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Today’s topics

* Multiclass logistic regression and softmax

* Regularization

* Image classification using a linear classifier.
 Link to probabilistic classifiers and SVM
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Relevant additional video links:

 https://www.youtube.com/playlist?list=PL3F
W7Lu3i5JvHMS8IjYj-zLFQRF3EO8sYV
— Lecture 2 and 3
— Remark: they do not cover regresion.
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From last week: Introduction to
logistic regression

* Let us show how a regression problem can be
transformed into a binary (2-class) classification
problem using a nonlinear loss function.

* Then generalize to multiple classes (next week).
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From last week:
What if we fitted it to a function f(x) that is

close to either O or 17
» Hypothesis hy(x) is now a non-linear function of x

Classification: y=0 or 1
Threshold hy(x): if hy(x)>0.5 : set y=1, otherwise set y=0

* Desirable to have hgy(x)<1

Cod=1

Herring=0 XX XX

length
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Logistic regression model

* Want O< hy(x)<1 (binary

problem)
e Let
e hy(x) =g(wx +Db)
. 1
* g(Z) " 1+eZ

1
hg(x) = 1+e-(Wx+b)

* d(z)is called the sigmoid
function
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Decisions for logistic regression

« Decide y=1 if hy(x)>
0.5, and y=0 otherwise

hy(x) = g(wx + b)

h,(X)=g(0"x)
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* 9(2)>0.5if z>0
— wx+b>0
g(z)<0 if z<0

wx+b<0

Here the compact notation 6 means the vector
of parameters [w,b]
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Loss function for logistic regreesion

« We have two classes, 1 and 0.

* Let us use a probabilistic model
Let the parameters be 6=[w,,....w,,,b] if we have nk features.

*  P(y=1]x,) = hyg(x)

*  P(y=0,x)= (1- hy(x))

« This can be written more compactly as
P(y[x, 6) = hy(x)¥(1- hye(x)) ¥
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Loss function for logistic regreesion

* The likelihood of the parameter values is

L(B) = p({F|X;0)

m
= e +90)
=1

m
(%) (1)

= T (he(=®))"" (1 = ho(?))"™"

i=1

* Itis easier to maximize the log-likelihood

(@) = logL(#)

m

— ZU(‘) l()g h(.l‘ll)) + (l —_ y(')) l““.l,(l a1 Ii(.l'“}))

=1

* We will use gradient descent to maximize this, taking a step in
the positive direction since we are maximizing, not minimizing
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Computing the gradient of the
likelihood function

]
Yy————(1-1y)

9(07z)
T —g(07x)

1 |
) ("’gw"‘.:-) ~ YT

= (y(1—-g(0"x)) = (1 —y)g(8"z)
(y — he(z)) £

1) -
—q(0'z
U%m r)

> .
? 0

1
1 —g(0"x)
1

g(0"z)(1 - g(0"x)—0"x

(HJ'

.I"]

Here, we used the fact the g’(z)=g(z)(1-g(z))

INF 5860

11



UiO ¢ Department of Informatics
University of Oslo

Gradient descent of J(0)=-L(0)

)(0) =—ﬂiy(i)loghg(xau)ﬂl— y(i))log(l—hg(xa,:))}

Tofind @: find @ that minimize J(&) using gradient descent
Repeat :

0, =0, —gﬂ
0,- 2= (0, (X (,) - YO i 1)

This algorithm looks similar to linear regression, but now
1

1+e

he(x) =

0" x
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Overfitting and regularization

For any classifier, it is a risk of overfitting to
the training data.

Overfitting:
— High accuracy on training data
— Lower accuracy on validation data.

This risk is higher the more parameters the
classifier can use.
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Example: polynomial regression

If a linear model is not sufficient, we can extend to allow higher-

order terms or cross-terms between the variables by changing

our hypothesis hy(x)

h,(X) = 0° + 6'x" + 67 (x')* + 6°(x*)°...
h,(x) = 6° + %" + 2/x*

20

— Truth
— Estimate
—ClI

=2
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The danger of overfitting

A higher-order model can easily 15
overfit the training data
For the higher order terms:

The higher the value of
the coefficients, the more the 0
curve can fluctuate
This is not valid for the first two
coefficients
Restricting only the value of 155

higher-order terms is difficult in
general (e.qg. for neural nets)
But we can restrict the
magnitude of the coefficients
(except 0,).
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Overfitting for classification

« Overfitting must be avoided for classifiation also — this is partly
why we start with simple linear models
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Regularization - intuition

0, + O, X + O,x°
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2 3 4
0, + O X+ 0,X" +0,X" +6,X

Suppose we add a penalty to restrict 6; and 0,
J(0) = %Zg‘“_l(hg(x (i,:)) - y(i)} +1006, + +1006),

To minimize, 6; and 6, must be small
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Regularized cost function

« Simplify the hypothesis by having small values for
04,.... 0,

10 = = 3 (0, (X - Y0 +236

* A Is the regularization parameter

* This is L2-regularization, later we will see
— Dropout, max norm...

« Remark: we do not regularize the offset b (also
called 6,
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What If A Is very large?

« Will we get overfit or underfit?
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Gradient descent with regularization:
linear regression

Tofind @: find @ that minimize J(&) using gradient descent
Note : NO penalty on 6,
Repeat :

0, =0, —8£
00,

0y = 0= 5= Y (X 0. ) - YO X G, 1)
0,=0,2l =3 (XN - YOKG )+ 20,
~01-0 2 )= 2 3 (X ()~ YK G )

m m iz
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Reqgularized logistic regression:
gradient descent

Repeat :

0y = 0= 5= Y (X () - Y0 X (1.0)

1 LN g - i
szgj_gaé((hﬁ(x(li')) Y(|))X(|,J))+m9j

h&(x) = 1+e_9TX
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Introducing classifying CIFAR images

« CIFAR-10 images: 32x32x3 pixels E:!

« Stack one image into a vector x of length 32x32x3=3072

« Classification will be to find a mapping f(W,x,b) from image
space to a set of C classes.

 For CIFAR:

[ pixell | " weight for pixel 1forclass1 K weight for pixel 3072 for class1 | T bl
X= W= b=

| pixel 3072 | | weight for pixel 1for class 10 weight for pixel 3072 for class 10 | b10
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Small example 2 classes

407
: 40 36 36 05 -1.2 01 20 2.1
Graylevel image = = = b=
16 12 16 1.0 02 -05 03 0.3
12

.
Score for class 1 B 05 -12 01 20|36 . 2.1 B 4.5
Scoreforclass2| 1.0 0.2 —-05 0.3[16| |03| |43.1
12

W: 2x4
One weight w(i,j) for pixel j for class i
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* If color image, append the r,g,b bands into
one long vector x.
* Note: no spatial information concerning pixel
neighbors is used here.
— Convolutional nets use spatial information.
* All images are standarized to the same size!

— For CIFAR-10 it is 32x32.

— If a classifier is trained on CIFAR and we have a
new image to classify, resize to 32x32.
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W for multiclass image classification
« Wis a Cx(n+1)-matrix (C classes, n pixels in the image plus 1
for b)

« We train one linear model pr. class, so each class has a
different W(c,:)-vector

« If W(c,:) is a vector of length (n+1)

1 b,  weight for pixel 1for class1 ... weight for pixel 3072 for class1 |
pixell
X= W =
| pixel 3072 | | be  weight for pixel 1for class C weight for pixel 3072 for class C |

Let the score for class s, be f(W,x)=W(c,:)x (b is included in W and
X)
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From 2 to C classes: alternative 1

« One vs. all classification:

— Train a logistic classifier hy /(x) for each class c to
predict the probability for y=c.

— Classify new sample x by picking the class c that

maximize
maxh, . (X)
C H

INF 5860
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From 2 to multiple classes: Softmax

 The common generalization to multiple clasess is the softmax
classifier.

« We want to predict the class label y={1,...C} for sample X(i,:), y
can take one of C discrete values, so it follows a multinomial
probability distribution.

« This is derived from an assumption that the probability/score of
class y=k is
h,(x) = p(y =k | x,0) =

Zeeij

i1

Oy x
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Softmax prediction/classification

* Assign each sample to the class that maximize the
score:

o7 x
e
h,(x) = p(y =k [X,0) =—

Zeeij

=

INF 5860
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Cross-entropy

* From information theory, the cross entropy between a
true distribution p and an estimated distribution q is:
H(p,a)=->_ p(x)logq(x)

« Softmax minimize the cross-entropy between the
estimated class probabilities and the ‘true’ distribution
(the distribution where all the mass is in the correct
class).

INF 5860
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Softmax

« From a training data set with m samples, we formulate the log-
likelihood function that the model fits the data:

10) = > Tog(p(y, 1 X (3., 0)

« We can now find 6 that maximize the likelihood using e.g.
gradient ascent of the log-likelihood function.
— Or we can minimize —(0) using gradient descent

« More details on deriving softmax next week (Ole-Johan)
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Cross-entropy loss function for softmax

* The loss function for softmax, including regularization:

x. = X(i,:)", the n pixel values for imagei , let 6, =W (}J,:), the row for class |

n

3O) =~ 3 T 1= log| ——— ||+ 2> YW, i)

¢ T
i=1  j=1 Zeﬁ| X i=1 j=0
=1

 |(y=j) is the indicator function that is 1 if y=j and zero otherwise.
« See http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
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Softmax prediction example

L; = —log( ijej)
unnormalized probabilities
cat 3.2 24.5 0.13 |- L.i=-log(0.13)
exp normalize =0.89
car 5.1 —— [164.0——— | 0.87
frog -1.7 0.18 0.00

unnormalized log probabilities probabilities

INF 5860
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Gradients of the cross entropy loss ,
including regularization

x. = X (i,:)", the n pixel values for imagei , let 0, =W (],:), the row for class |

V3, = Y K0 = D)= POy, = § 1% W))+ 26
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For those who want calculus..

« Computing the derivative of the softmax
function: see all details at

 https://eli.thegreenplace.net/2016/the-
softmax-function-and-its-derivative/
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Link to Gaussian classifiers

 |In INF 4300, we used a traditional Gaussian
classifier

— This type of models is called generative models,
where a specific distribution is assumed.
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FROM INF 4300:Discriminant functions
for the Gaussian density

« When finding the class with the highest probability, these functions
are equivalent: (x| @)P(@)
X | .
:(x) = P(a | x) = P AT
p(x)

0;(x)= p(x| @) P(«;)
g;(x)=In p(x| @) +InP ()
« With a multivariate Gaussian we get:
d

1 R 1
gi(x):_g(x_”i) 2 (X—ui)—5|n2ﬂ—§|n‘2i‘+|n P(w)

» If we assume all classes have equal diagonal covariance matrix,
the discriminant function is a linear function of x:
1 oo
(" oY)

uij,j+|n P(w;)
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Gaussian classifier vs. logistic regression

« These Gaussian with diagonal covariance and the
logistic regression/softmax classifier will result in
different linear decision boundaries.

 If the Gaussian assumption is correct, we will expect
that this classifier has the lowest error rate.

* The logistic regresion might be better if the data is
not entirely Gaussian.

« NOTE: SOFTMAX reduces to logistic regression if
we have 2 classes.
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Support Vector Machine classifiers

* Another popular classifier is the Support
Vector Machine (SVM) formulation, which
also can be formulated in terms of loss
functions

« The following foils are for completeness, only
a basic understand of the SVM as a
maximum-margin classifier is expected in this
course.
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Hyperplanes and margins

1,1_2
ol el I

1. Have a margin of

2. Require that all pixels are
correctly classified:

W X+w, =1, VXean,

W Xx+w,<-1, Vxeaw,

Background SVM

direction 2

* Goal: find w and w,

39
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Support Vector Machine loss

« A SVM loss function can be formulated by having as large
margin as possible.

« This is generalized to multiple classes so the SVM ‘wants’ the
correct class to have a score higher than the scores for the
incorrect classes by som margin A

 If s, is the score for class i, the loss function for SVM is

L = Zmax(o,sj —S, +A)  This is called the hinge loss

J#i
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SVM and gradient descent

* We can also solve the SVM using gradient descent
also, we will not cover this, but see
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
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FROM INF 4300:Discriminant functions
for the Gaussian density

« When finding the class with the highest probability, these functions
are equivalent: (x| @)P(@)
X | .
:(x) = P(a | x) = P AT
p(x)

0;(x)= p(x| @) P(«;)
g;(x)=In p(x| @) +InP ()
« With a multivariate Gaussian we get:
d

1 R 1
gi(x):_g(x_”i) 2 (X—ui)—5|n2ﬂ—§|n‘2i‘+|n P(w)

» If we assume all classes have equal diagonal covariance matrix,
the discriminant function is a linear function of x:
1 oo
(" oY)

uij,j+|n P(w;)
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Next week:

* Feed forward nets and learning by backpropagation

— Reading material:
» http://cs231n.github.io/neural-networks-1/
» http://cs231n.github.io/neural-networks-2/
» http://cs231n.github.io/optimization-2/
* Deep learning Chapter 6
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