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Today’s topics

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression – continued next week
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Today’s read

• Note on introduction to classification
– http://cs231n.github.io/classification

• Linear regression
– Deep Learning Chap 5.1 (brief introduction)
– More details: read

• http://cs229.stanford.edu/notes/cs229-notes1.pdf
(pages 1-7 and 16-19)

• Gradient descent
– Deep Learning Chap 4.3
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Relevant additional video links:

• https://www.youtube.com/playlist?list=PL3F
W7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
– Lecture 2 and 3
– Remark: they do not cover regresion.
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Image classification - introduction
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DOG

Task: use the entire image to classify the image into one of a 
set of known classes

Which object does the image contain



Where we currently are

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression
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From last week: k-Nearest-Neighbor
(KNN) classification
• Classification of a new sample x(i) is done as follows: 

– Out of N training images, identify the k nearest neighbor images 
(measured by L1 or L2) in the training set, irrespectively of the
class label.    

– Out of these k samples, identify the number of images kj that
belong to class j , j:1,2,....M (if we have M classes)

– Assign x(i) to the class j with the maximum number of kj samples. 
• k should be odd, and must be selected a priori. 
• The distance measure and k are hyperparameters. 



• L1-distance

• L2-distance 

Measuring similarity between two images
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L2 is called Euclidean distance

݀ଵ=∑ ∑ 1ܫ ݅, ݆ െ ,2ሺ݅ܫ ݆ሻ௝௜



KNN 

• The KNN-classifier is mostly used for small datasets. 
• There is no training, but classifying/predicting new

data is slow as the size of the training data 
increases. 

• The parameter k (and possibly the distance
measure) should be found by cross-validation. 
– IF we have large amounts of data we will have a separate 

validation set, but we avoid using KNN for large datasets. 
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Is KNN robust to changes in position, 
color, shape, contrast?
• All these images have the same L2-distance 

from the original. 
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Where are we

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression
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Selecting k using cross-validation
• For each value of k:

– Cross-validation: split the training data into d subset/folds
– Train on data from d-1 folds , 
– Estimate the accuracy/compute the number of correctly classified

images on the last fold , store the accuracy.
– Repeat this nfold times and compute for the average of the

accuracies.

• Repeat with different values of k, select the value that got the highest
accuary.

• Now train on the entire dataset using this value of k, then classify the test 
data set ONCE to get the accuracy of the classifier. 
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• Example: 10000 training images, 5000 test images.
• Split training images into 10 folds of 1000 images.
• Train on 9 folds (9000 images), compute accuracy 

on the last 1000 images during cross-valiation.
• After finding k: train on all 10000, and estimate the 

reported accuracy on the 5000 test images. 
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Cross-validation plot
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For each value of k, show the
mean value and the standard 
deviation of the classification
accuracy



Where are we

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression
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Notation

• m – number of examples in the training data 
set

• nx – input size, dimension of the input data 
• ny – output size: typically number of classes
• Superscript x(i):  training sample number i, if x 

is a single measurement for each sample.
• Later for images: matrix notation for X for a 

set of m training images. 
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From linear regression to logistic 
regression for classification
• Logistic classification is done iteratively in a 

manner similar to neural nets.
• We study this method before proceeding to 

neural networks.
• First – a brief look at linear regression to 

introduce loss functions and gradient descent
minimization.
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The linear regression problem
• Predict the true values ݕ based on data 

vector ݔ from a training data set. 
• In regression, we want to predict ݕ

(a continuous number) based on data ݔ. 
– Example: Predict the population in 

Norway based on measurements from 
1990-2010. 

• Linear hypothesis

ොݕ ൌ ݔݓ ൅ ܾ

• Learning will be based on comparing ݕ
and ݕො
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ŷ

Training set, ܺ

Learning algorithm

Hypothesis

Estimated value

ݔ



Linear regression: training data set
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yi- iŷ

Blue: true data points
Red: estimated function

The distance between the true (blue) 
and estimated (red) value will be used 
to measure how good the fit is
This is Mean Square Error (MSE) if
summed over all samples.



Where are we

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression
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Error measure for learning linear 
regression: Mean square error(MSE)
• Mean square error over the training data set
• Training data: a set of m samples x={x(i),i,i==1..m}
• x(i) can consist of one of more variables/features, e.g. 

several measurements. 
ܬ ,ݓ ܾ ൌ ܧܵܯ ൌ ଵ

ଶ௠
∑ ොሺ௜ሻݕ െ ሺ௜ሻݕ ଶ௠
௜ୀ௜
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Gradient descent minimization

• Let’s see how gradient descent can be used 
to find w that mimize MSE. 

• Read Section 4.3 in Deep Learning. 

INF 5860 24



Gradient descent intuition
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*

Start from a point and take a step downhill in the steepest possible direction
Repeat this until we end up in a local minimum
If I start from a neighboring point, I should end in the same minimum



Gradient descent intuition
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*

If we start from a different point we might end up in another local minimum
For finding the direction, compute the local derivative in the point



Iterative minimization outline

• Have a function J(w,b) (can be generalized to more than two
parameters)

• Want to find w,b that minimize J(w,b)
• Outline

1. Start with some value of w,b (e.g. w=0,b =0) 
2. Compute J(w,b) for the given value of w,b and change w,b in a manner 

that will decrease J(w,b)
3. Repeat step 2 until we hopefully end up in a minimum
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Gradient descent principle
• Given a function J(w,b)  of several variables.
• The directional derivative in a given direction is the slope of J(w,b) in that

direction. 
• To iteratively minimize f, we want to find the direction in which f decreases the

fastest.
• This can be shown to be in the opposite direction as the gradient.

• So we can minimize f by taking a step in the direction of the negative 
gradient. 

• The gradient descent propose a new point where  is the
learning rate. 

• This is done iteratively in a number of iterations. 
• If  is too small, the algorithm converges too slow. 
• It  is too large, it may fail to converge, or diverge. 
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Back to linear regression
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Example function Countours of the function

Model hypothesis: ݕො ൌ ݔݓ ൅ ܾ



Gradient descent for linear regression
• Let w and b be the unknown two parameters in the linear model: 

ොݕ ൌ ݔݓ ൅ ܾ
• We want the minimize the criterion function, ܬሺݓ, ܾሻ, by computing the

derivate with respect to w and b, and set the derivative to 0. 

ܬ ,ݓ ܾ ൌ
1
2݉	෍ ො௜ݕ െ ௜ݕ ଶ

௜

ൌ
1
2݉	෍ ௜ݔݓ ൅ ܾ	 െ ௜ݕ ଶ

௜

• This is a quadratic (convex) function and we can find the global 
minima.

• Remark: in the literature you will see  used as a vector of all 
parameters.
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Gradient descent for linear regression
Univariate x – a single feature/gray level

• Here we sum the gradient over all xi in the training data set. 
• This is called batch gradient descent.
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Gradient descent algorithm for one 
variable x 
Gradient descent
repeat until convergence

ݓ					 ൌ ݓ െ ߝ ఋ௃
ఋ௪

=

ݓ	= െ ߝ ଵ
௠
∑ ሺ௜ሻݔݓ ൅ ܾ௜ ሺ௜ሻݔ

ܾ ൌ ܾ െ ߝ ఋ௃
ఋ௕

=  bെߝ ଵ
௠
∑ ሺ௜ሻݔݓ ൅ ܾ௜

Linear regression model
y=wx+b
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Example of J(w,b) for a general line 
(y= w x+ b)

INF 5860 33



The result from gradient descent
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The value of J overlaid the values of w,b
after every 50th iteration
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J as a function of iterations

INF 5860 36



Implementing gradient descent

w ൌ ݓ െ ߝ
1
݉෍ ሺ௜ሻݔݓ ൅ ܾ

௜

ሺ௜ሻݔ

b ൌ b െ ߝ
1
݉෍ ሺ௜ሻݔݓ ൅ ܾ

௜
• The sum over all samples x(i) can be done on vectors

using np.sum() and other vector operations. 
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Gradient descent in practice: finding 
the learning rate
• How do we make sure that the optimization runs correctly? 

– Make sure J decreases! Plot J as a function of the number
of iterations

• Computation of J should also be vectorized

• J w, b ൌ ଵ
௠
∑ ሺ௜ሻݔݓ ൅ ܾ െ ሺ௜ሻݕ ଶ
௜

– If  is too small: slow convergence
– If  is too large: may not decrease, may not converge
–  is a number between 0 and 1, often close to 0 (try

0.001,…0.01,….0.1,….1)
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Where are we

• KNN (K- nearest neighbor)
• Crossvalidation
• Linear regression
• Loss functions
• Minimize loss functions using gradient 

descent
• Logistic regression
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Introduction to logistic regression

• Let us show how a regression problem can be 
transformed into a binary (2-class) classification
problem using a nonlinear loss function.

• Then generalize to multiple classes (next week).
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Introduction
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What would linear regression give?

• Maybe we would threshold this?
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Cod=1

Herring=0 x xx
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x

Threshold: if wx+b<0.5: class 0, otherwise 1



What would linear regression give?
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What if we fitted it to a function f(x) that is 
close to either 0 or 1?
• Hypothesis h(x) is now a non-linear function of x

Classification: y=0 or 1
Threshold h(x): if h(x)>0.5 : set y=1, otherwise set y=0

• Desirable to have h(x)≤1
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Logistic regression model

• Want 0≤ h(x)≤1 (binary
problem)

• Let
• ݄ ݔ ൌ ݃ ݔݓ ൅ ܾ

• ݃ ݖ ൌ ଵ
ଵା௘ష೥

• ݄ሺݔሻ ൌ
ଵ

ଵା௘షሺೢೣశ್ሻ

• g(z) is called the sigmoid 
function
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Decisions for logistic regression

• Decide y=1 if h(x)> 
0.5, and y=0 otherwise

• g(z)>0.5 if z>0
– wx+b>0

g(z)<0 if z<0
wx+b<0

INF 5860 46

 

x

z

T

T

e
Xh

e
zg

xgXh



 













1
1)(

1
1)(

)(

݄ ݔ ൌ ݃ ݔݓ ൅ ܾ
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An example with 2 features
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X(i,2)

X(i,1)

Predict y=1 if X(i,1)+2X(i,2)-4≥0

Decision boundary X(i,1)+2X(i,2)-4=

If we KNOW b, w1 and w2, 
classification is based on which
side of the boundary we are on.

݄ሺܺሻ=g(b+w1X(i,1)+w2X(i,2))



Nonlinear boundary possible?

• The basic model gives a 
linear boundary.

• To get a non-linear 
boundary needed for this
example, higher order terms 
must be added
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Introducing a logistic cost function

• Training set

• How do we set the parameter vector to have 
high classification accuracy? 
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Logistic regression cost

Minimize

Due to the sigmoid function g(z), this is a non-quadratic function, 
and non-convex.
Set 
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Cost function for logistic regreesion

• We have two classes, 1 and 0.
• Let us use a probabilistic model

Let the parameters be =[w1,….wnk,b] if we have nk features.
• P(y=1|x,) = h(x)
• P(y=0,x)= (1- h(x))
• This can be written more compactly as 

p(y|x, ) = h(x)y(1- h(x)) 1-y
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Cost function for logistic regreesion

• The likelihood of the parameter values is

• It is easier to maximize the log-likelihood

• We will use gradient descent to maximize this, taking a step in 
the positive direction since we are maximizing, not minimizing
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Computing the gradient of the
likelihood function
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Here, we used the fact the g’(z)=g(z)(1-g(z))



Gradient descent of J()=-L()
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Mandatory exercise 1

• Available in few days.
• Complete two notebooks

– knn.ipynb and additional functions
• Can start as soon the the exercise is available

– softmax.ipynb and additional functions
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Next week

• Generalizing logistic regression to multiple 
classes

• Adding regularization
• Using it to classify images
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