
INF 5860 Machine learning for image classification

Lecture 3 : Image classification and regression
– part II
Anne Solberg 
January 31, 2018



Today’s topics

• Multiclass logistic regression and softmax
• Regularization
• Image classification using a linear classifier.
• Link to probabilistic classifiers and SVM 
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Relevant additional video links:

• https://www.youtube.com/playlist?list=PL3F
W7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
– Lecture 2 and 3
– Remark: they do not cover regresion.
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From last week: Introduction to 
logistic regression
• Let us show how a regression problem can be 

transformed into a binary (2-class) classification
problem using a nonlinear loss function.

• Then generalize to multiple classes (next week).
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From last week: 
What if we fitted it to a function f(x) that is 
close to either 0 or 1?
• Hypothesis h(x) is now a non-linear function of x

Classification: y=0 or 1
Threshold h(x): if h(x)>0.5 : set y=1, otherwise set y=0

• Desirable to have h(x)≤1
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Logistic regression model

• Want 0≤ h(x)≤1 (binary
problem)

• Let
• ݄ ݔ ൌ ݃ ݔݓ ൅ ܾ

• ݃ ݖ ൌ ଵ
ଵା௘ష೥

• ݄ሺݔሻ ൌ
ଵ

ଵା௘షሺೢೣశ್ሻ

• g(z) is called the sigmoid 
function
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Decisions for logistic regression

• Decide y=1 if h(x)> 
0.5, and y=0 otherwise

• g(z)>0.5 if z>0
– wx+b>0

g(z)<0 if z<0
wx+b<0
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Loss function for logistic regreesion

• We have two classes, 1 and 0.
• Let us use a probabilistic model

Let the parameters be =[w1,….wnk,b] if we have nk features.
• P(y=1|x,) = h(x)
• P(y=0,x)= (1- h(x))
• This can be written more compactly as 

p(y|x, ) = h(x)y(1- h(x)) 1-y
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Loss function for logistic regreesion

• The likelihood of the parameter values is

• It is easier to maximize the log-likelihood

• We will use gradient descent to maximize this, taking a step in 
the positive direction since we are maximizing, not minimizing

INF 5860 10



Computing the gradient of the
likelihood function
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Here, we used the fact the g’(z)=g(z)(1-g(z))



Gradient descent of J()=-L()
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Overfitting and regularization

• For any classifier, it is a risk of overfitting to 
the training data. 

• Overfitting: 
– High accuracy on training data
– Lower accuracy on validation data. 

• This risk is higher the more parameters the
classifier can use. 

•
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Example:  polynomial regression

• If a linear model is not sufficient, we can extend to allow higher-
order terms or cross-terms between the variables by changing
our hypothesis h(x)

INF 5860 14

12110

313212110

)(

...)()()(

xxxh

xxxxh















The danger of overfitting
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A higher-order model can easily
overfit the training data
For the higher order terms: 
• The higher the value of

the coefficients, the more the
curve can fluctuate

• This is not valid for the first two
coefficients

• Restricting only the value of
higher-order terms is difficult in 
general (e.g. for neural nets)

• But we can restrict the
magnitude of the coefficients
(except 0).



Overfitting for classification
• Overfitting must be avoided for classifiation also – this is partly

why we start with simple linear models
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Regularization - intuition
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Regularized cost function

• Simplify the hypothesis by having small values for 
1,…. n

•  is the regularization parameter
• This is L2-regularization, later we will see 

– Dropout, max norm…

• Remark: we do not regularize the offset b (also
called 0
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What if  is very large?

• Will we get overfit or underfit?
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Gradient descent with regularization: 
linear regression
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Regularized logistic regression: 
gradient descent
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Introducing classifying CIFAR images

• CIFAR-10 images: 32x32x3 pixels

• Stack one image into a vector x of length 32x32x3=3072
• Classification will be to find a mapping f(W,x,b) from image 

space to a set of C classes. 
• For CIFAR: 
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Small example 2 classes
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• If color image, append the r,g,b bands into
one long vector x. 

• Note: no spatial information concerning pixel
neighbors is used here. 
– Convolutional nets use spatial information. 

• All images are standarized to the same size! 
– For CIFAR-10 it is 32x32. 
– If a classifier is trained on CIFAR and we have a 

new image to classify, resize to 32x32.  
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W for  multiclass image classification
• W is a Cx(n+1)-matrix (C classes, n pixels in the image plus 1 

for b)
• We train one linear model pr. class, so each class has a 

different W(c,:)-vector
• If W(c,:) is a vector of length (n+1)

Let the score for class sc be f(W,x)=W(c,:)x (b is included in W and 
x)
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From 2 to C classes: alternative 1

• One vs. all classification: 
– Train a logistic classifier h,c(x) for each class c to 

predict the probability for y=c.
– Classify new sample x by picking the class c that

maximize
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From 2 to multiple classes: Softmax

• The common generalization to multiple clasess is the softmax
classifier.

• We want to predict the class label yi={1,…C} for sample X(i,:), y 
can take one of C discrete values, so it follows a multinomial
probability distribution. 

• This is derived from an assumption that the probability/score of
class y=k is
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Softmax prediction/classification

• Assign each sample to the class that maximize the
score:
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Cross-entropy

• From information theory, the cross entropy between a 
true distribution p and an estimated distribution q is:

• Softmax minimize the cross-entropy between the
estimated class probabilities and the ‘true’ distribution
(the distribution where all the mass is in the correct
class).
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Softmax

• From a training data set with m samples, we formulate the log-
likelihood function that the model fits the data:

• We can now find  that maximize the likelihood using e.g. 
gradient ascent of the log-likelihood function. 

– Or we can minimize –l() using gradient descent

• More details on deriving softmax next week (Ole-Johan)
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Cross-entropy loss function for softmax
• The loss function for softmax, including regularization:

• I(y=j) is the indicator function that is 1 if y=j and zero otherwise.
• See http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
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Softmax prediction example
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Gradients of the cross entropy loss , 
including regularization

INF 5860 33

jiii

n

i
i

n

j

C

i

C

j
C

l

x

x

i

n

i

T
i

WxjypjyIx
n

J

jiW
e

ejyI
n

J

jWiXx

j

i
T
l

i
T
j








































































)),|()((1

),(
2

log)(1)(

j classfor  row  the,:),(let    ,  i imagefor   valuespixeln   the,:),(

1

0

2

11

1

1

j



For those who want calculus..

• Computing the derivative of the softmax
function: see all details at 

• https://eli.thegreenplace.net/2016/the-
softmax-function-and-its-derivative/
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Link to Gaussian classifiers

• In INF 4300, we used a traditional Gaussian
classifier
– This type of models is called generative models, 

where a specific distribution is assumed.
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FROM INF 4300:Discriminant functions
for the Gaussian density

• When finding the class with the highest probability, these functions
are equivalent:

• With a multivariate Gaussian we get:

• If we assume all classes have equal diagonal covariance matrix, 
the discriminant function is a linear function of x:
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Gaussian classifier vs. logistic regression

• These Gaussian with diagonal covariance and the
logistic regression/softmax classifier will result in 
different linear  decision boundaries.

• If the Gaussian assumption is correct, we will expect
that this classifier has the lowest error rate. 

• The logistic regresion might be better if the data is 
not entirely Gaussian. 

• NOTE: SOFTMAX reduces to logistic regression if
we have 2 classes.
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Support Vector Machine classifiers

• Another popular classifier is the Support 
Vector Machine (SVM) formulation, which
also can be formulated in terms of loss 
functions

• The following foils are for completeness, only
a basic understand of the SVM as a 
maximum-margin classifier is expected in this
course. 
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Hyperplanes and margins

1. Have a margin of

2. Require that all pixels are
correctly classified:

• Goal: find w and w0

www
211



20

10

     ,1

     ,1









xwxw

xwxw
T

T

Background SVM



Support Vector Machine loss

• A SVM loss function can be formulated by having as large
margin as possible. 

• This is generalized to multiple classes so the SVM ‘wants’ the
correct class to have a score higher than the scores for the
incorrect classes by som margin 

• If si is the score for class i, the loss function for SVM is
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SVM and gradient descent

• We can also solve the SVM using gradient descent
also, we will not cover this, but see
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
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FROM INF 4300:Discriminant functions
for the Gaussian density

• When finding the class with the highest probability, these functions
are equivalent:

• With a multivariate Gaussian we get:

• If we assume all classes have equal diagonal covariance matrix, 
the discriminant function is a linear function of x:
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Next week:

• Feed forward nets and learning by backpropagation
– Reading material:

• http://cs231n.github.io/neural-networks-1/
• http://cs231n.github.io/neural-networks-2/
• http://cs231n.github.io/optimization-2/
• Deep learning Chapter 6
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