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Reading material

The lecture is based on papers:

Deep Dream: https://research.googleblog.com/2015/06/inceptionism-going-
deeper-into-neural.html

https://blog.keras.io/how-convolutional-neural-networks-see-the-
world.htmi

Zeiler and Ferqus 2013
Springberger et al. (2015)

http://cnnlocalization.csail.mit.edu/Zhou Learning Deep Features
CVPR 2016 paper.pdf

Visualising explanations from Deep Networks via gradient-based
localication

Simonyan, Veldaldi, Zisserman

Understanding deep image representations by inverting them
Multifaceted Feature Visualization

A neural algorithm of artistic style

Perceptual losses for real-time style transfer and super-resolution
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Today — overview of many methods

e Visualization filters

« Visualizing activations:
— Oceclusion experiments

« Visualizing class activation maps
— Guided backprop
— Gradcam

« Gradient with respect to the image

— Saliency maps
* Fooling the network (more in a later lecture)
« Feature inversion

* Neural style transfer
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Introductory read

« https://blog.keras.io/how-convolutional-
neural-networks-see-the-world.html
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What do the layers learn?

What does these intermediate features look like?
Can this help us gain confidence in what the network learns?
How can we fool the network?

INF 5860
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Visualizing filters

Visualizing the filters directly
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Can we visualize the filters
themselves?

e Useful for the first couple of layers, then
difficult
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The weights of layer 1 Alex-net

96 filters of size 11x11x3
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Check it out at

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.htmi

input (32x32x3) Activations:
max activation: 0.45686, min: -0.45295
max gradient: 0.01512, min: -0.01435

conv (32x32x16) Activations:

filter size 5x5x3, stride 1 , !
max activation: 2.73235, min: -3.59482
max gradient: 0.00376, min: -0.0037
parameters: 16x5x5x3+16 = 1216 :
N N\ \ i
Activation Gradients:

Weights:
BENCENSNSANEEEED
Weight Gradients:
FUVEEE VRS RNE [ ]
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conv (16x16x20)

filter size 5x5x16, stride 1

max activation: 3.9723, min: -7.03267
max gradient: 0.00261, min: -0.00266
parameters: 20x5x5x16+20 = 8020

Activations:

SR SR AN YR NN S N

Activation Gradients:

Weights:
{lJiEIIIIIIIHIHHIHII-IIIEIIIIIIIHIHIIIIEII
INNSNTFELND)(CAS SN ANSE SIS (UNENENEREE T NS4
HE)(ENSIRRARVO AR YR )(BEDESCANELNSRNISE) (3NN
AVLUANASOTR)(EENENE NSNS TS VPR (AT N
PO T )l O Y ) W 0 0 1 o DV ) (M
HENNASINEIEEL) (N SEATE ISR ) (AR N AR
TEMVEN) ARV AR ENInTeI AN e ) (N
AN NN N TR N ) (NOEEEEEN
INEEEuNN)

Weight Gradients:
(MEENEIENEANN AN (AN N AN TN ) (NN ETE
DN EN)( SR NN ) (RN MR R N
BTN FEM L ML LODe ™) (IR EEYE NN A SE)( -
BT RLL "Boafu)( @ PRI VSLALE, ) LU NHHE- YR Y
) (O ) (T L N ) (O
AN PN D) RS ENLD N ) (AN N
EENEEN)(EEEFEr ISR ) (NP PN R EE )
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Visualizing the final layer

Visualizing the features just before softmax




UiO ¢ Department of Informatics

University of Oslo

Visualizing the final FC layer in Alex-

net

/1 s \| > - (i3 3Q: y
// A - 3 -~ £\
-
/ [ Nl 7 192 192 128 ||
/| 48 128 ;/ 2048
11 Y|/ 5 27 \/A ]
y ¢ X 13 13 13
3 — B A\
1 17 3y,
224 s{\|7, 7 3 N _ A
s \ T 3 - 3 >
11 M) % 7 13 N~ 13 - 7 13 ense | [dense
IN > 3N M=) AL~
X N _ - 192 192 128
- 128 Maxl- 2048
224\ |Istrid Max Max pooling
{of 4 s | POOIiNg pooling

Classification (softmax) is done on 4096 features
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Nearest neighbors in feature space FC7

« Propagate a lot of images through the net, and store the

features
« Take the 4096 features in FC7 for a given image, find the K-
nearest neighbors in feature space FC7 and display those.

INF 5860
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Visualizing which pixels are most
Important for a class

Occlusion experiments
Saliency maps

| P .

| L\_\
INF 5860 kfl
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Occlusion experiments

 Create a small patch of zeros.

« Slide this over the image and zero out pixels
Inside the patch.

e Classify all these images.

e Record how the probability for the given
class change over the image as the mask
shifts.

INF 5860
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Zeiler and Fergus 2013 — occlusion experiments

(a) Input Image (b) Layer 5, strongest feature map

True Label: Afghan Hound
W s

INF 5860
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Deconvnet (Zeiler and Fergus 2013)

 Go through the CONVNET
operations in reverse order

Layer Above
Reconstruction Pooled Maps

Switches Ay

 Each layer has a deconv- ——/ N\ 4  Mexpoolng
. Max Unpooling 'y ‘ )|ﬁ F
O pe ratl O nS . l Unpooled Maps Rectified Feature Maps |
» To visualize ONE activiation: Rectifed Unear | "l\ Rectfied Unear
— Set all other activations in this layer to 0 l Rmkwnmge;Mam | | it |
— Use feature map as input to deconvnet Convolutional | 4" Convolutional
. . . Filtering {F'} I L \ Filtering {F}
— Unpool using switching
) . ‘ Reconstruction ‘ l Layer Below Pooled Maps [
— Rectify using a ReLU : .
—  Filter with the transpose of the weight
. lr..l_\ er :\,h:‘w ¥ I H Pooled Maps
matI'IX Reconstruction I& L) ¥
— Continue to input and display the Unpooling 3 Pooling
resulting image. i - o-irnvnr-sallll H S
U \F' B

Unpooled Rectified
Maps Feature Maps

Visualizing and understanding
convolutional networks
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DECONVNET: Gradient of a neuron with respect to the
Image

h:

S

é |
- —
- —

- —

3
15|
}#

Treat the image as a variable and the
network weights as constants

1. Run the image through the network

2. Set the gradients at the layer you want
to be zero, except for the neuron of
interest

3. Backprop all the way back to the
image
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Zeiler and Fergus - visualizations

e See details:

 Visualizing and
understanding
convolutional networks

INF 5860

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) ex%ration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Zeiller and Fergus results

(c) Layer 5, strongest {d) Classifier, probability (e) Classifier, most

(a) Input Image (b) Layer 5, strongest feature map feature map projections of correct class probable class

W Pumkraiin|
B Towms ball
O Eeeshond
W Fokinose

B True Label: Car Wheel
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Guided backprop

o Springberger et al. (2015) has a couple of
Interesting points

— They show that pooling can often be replaced by
strided convolution

— They show that deconv can be improved by only
backpropagating positive gradients (called Guided
backprop)

INF 5860 22
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Guided backprop vs. deconv

. From https://arxiv.org/pdf/1412.6806.pdf

a) Forward pass | b)

Input image " — £ > f! | Forward pass
I

Feature map |

Backward pass

Reconstructed oo I
image R’ N m “_RHI— R" I
9 0|2 Backward pass:
| backpropagation
____________________ |
C} : o 1 o R 4 ROt T |
activation: £ =relu(f;) = max(f;,0) I
: B _ qpout | Backward pass:
backpropagation: B! = (f/ = 0). REJ", where R = "——_-;j:r_] : “deconvnet”
'r. 1
backward L _ L el !
'‘deconvnet": By B I
| Backward pass:
guided R=(fl>0). (R ) . pi+ | guided
backpropagation: ~ % ‘'t 7 4 » backpropagation
I

INF 5860
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Deconvnet vs. Guided backprop

More focused

Deconvnet Guided backprop

INF 5860
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Results with guided backprop for different
channels
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Visualizing class activation maps
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CAM - Class activation mapping
http://cnnlocalization.csail.mit.edu/Zhou Learning Deep Featu

VVI *

res CVPR 2016 paper.pdf

Main idea: Replace fully connected layers with convolutional
layers and global pooling to facilitate visualizing features

Class Activation Mapping

g A

INF 5860

7| (Ol |

14 I el Australian
C C C C ' == O*_\\, D. terrier
O ® O O GAF ~ 3 / .
N N N N o / :
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V V n
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Class
Activation
Map

(Australian terrier)
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CAM — main principles

 Normally: FC->Softmax (no RelLU)
CAM.:

f: activation of node k in last conv-layer

Global average pooling: Fk=%, , f, (X,y)

Input to softmax for class ¢: S;=X,w,° F, - Zw,° Z, | f, (X,y)
Define Class Activation Map, M/ (x,y)= Z,w,° f, (X,y)

This gives a pixelwise importance of pixel (x,y) for class ¢

INF 5860
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GradCam

« Visualising explanations from Deep Networks via
gradient-based localication

« Drawback of CAM: only works for pure convolutional

architectures with general average pooling before
softmax.

e GradCAM: use gradients flowing into the last conv-
layer.

INF 5860 29
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GradCAM principles

 Start with the score for class ¢ before softmax y,

« Compute the gradient of this with respect to the feature maps
A, of a conv-layer.

« Then apply GAP of these for all locations to get a weight o, ©

« Then getthe GradCAM localization map as RelLU of a linear
combination Ak and o€

INF 5860 30
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GradCAM

(g) Original Image (h) Guided Backprop ‘Dog” (i) Grad-CAM ‘Dog’

INF 5860 31
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Guided Grad-CAM

 Grad-CAM fails to show fine details like Guided backprop

e Guided Grad-CAM fuses Guided backprop and Grad-CAM
using pointwise multiplication

Guided Grad-CAM

Rectified Conv
Feature Maps

FC Layers

y

ﬂ!‘lger Cat

Y

a A cat lying on
SRS the ground
Is there a cat?
P RNN/LSTM L

Image Classification

(or)

Image Captioning

(or)
Visual

Question Answering
(or)

Figure 2: Grad-CAM overview: Given an image and a class of interest (e.g.. “tiger cat’ or any other type of differentiable output) as input, we forward propagate the image
through the CNN part of the model and then through task-specific computations to oblain a raw score for the category. The gradients are set to zero for all classes except the
desired class (tiger cat), which is set to 1. This signal is then backpropagated to the rectified convolutional feature maps of interest, which we combine to compute the coarse
Grad-CAM localization (blue heatmap) which represents where the model has to look to make the particular decision. Finally, we pointwise multiply the heatmap with guided
backpropagation to get Guided Grad-CAM visualizations which are both high-resolution and concepl-specific.

See https://arxiv.org/pdf/1610.02391.pdf

INF 5860
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Guided Grad-CAM

(b) Guided Backprop ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog”  (j) Guided Grad-CAM *Dog” (k) Occlusion map for ‘Dog’ (1) ResNet Grad-CAM ‘Dog’

INF 5860 33
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Applications for image gradients

Gradient ascent with respect to the image
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Creating saliency maps

e Simonyan, Veldaldi, Zisserman

« Goal: find the parts of a L2-regularized image such
that the score S, for class ¢ a maximized.

arg m}ax Se(l) — )\HIH%:

e Question they rise: What is the spatial support for
class c in a given image®?

INF 5860
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Simonya — taking the derivative with respect
to image | to create saliency maps

If we had a vectorized linear layer, the size of w, for each pixel
would tell the importance of the pixels with the largest weights.

S.(I) =wlI +o,,
Locally, around pixel |, this is approximated bv a Taylor-

expansion around I, S.(1) Tr4p
c ~ W 3

w is the derivative of Sc with respect to image | at the point (or
image) |, : 5S.
mw = .
oI |,

The derivative of S_ with respect to | tells us which locations
require the smallest change to affect the score S, the most.

INF 5860
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Simonya — create saliency maps

« Given an image |, and a class c:

 Create a saliency map M as:
— Compute w by backpropagation
— Reshape elements in w to match pixel locations
— Take max magnitude across color channels

INF 5860
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Simonyada: Class saliency maps

a - -

e i
2 -

- gz A

d - r-l 4,
g A - -
| T e M »
. - N | ol

 Examples from https://arxiv.org/pdf/1312.6034.pdf
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Gradient ascent with respect to the
iImage
e Simonyan, Veldaldi, Zisserman

» Goal: find an image such that the score S, for class
C a maximized.

arg max S.(I) — A||T|3,

INF 5860
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Optimizing image - Gradient ascent on
iImage

When you have the image gradient you can
iterate with gradient ascent, to get very
“catty” pictures...

They often look weird:

- Most images are not natural images
- Many cats are more cat than one cat :)

washing machine computer keyboard kit fox

goose ostrich
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Optimizing image - Gradient descent on
iImage

- Adding blur between each iteration ‘
- Natural images usually don’t have very
high frequent information y :
Setting pixels close to zero to zero ]

removes some of the “overlapping” effects Flamingo Pelican Hartebeest Billard Table
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Accounting for variations

- A tie neuron/output can respond to many different situations
- A neuron is often reused for many different classes
- This can contribute to noise in the visualizations

Multifaceted Feature
Visualization
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Accounting for variations

A possible approach:
1. Run images through the network
2. Save activations at a given layer
3. Do dimensionality reduction
4

. Then clustering
a. You find images with similar
representation on that level

5. Find average image of each cluster
Start optimization with this average
image 218

<

Recon 4 nearest =T 4 nearest
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Accounting for variations

- You find neurons that represent ties or
theaters

- You find different variations that the
neuron is invariant to.
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Feature inversion

M°

Jd.
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Feature inversion
What I1s stored In a set of neurons

- Find an image that gives same
response/similar features

- How much is stored in the weights and
output layer?

- Important for privacy
- Important to see what the network includes
and excludes

Understanding deep image
representations by inverting them
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Feature inversion

Understanding deep image representations by inverting them

* From the features inside the net — can we
reconstruct the image?

» Given a feature representation ®,, reconstruct x as
r = argmingl(©(z),0¢) + AR(\)
 |is the Euclidean loss:

1(©(2), 00) = 2L 20!

 With TV (total variation)-regularization:

‘ 2 , 2 TJ
Rys(Xx) = Z ((il’-i.j+1 — ;)" + (J-"i+1.j = l‘zj) )

1,]

» Solve using gradient descent
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Feature inversion:
Reconstruction from different layers

t/ fl \&f/ N \! \ﬁ\%'\j

w.‘._
s 3
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Applications for image gradients

Visualizing activation/Dreaming?
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Optimizing on a pre-existing image

- If you optimize on a pre-existing network it
can have strange effects
- Optimize for a activation channel
- Optimize for whole final output
- Optimizing for whole final output
- Smallest change to the image that affect

the output most
- The traits a network first “discover” will be

enhanced

Full code in tensorflow notebook:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/exa
mples/tutorials/deepdream/deepdream.ipynb
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DeepDream

https://research.googleblog.com/2015/06/inceptionis
m-going-deeper-into-neural.html

Start with either a noise image or a natural image.
Forward propagate the image to a given layer.

Modify the gradient of this layer to equal its activation
. see more of what the layer sees

Add some tricks
Backward propagate and update image

51
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Just for fun

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

search.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.htmi

52
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Have a look at the Inception Gallery

INF 5860
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Some cool examples
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More dreaming....

Towers & Pagodas

Buildings
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Applications for image gradients

Fooling a network
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Fooling a neural network

- Adding small values to every pixel gives large change in euclidian
distance

- Network representations are different than human representation
- This is not inherent to deep learning or neural networks

+ .007 x
p : T+
- sign(VzJ(0,z.y)) esign(Vz.J(0. z.y))
“panda” “nematode” “gibbon™

57.7% confidence 8.2% confidence 99.3 % confidence
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Is there a fix?

Forcing perturbed images to give similar representations at
different levels

Training on adversarial examples

Adding noise to training

Adding noise and smoothing on input images

+.007 x §

- - T+
* sign(V2J(@,z,y)) esign(VJ(0.x.y))
“panda” “nematode™ “gibbon™

57.7% confidence 8.2% confidence 99.3 % confidence
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A final solution is hard

- If you have access to the gradient, there will alway be
some “small” direction that can fool the network
- This is not inherent for deep learning, but also exists in

other machine learning models

+.007 x

) +
- sign(V.J(8.z.y)) fsign(V: J(0.z.y))

“panda” “nematode” “gibbon™

57.7% confidence 8.2% confidence 99.3 % confidence
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Visualization

Neural style transfer
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Background: texture synthesis

e Constructing an image from a small texture sample
e What is texture (From INF 4300)?

What is texture?

e Intuitively obvious, G LR
i o . patterns of more or
but no precise definition exists mm | iess accurate
- "fine, coarse, grained, smooth” etc repetitions of some
basic texture element,
e Texture consists of texture primitives, texels, called texels.”

— a contiguous set of pixels with some tonal
and/or regional property
¢ Texture can be characterized by
— intensity (color) properties of texels
— Structure & spatial relationships of texels

e A texel is the characteristic object
that the texture consists of (the "brick in the wall”)

e Textures are highly scale dependent.

F231.08.17 INF 4300 5

INF 5860

61



UiO ¢ Department of Informatics
University of Oslo

Classical texture descriptors: Grey-Level Co-

occurrence Matrix

« Create a matrix of the co-occurence of a change in graylevel fromi to
] when moving distance d in direction 4.

« Dimension of co-occurrence matrix is GXG (G = gray-levels in image)
« Choose a distance d and a direction &

— Inthis example,
d=1 and 6=0

INF 4300 62
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GLCM example (from INF 4300)

50 100 150 200

50 100 150 200

250

250
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exture synthesis

e Task: given a texture sample, generate
Images with similar texture

An Introduction

e Traditional methods need texture models
— Markov models, pyramids, wavelets......

INF 5860 64
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Texture synthesis by deep learning

 Deep nets are well suited for creating texture
iImages.

* One very Iinteresting application is to
generate artificial images combining an
Image and a painting style (a texture).

* This Is called Neural Style Transfer

INF 5860
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Neural Style Transfer — Content-style
loss

e A neural algorithm of artistic style

« Given a texture image with feature F;! at level |

Do gradient descent on a noise image to create features Pij'
 Measure the content loss between the feature representation

y I—content =1/2 Zij(Filj — Pilj)2

INF 5860 66
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Gram matrices of the filter responses

e Build a style representation on top.

* [For each layer, efficiently compute a measure of similarity
between filters using Gram matrices:

° Gilj = 2k FlI; Fjlk

» Generate another image that models the style representation of
an artistic image by minimizing the MSE of the two Gram-
matrices G and A:

2
e E; =const Zij(Gilj.Aﬁj)
e Set the style loss:

¢ Lstyle = ZlWlEl

INF 5860 67
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Combine the two images

« Minimise the feature distance between a
noise image from the content image and the
style representation of a painting

* I—total = OLl—content T BLster

INF 5860
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Examples from Aneural algorithm of artistic style

69
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A faster algorithm

 Perceptual losses for real-time style transfer
and super-resolution

 Read detalls yourself.

INF 5860
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Learning goals today

« Have an overview of major techniques for visualization

« Know the limitations of visualizing filters directly

« Know that networks can be fooled

e You are not expected to know details of the presented methods
 Have some fun exploring them!

INF 5860 71



