=1andh,(x) — 0:Cost — © it is derived by maximizing the
=) .

log-likelihood that 6 fits the data
Cost=0if y=0and h,(x)=0

If y=0and h,(X) > 1:Cost > o
Mimick a probability

10.2.2017 INF 5860 7

UiO S Department of Informatics
University of Oslo

From 2 to multiple classes: Softmax

« The common generalization to multiple clasess is the softmax
classifier.

« We want to predict the class label y,={1,...C} for sample X(i,:), y
can take one of C discrete values, so it follow a multinomial
distribution.

« This is derived from an assumption that the probability of class
y=Kis

Oy x

e

h,(X) = p(y =K |%,0) =F—
Zeejx
j=1

j=
The score or loss function for class i is

eHiTX(i,:)

L, =—log| — —
This is called the cross-entropy loss Y el X
j=1

10.2.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Introduction to backpropagation and
computational graphs

small change in anv weight [or hias)

« We now have a network architecture o, coumes nsmall change in the outpos
and a cost function. e

* Alearning algorithm for the net should
give us a way to change the weights in
such a manner that the output is closer output-+Aoutput
to the correct class labels.

* The activation function should assure
that a small change in weights results in
a small change in ouputs.

« Backpropagation use partial derivatives
to compute the derivative of the cost
function J with respect to all the
weights.

25.2.2017 INF 5860 9

UiO S Department of Informatics
University of Oslo

Gradients and partial derivatives

f(x,y):xy—>ﬂ— ﬂ:x

oX oy
f(x,y)=x+y—>a]c =1—=1
OX

f (%, y)= max(x, y) = 9= 1(x = y) 2= = 1(y = x)
OX oy

f(X,y,2)=(x+Yy)zLetq=x+yand f =z and use the chain rule :
of of oq
oX 0q oX

25.2.2017 INF 5860 10

UiO S Department of Informatics
University of Oslo

Backwards propagation of gradients

-2
X
93
12
y — 2 f
oA
: of

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 1"

UiO S Department of Informatics
University of Oslo

Backwards propagation of gradients

-2
X
9 3
12
Yy — % f
oA
. P of
of
0z 3

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 12

UiO S Department of Informatics
University of Oslo

Backwards propagation of gradients

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 13

UiO S Department of Informatics
University of Oslo

Backwards propagation of gradients

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 14

UiO S Department of Informatics
University of Oslo

During
backpropagation, the
node will learn oL
£l
The gate uses chain
Activations rule to redistribute this
gradient to its inputs

oL oJL oz

OX 07 OX
y
0z
oL oL oz
oy 0z oy

Green numbers: forward propagation
Red numbers: backwards propagation

25.2.2017 INF 5860 15

UiO S Department of Informatics
University of Oslo

Activation functions

« Reading material:
— c¢s231n.github.io/neural-networks-1
— Deep Learning: 6.2.2 and 6.3

« Active area of research, new functions are published annually.
We will consider:

— Sigmoid activation
— Tanh activation
— RelLU activation

— And mention recent alternatives like:
 Leaky RelLU
* Maxout
- ELU

10.3.2017 INF 5860

UiO S Department of Informatics
University of Oslo

Data preprocessing

« Scaling of the features matters:
« |f we have the samples

Xi: i
101, 101: 2
101,99: 0O
Original Xi: Vi
1,12 Error surface
1,-1: 0O
Scale to Q

Zero mean
Error surface

10.3.2017 INF 5860

17

UiO S Department of Informatics
University of Oslo

Data preprocessing

« Scaling of the features matters:

« |f we have the samples
Xi: i
0.2,10: 2
0.2,-10: O
Original Xi: i
1,1: 2
1,-1: 0O

Normalize Q

to unit variance

Error surface

Error surface

10.3.2017 INF 5860

18

UiO S Department of Informatics
University of Oslo

Weight initialization

 Avoid all zero initialization!

— If all weights are equal, they will produce the same gradients and
same outputs, and undergo exactly the same parameter updates.
* They will learn the same thing.

 We break symmetry by initializing the weights to have small random
numbers.

» [|nitialization is more complicated for deep networks

10.3.2017 INF 5860 19

UiO S Department of Informatics
University of Oslo

Batch normalization

« So far, we noticed that normalizing the inputs and the initial weights to
zero mean, unit variance help convergence.

» As training progresses, the mean and variance of the weights will
change, and at a certain point they make converenge slow again.

— This is called a covariance shift.

« Batch normalization (loffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

« After fully connected layers (or convolutional layers),and before the
nonlinearity, a batch normalization layer is inserted.

« This layer makes the input gaussian with zero mean and unit variance
by applying _,

X, =
‘ ar(x,)

10.3.2017 INF 5860 20

UiO S Department of Informatics
University of Oslo

Dropout

* Presented in

http://imlr.org/papers/volume15/srivastaval4al/srivastavai4a.pdf

* Achieves a similar effect as bagging by randomly setting the output of
a node to zero (by multipying with a random vector of zeros with

probability p).

(b) After applying dropout.

Example: cat class with nodes detecting
- Eyes

- Ears

- Tai—

Fur

Legs

- Motth—

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.

Crossed units have heen dropped.

24.3.2017 INF 5860

21

UiO S Department of Informatics
University of Oslo

Dropout - training

« Choose a dropout probability p

 We can drop both inputs and nodes in hidden layers.

« Create a binary mask for all nodes with probability of zero=p.
« Consider a 3-layer network with dropout in the hidden layers

Forward pass of 3-layer net

H1 = np. maximum(0,np.dot(W1,X)+b1)

U1 = np.random.rand(*H1.shape)<p # first dropout
H1 *=U1

H2 = np.maximum(0,np.dot(W2,H1)+b2)

U2 = np.random.rand(*H2.shape) < p # Second dropout
H2 *=U2

out = np.dot(W3,H2) +b3

« Backpropagate as usual, but take into account the drop.

24.3.2017 INF 5860 22

UiO S Department of Informatics
University of Oslo

Dropout — predict : naive implementation

« A drop rate of p will scale the outputs during training with a
factor p<1.

 When we predict new data, without considering this scaling, the
outputs will be larger.

 We have to scale the outputs during predict by p:

predict

H1 = np.maximum(0,np.dot(W1,X)+b1)*p
H2 = np.macimum(0,np.dot(W2,H1)+b2)*p
out = np.dot(W3,H2)+b3

Since test-time performance is critical, we normally apply
«inverted dropout» and scale at training time.

24.3.2017 INF 5860 23

UiO S Department of Informatics
University of Oslo

Inverted dropout

p=0.5

#train

H1 = np.maximum(0,np.dot(W1,X)+b1)

U1 = (np.random.rand(*H1.shape)<p)/p #Scale now

H1*= U1l

H2 = np.maximum(0,np.dot(W2,H1)+b2)

U2 = (np.random.rand(*H2.shape) < p) / p # Second scaled dropout
H2 *= U2

out = np.dot(W3,H2)+b3

predict

H1 = np.maximum(0,np.dot(W1,X)+b1) #No scaling necessary
H2 = np.macimum(0,np.dot(W2,H1)+b2)

out = np.dot(W3,H2)+b3

24.3.2017 INF 5860

24

UiO S Department of Informatics
University of Oslo

Learning with minibatch gradient descent

« Setting the learning n rate is difficult, and the performance is
sensitive to it.

— Too low: slow convergence
— Too high: oscillating performance

* |In practise when using minibatch gradient descent: decay the
learning rate linearly until iteration z, then leave n . constan;:

- n,=(1-0) n o+ a n ., where a=k/t,

24.3.2017 INF 5860 25

UiO S Department of Informatics
University of Oslo

Gradient descent oscillations

50

40 ¢

30 _5__:_::: :___E:—:__ ————— _—::—__:—___: ::__:_
me——a ==

A == -
N
N

n =0.19

50

40 £

30

20 *::::_;

Wi
I

This is how gradient descent moves

24.3.2017 INF

5860

UiO S Department of Informatics
University of Oslo

Gradient descent with momentum

v=mu™v - learning_rate*df # Integrate velocity
f+=v #Integrate position

* Physical interpretation: ball rolling downhill
* mu: friction coefficient

 mu normally between 0.5 and 0.99
— Can gradually decrease from 0.5 to 0.99 e.g.

* Allows velocity to build up in shallow directions, but is
dampened in steep directions because of the sign changes.

24.3.2017 INF 5860 27

UiO S Department of Informatics
University of Oslo

Nesterov momentum

* |dea: if we are at point x, with momentum the next estimate is x+mu*v
due to velocity from previous iterations.
 Momentum update has two parts: v=mu*v - learning_rate*df
— One due to velocity, and one due to current gradient

» Since velocity is pushing us to x+mu*v, why not compute the gradient
at point x+mu*v, not point x? (Look ahead)

Xx_ahead = x + mu*v #0nly the velocity part
Evaluate the gradient at x_ahead

vV = mu*v — learning_rate*dx(x_ahead)
X+=V

24.3.2017 INF 5860 28

UiO S Department of Informatics
University of Oslo

AdaGrad updates (DL 8.5.1)

* From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
» Keep a cache of elementwise squared gradients g=dx

Adagrad update
cache += dx™*2
X += -learning_rate * dx/(np.sqgrt(cache)+1e-7)

* Note that x, dx and cache are vectors.

« cache builds of the accumulated gradients in each direction.

— If one direction has large gradient, we will take a smaller step in that
direction.

« A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
— Use RMSprop or ADAM instead

24.3.2017 INF 5860 29

UiO S Department of Informatics
University of Oslo

RMSprop update

« DL8.5.2and
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf

RMSprop update

decay =0.9

cache = decay*cache + (1-decay)*dx**2

X += -learning_rate * dx/(np.sqrt(cache)+1e-7)

« Here cache is a moving average of the gradients for each weight
» Works better than AdaGrad.

24.3.2017 INF 5860

30

UiO S Department of Informatics
University of Oslo

ADAM update

« DL 8.5.3 and https://arxiv.org/abs/1412.6980
« Like RMSprop but with momentum

ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001

initialize first and second moment variables
s=0, r=0

tau = t+1

s = rho1*s + (1-rho1)*dx

r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)

rb =r/(1-rho2**tau)

X = X — eps*sb/(sqrt(rb) +1e-8)

24.3.2017 INF 5860

31

