

INF 5860 Machine learning for image classification Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018

OUTLINE

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow save/restore models
 - TensorFlow example

ABOUT TODAY

- You will get an introduction to one of the most widely used deep learning frameworks
- The goal is for you to be familiar with TensorFlow's computational graph
- Understand how to use basic tensors and operator
- TensorFlow version: 1.4
- Python: 3.6

Readings

- <u>https://www.tensorflow.org/</u>
- <u>https://web.stanford.edu/class/cs20si/2017/syllabus.html</u> [lecture notes/slides 1-5]
- https://www.youtube.com/channel/UCMq6IdbXar_KtYixMS_wHcQ/videos

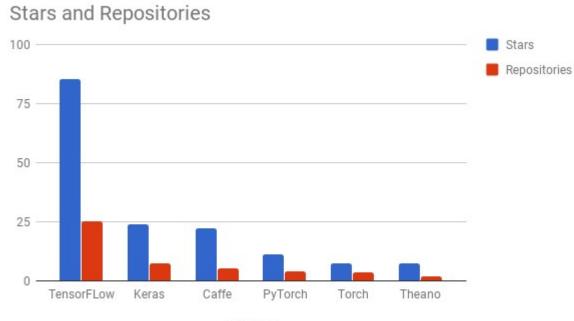
UiO **Department of Informatics**

University of Oslo

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow save/restore models
 - TensorFlow example

Popularity



Libraries

INF 5860

Why do we need Deep learning frameworks?

- Speed:
 - Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation

Automatic differentiations:

- Pre-implementation of the most common functions and it's gradients.

• Reuse:

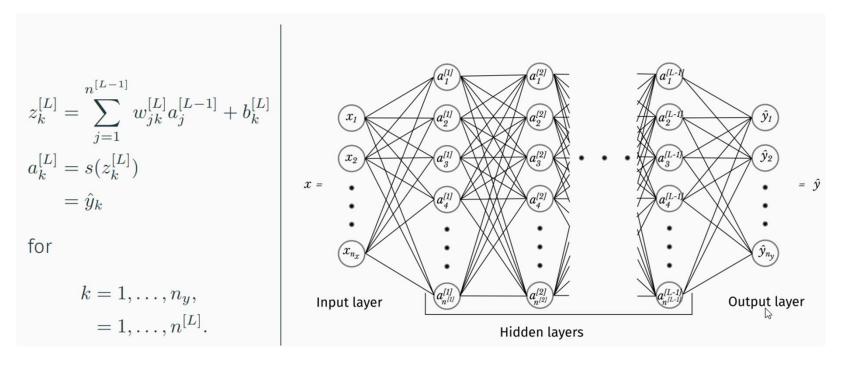
- Easy to reuse other people's models

• Less error prone:

- The more code you write yourself, the more errors

Deep learning frameworks

Deep learning frameworks does a lot of the complicated computation, remember last week....



14.2.2018

INF 5860

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

Why TensorFlow

- Python API
- Can use CPU, GPU
- Supports many platforms:
 - Raspberry Pi, Android, Windows, iOS, Linux
- Companies using TensorFlow:
 - Nvidia, Uber, ebay, snapchat, google, Airbnb, twitter and many more

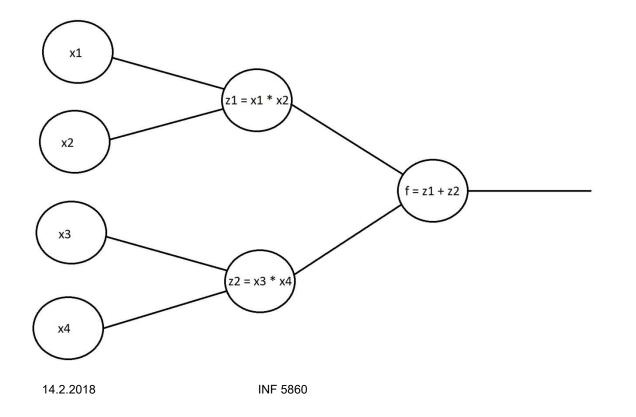
Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

UiO **Department of Informatics** University of Oslo

What is a computational graph?

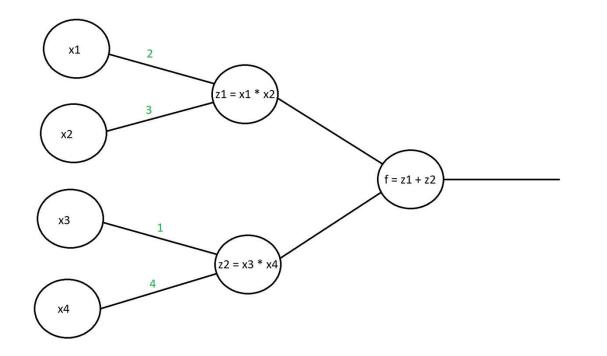
 $f(\vec{x}) = x_1 * x_2 + x_3 * x_4 \qquad \qquad f(\vec{x}) = z_1 + z_2$



UiO **Department of Informatics** University of Oslo

Forward propagation

 $f(\vec{x}) = x_1 * x_2 + x_3 * x_4 \qquad \qquad f(\vec{x}) = z_1 + z_2$

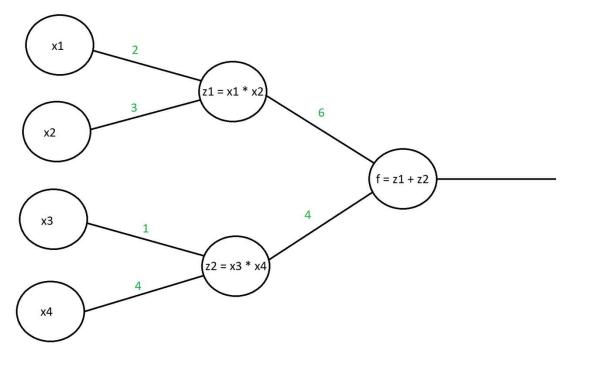


14.2.2018

UiO **Department of Informatics** University of Oslo

Forward propagation

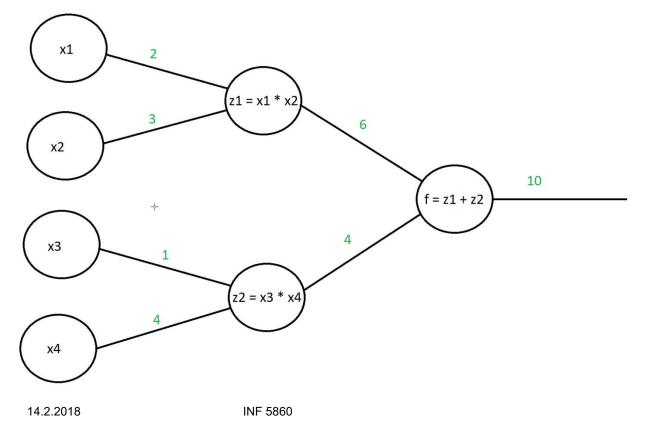
$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4 \qquad \qquad f(\vec{x}) = z_1 + z_2$$



UiO **Department of Informatics** University of Oslo

Forward propagation

 $f(\vec{x}) = x_1 * x_2 + x_3 * x_4$ $f(\vec{x}) = z_1 + z_2$



16

• What if we want to get the derivative of f with respect to the different x values?

 $f(\vec{x}) = x_1 * x_2 + x_3 * x_4 \qquad \qquad f(\vec{x}) = z_1 + z_2$

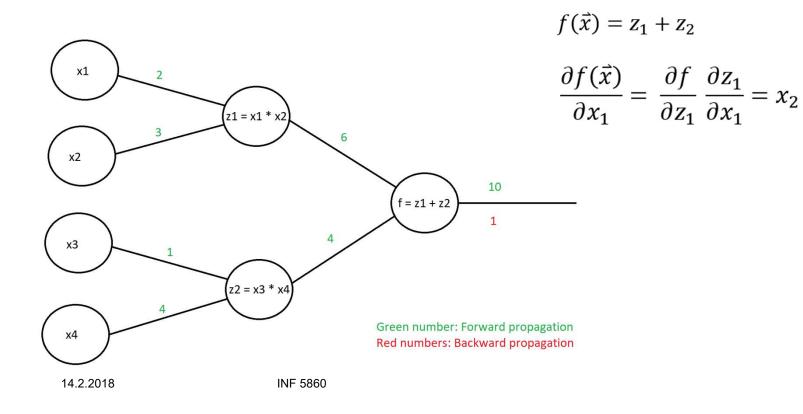
$$\frac{\partial f(\vec{x})}{\partial x_1} = \frac{\partial f}{\partial z_1} \frac{\partial z_1}{\partial x_1} = x_2$$

$$\frac{\partial f(\vec{x})}{\partial x_3} = \frac{\partial f}{\partial z_2} \frac{\partial z_2}{\partial x_3} = x_4$$

14.2.2018

UiO **Department of Informatics** University of Oslo

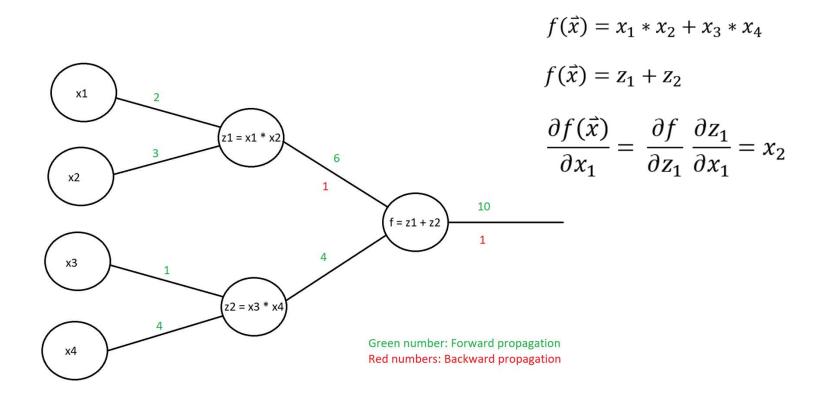
• Lets take the derivative of f with respect to x1



18

 $f(\vec{x}) = x_1 * x_2 + x_3 * x_4$

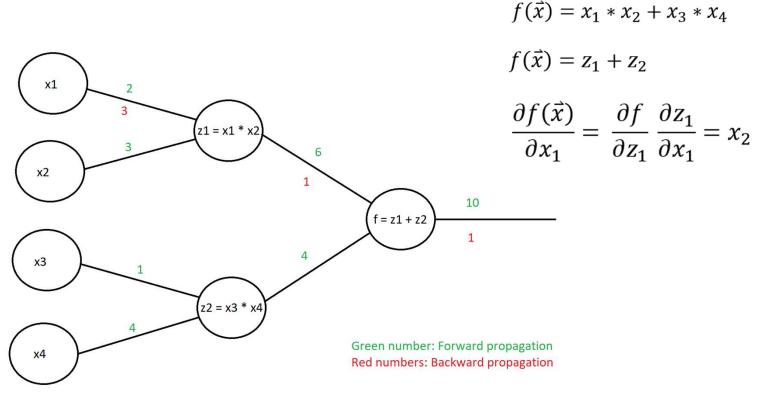
UiO **Department of Informatics** University of Oslo

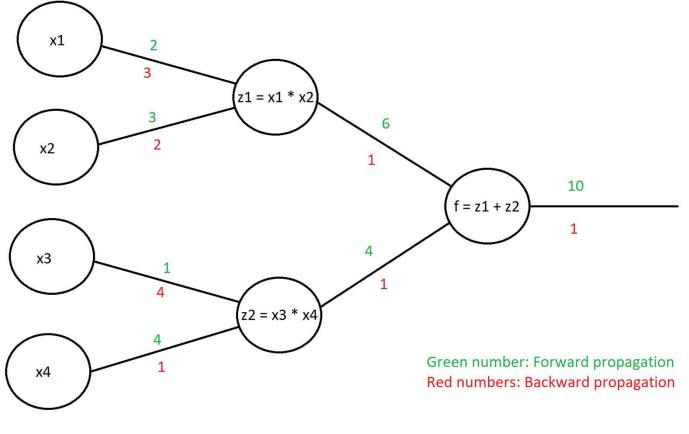


14.2.2018

INF 5860

UiO **Department of Informatics** University of Oslo

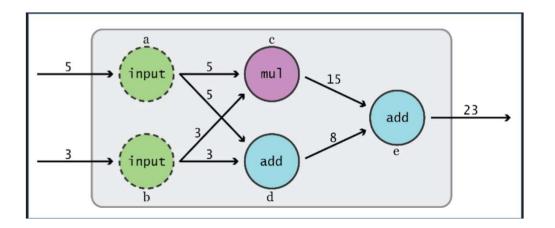




INF 5860

TensorFlow: Computational graph

• You need to define the computational graph before you can use it.



14.2.2018

What is a TensorFlow Tensor

- An n-dimensional array
- 0-D: A scalar
- 1-D: An array (vector)
- 2-D: A matrix

Defining a tensor in TensorFlow

- The main types of tensors are:
 - tf.Variable / tf.get_variable
 - tf.constant
 - tf.placeholder
- Attributes (some of them):
 - Shape
 - dtype
 - name

Example of a tensors

In [4]: import tensorflow as tf

In [5]: a = tf.constant(value=3, name='myConstant', dtype=tf.float32, shape=())
print(a)

Tensor("myConstant_1:0", shape=(), dtype=float32)

In [17]: a = tf.Variable(initial_value=3, trainable=True, name='myVariable', dtype=tf.float32)
print(a)

<tf.Variable 'myVariable_2:0' shape=() dtype=float32_ref>

In [124]: a = tf.placeholder(name='myPlaceholder', dtype=tf.float32, shape=())
print(a)

Tensor("myPlaceholder:0", shape=(), dtype=float32)

14.2.2018

Tensors need unique names

- Every tensor defined within a graph needs to have a unique name
- TensorFlow will automatically add an index to the name which will increment if more tensors with the "same" name gets defined.

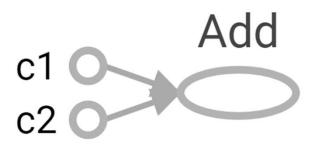
```
In [32]: a = tf.constant(value=3, name='const', dtype=tf.float32, shape=())
b = tf.constant(value=3, name='const', dtype=tf.float32, shape=())
print(a)
print(b)
```

```
Tensor("const:0", shape=(), dtype=float32)
Tensor("const_1:0", shape=(), dtype=float32)
```

Defining an Operator in TensorFlow

In [41]: a = tf.constant(value=6.0, name='c1', dtype=tf.float32, shape=())
b = tf.constant(value=1.0, name='c2', dtype=tf.float32, shape=())
c = tf.add(a,b,name=None)
print(a)
print(b)
print(b)
print(c)

Tensor("c1:0", shape=(), dtype=float32)
Tensor("c2:0", shape=(), dtype=float32)
Tensor("Add:0", shape=(), dtype=float32)



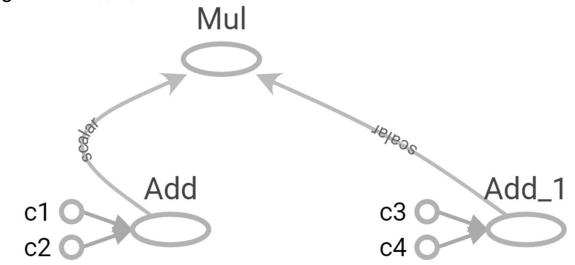
If no name is given, TensorFlow will automatically give the node a name.

14.2.2018

INF 5860

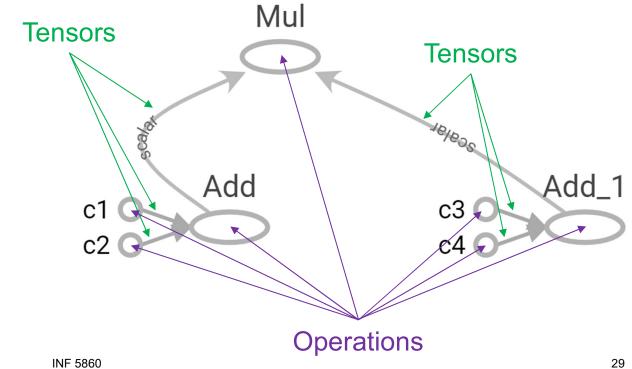
The graph

- The TensorFlow graph is a definition, not any computation.
- The computational graph is a series of TensorFlow operations arranged into a graph. The graph is composed of two types of objects:
 - Operation: Nodes in the graph
 - Tensors: The edges in the graph



The graph

- Operation ("ops"): Nodes in the graph ٠
- Tensors: The edges in the graph ٠



14.2.2018

The graph

- The **tf.Graph** holds two types of information:
 - Graph structure
 - Graph collection: Meta data
- Examples of Meta data
 - Global variables
 - Trainable variable
 - Regularization loss
 - Moving average variables
 - Summaries

Multiple graphs

- It is possible to create multiple graph, but we don't do it!
 - Each graph will require it's own session
 - To pass data between the graphs, we need to pass them through Python/NumPy
 - Working with one graph is easier, and its better to have disconnected subgraphs.

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

Executing the tf.Graph: tf.Session

- We have seen that variables and constants are handles to elements in the computational graph only.
- We execute the graph using a tf.Session

```
In [50]: c = tf.add(3.0, 5.0)
sess = tf.Session()
c_val = sess.run(c)
sess.close()
print(c)
print(c_val)
Tensor("Add:0", shape=(), dtype=float32)
8.0
```

```
14.2.2018
```

Two ways to use tf.Session

```
In [50]: c = tf.add(3.0, 5.0)
    sess = tf.Session()
    c_val = sess.run(c)
```

sess.close()

print(c)
print(c_val)

Tensor("Add:0", shape=(), dtype=float32)
8.0

14.2.2018

tf.Session

- When a tf.Session is created, the required resources are allocated.
- The tf.Session object can be configured:

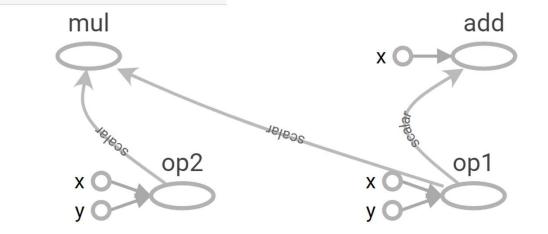
Run parts of the graph only

In [55]: x = tf.constant(value=6.0, name='x', dtype=tf.float32, shape=())
y = tf.constant(value=1.0, name='y', dtype=tf.float32, shape=())

op1 = tf.add(x,y,name='op1')
op2 = tf.add(x,y,name='op2')

mul = tf.multiply(op1,op2, name='mul')
add = tf.add(op1,x,name='add')

with tf.Session() as sess: mul_val = sess.run(mul)



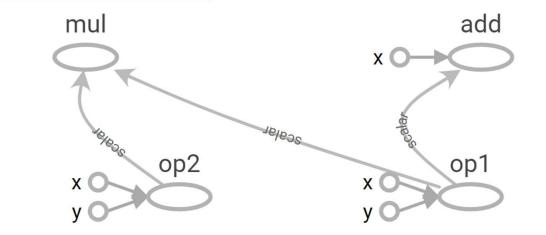
Run the whole graph

In [55]: x = tf.constant(value=6.0, name='x', dtype=tf.float32, shape=())
y = tf.constant(value=1.0, name='y', dtype=tf.float32, shape=())

op1 = tf.add(x,y,name='op1')
op2 = tf.add(x,y,name='op2')

mul = tf.multiply(op1,op2, name='mul')
add = tf.add(op1,x,name='add')

with tf.Session() as sess: mul_val, add_val = sess.run([mul, add])



Why graphs

- Save computation, run subgraphs that lead to the values you want to fetch only
- Break computation into small, differential pieces to facilitate auto-differentiation
- Facilitate distributed computation, spread the work across multiple CPUs, GPUs, TPUs, or other devices

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

tf.constant

In [95]: a = tf.constant(value=6.0, name='scalar', dtype=tf.float32, shape=[])
print(a)

Tensor("scalar:0", shape=(), dtype=float32)

In [96]: a = tf.constant(value=6.0, name='array', dtype=tf.float32, shape=[2])
print(a)

Tensor("array:0", shape=(2,), dtype=float32)

In [97]: a = tf.constant(value=6.0, name='matrix', dtype=tf.float32, shape=[2,2])
print(a)

Tensor("matrix:0", shape=(2, 2), dtype=float32)

Useful constants

In [101]: a = tf.zeros(shape=[3,2], dtype=tf.float32, name='matrix')
print(a)
with tf.Session() as sess:
 a_val = sess.run(a)
 print(a_val)

Tensor("matrix_4:0", shape=(3, 2), dtype=float32)
[[0. 0.]
[0. 0.]
[0. 0.]]

```
In [102]: a = tf.ones(shape=[3,2], dtype=tf.float32, name='matrix')
print(a)
with tf.Session() as sess:
    a_val = sess.run(a)
    print(a_val)

Tensor("matrix_5:0", shape=(3, 2), dtype=float32)
[[ 1. 1.]
```

```
\begin{bmatrix} 1. & 1. \end{bmatrix}
\begin{bmatrix} 1. & 1. \end{bmatrix}
```


Constants as sequences

```
In [104]: a = tf.range(start=1, limit=9, delta=2, dtype=None, name='range')
print(a)
with tf.Session() as sess:
    a_val = sess.run(a)
    print(a_val)

Tensor("range:0", shape=(4,), dtype=int32)
[1 3 5 7]
```

Randomly Generated Constants

• tf.set_random_seed(seed)

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
tf.random_uniform(shape, inval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

Operations

Category	Examples		
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,		
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,		
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,		
Stateful operations	Variable, Assign, AssignAdd,		
Neural network building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,		
Checkpointing operations	Save, Restore		
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,		
Control flow operations	Merge, Switch, Enter, Leave, NextIteration		

Arithmetic Operations

2

- tf.abs
- tf.negative
- tf.sign
- tf.reciprocal
- tf.square
- tf.round
- tf.sqrt
- tf.rsqrt
- tf.pow
- tf.exp

UiO Department of Informatics

University of Oslo

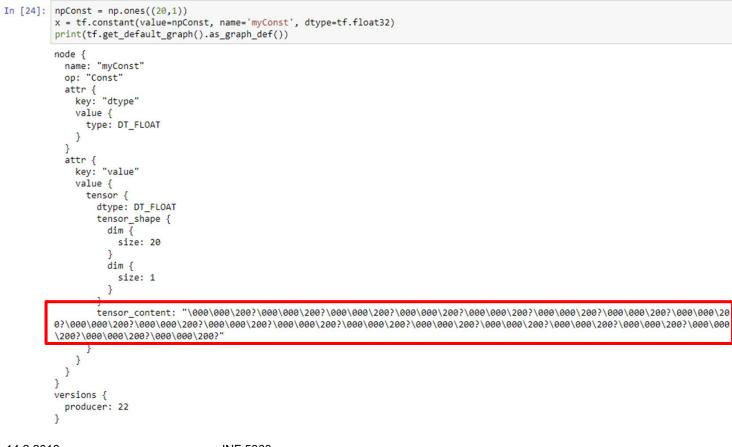
TensorFlow Data Types

- tf.float16:16-bit half-precision floating-point.
- tf.float32: 32-bit single-precision floating-point.
- tf.float64:64-bit double-precision floating-point.
- tf.bfloat16:16-bit truncated floating-point.
- tf.complex64:64-bit single-precision complex.
- tf.complex128:128-bit double-precision complex.
- tf.int8:8-bit signed integer.
- tf.uint8:8-bit unsigned integer.
- tf.uint16:16-bit unsigned integer.
- tf.int16:16-bit signed integer.
- tf.int32:32-bit signed integer.
- tf.int64:64-bit signed integer.
- tf.bool:Boolean.
- tf.string:String.
- tf.qint8 : Quantized 8-bit signed integer.
- tf.quint8: Quantized 8-bit unsigned integer.
- tf.qint16 : Quantized 16-bit signed integer.
- tf.quint16: Quantized 16-bit unsigned integer.
- tf.qint32 : Quantized 32-bit signed integer.
- tf.resource : Handle to a mutable resource.

What is wrong with constants?

- Constants are constants and not good for e.g. being a weight matrix
- The data contained in constants are stored in the TensorFlow graph definition.

Constants: The values can be stored in the TensorFlow graph definition



14.2.2018

INF 5860

Constants: The values can be stored in the TensorFlow graph definition

```
In [30]: x = tf.constant(value=1.0, name='myConst', dtype=tf.float32, shape=[20,1])
         print(tf.get default graph().as graph def())
         node {
           name: "myConst"
           op: "Const"
           attr {
             key: "dtype"
             value {
               type: DT_FLOAT
             }
           }
           attr {
             key: "value"
             value {
               tensor {
                 dtype: DT FLOAT
                 tensor_shape {
                   dim {
                     size: 20
                   dim {
                     size: 1
                    }
                 float_val: 1.0
           }
         versions {
```

14.2.2018

producer: 22

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - Tensorflow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

Variables

- Operation vs Classes
 - tf.constant is written with lowercase and is an operation (op)
 - tf.Variable is written with uppercase and is a class
 - The tf.Variable class have many operations (ops)

Creating variables

We can define variables two ways:

create variables with tf.Variable
s = tf.Variable(3.0, name="scalar")

Initializing variables

- The variables to be used in the graph have to be either:
 - Initialized
 - Restored

```
tf.reset_default_graph()
x = tf.Variable(initial_value=tf.ones(4), name="array")
with tf.Session() as sess:
    sess.run(x.initializer)
    x_val = sess.run(x)
    print(x_val)
```

[1. 1. 1. 1.]

UiO **Department of Informatics** University of Oslo

If variables are not initialized

```
tf.reset_default_graph()
x = tf.Variable(initial_value=tf.ones(4), name="array")
with tf.Session() as sess:
# sess.run(x.initializer)
x_val = sess.run(x)
print(x_val)
```

FailedPreconditionError: Attempting to use uninitialized value Variable

UiO **Department of Informatics** University of Oslo

Initializing all or some variables

In [36]: tf.reset_default_graph()

52

```
x = tf.Variable(initial_value=tf.ones(4), name="array1")
```

```
y = tf.Variable(initial_value=tf.ones(4), name="array2")
```

z = tf.add(x,y)

with tf.Session() as sess: sess.run(tf.variables_initializer([x, y]))

z_val = sess.run(z)
print(z_val)

[2. 2. 2. 2.]

```
tf.reset_default_graph()
x = tf.Variable(initial_value=tf.ones(4), name="array1")
y = tf.Variable(initial_value=tf.ones(4), name="array2")
z = tf.add(x,y)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    z_val = sess.run(z)
    print(z_val)
```

[2. 2. 2. 2.]

14.2.2018

INF 5860

tf.Variable.assign()

• The assign operator is handy if you want to update the values in a variable

```
W = tf.Variable(20)
assign_op = W.assign(W + 200)
with tf.Session() as sess:
    sess.run(W.initializer)
    print(W.eval())
```

```
20
```

```
W = tf.Variable(20)
assign_op = W.assign(W + 200)
with tf.Session() as sess:
    sess.run(W.initializer)
    sess.run(assign_op)
    print(W.eval())
```

220

tf.get_variable()

- Why is tf.get_variable preferred over tf.Variable?
 - tf.get_variable makes reusing (sharing) variables easy

```
W = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
with tf.Session() as sess:
    sess.run(W.initializer)
    print(W)
    print(sess.run(W))
```

```
<tf.Variable 'myVar:0' shape=(2,) dtype=float32_ref>
[-1.40301454 1.01252878]
```

tf.variable_scope()

• tf.variable_scope is used to give a specific prefix to variables names, it is analogous to directory structure.

W = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
print(W)

<tf.Variable 'myVar:0' shape=(2,) dtype=float32_ref>

```
with tf.variable_scope("layer1"):
    W = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
print(W)
```

<tf.Variable 'layer1/myVar:0' shape=(2,) dtype=float32_ref>

Reusing variables

• If we try to define two variables with the same name, a valueError is raised.

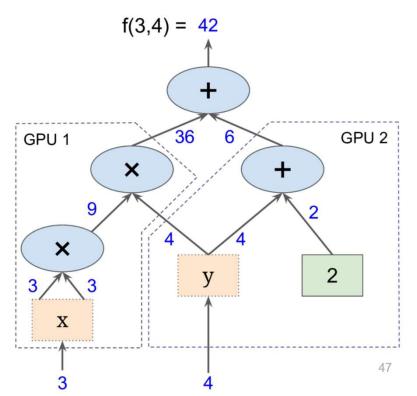
```
with tf.variable_scope("layer1"):
    W1 = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
    W2 = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
print(W)
```

ValueError: Variable layer1/myVar already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScop e? Originally defined at:

```
with tf.variable_scope("layer1"):
    W1 = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
    tf.get_variable_scope().reuse_variables()
    W2 = tf.get_variable(name='myVar', initializer=tf.random_normal([2]))
print(W1)
print(W2)
```

```
<tf.Variable 'layer1/myVar:0' shape=(2,) dtype=float32_ref> <tf.Variable 'layer1/myVar:0' shape=(2,) dtype=float32_ref>
```

Distributed computation (multiple GPU's)



Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow

14.2.2018

INF 5860

UiO **Department of Informatics** University of Oslo

Distributed Computation

• tf.device() can be used to put part of the graph to the cpu or gpus

```
# Creates a graph.
with tf.device('/gpu:1'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')
    c = tf.multiply(a, b)
    #Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))
```

[1. 4. 9. 16. 25. 36.]

Mul: (Mul): /job:localhost/replica:0/task:0/device:GPU:1
b: (Const): /job:localhost/replica:0/task:0/device:GPU:1
a: (Const): /job:localhost/replica:0/task:0/device:GPU:1

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - Tensorflow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

How to feed data into the graph

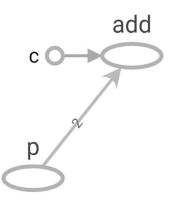
- Often we want to feed data into the graph after it has been defined. For example during training of a neural network, we feed training data and labels into the graphs repeatedly.
- Two methods are recommended:
 - tf.placeholder
 - tf.data.Dataset (we will not go though dataset and iterators)

UiO **Department of Informatics** University of Oslo

tf.placeholder

```
# create a placeholder for a vector of 2 elements, type tf.float32
x = tf.placeholder(dtype=tf.float32, shape=[2], name='p')
y = tf.constant(value=[1, 2], dtype=tf.float32, name='c')
z = x + y
with tf.Session() as sess:
    z_val = sess.run(z, feed_dict={x: [3, 4]})
    print(z_val)
```

[4.6.]



Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow example

Tensorboard: Visualizing graph

```
x = tf.get_variable(name='x', initializer=tf.random_normal([2]))
y = tf.get_variable(name='y', initializer=tf.random_normal([2]))
z = x+y
writer = tf.summary.FileWriter(logdir='./graphs', graph=tf.get_default_graph())
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(z))
writer.close()
```

[-2.20665431 0.04801518]

• In terminal:

\$ tensorboard --logdir="./graphs" --port 6006

• In web browser:

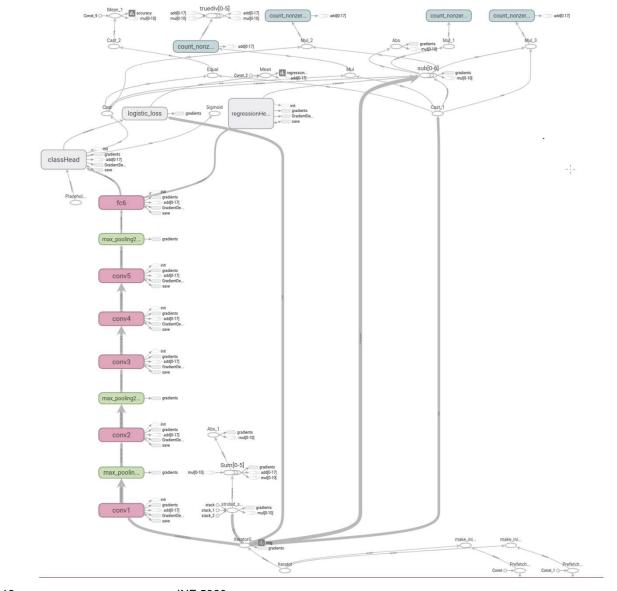
http://localhost:6006/

```
14.2.2018
```

TensorBoard	GRAPHS	ଁ 🌣 🔞
Fit to screen Download PNS Run n session Upload Choose File Trace inputs Orion Stucture Orion Stucture Orion Stucture Orion Stucture	5	
Close legend.		
Graph (* = expandable) Namespace* 2 ON/Ode 2 Unconnected series* 2 Onnected series* 2 Connected series* 2 Connected series* 2 Summary 2 Dataflow edge 2 Control dependency edge 2 Reference edge 2		

UiO **Content of Informatics**

University of Oslo



Tensorboard: Visualizing learning

TensorBoard X				3 G C
← → C ☆ ③ 192.168.16.1:6006			🗟 🛧 🗣 🕲 🚺 🏶 💟 🔄	୍ତ 🖉 🧕 🚺 💩 ମ 🚺 🍘 💺 🙆 :
TensorBoard	SCALARS IMAGES AUDIO GRAPHS	DISTRIBUTIONS H	IISTOGRAMS EMBEDDINGS	C 🏟 🕖
Write a regex to create a tag group	accuracy_1			1
Split on underscores	accuracy_1			
Data download links	0.900			
Tooltip sorting method: default -	0.700			
	0.500			
Smoothing	0.100			
0.6	0.000 30.00k 60.00k 90.00k			
Horizontal Axis				
STEP RELATIVE WALL	cross_entropy			1
SILF RELATIVE WALL	cross_entropy/cost_function			
Runs	2.40			
Write a regex to filter runs	1.80			
v •	0.600		J.	
	0.00			
	0.000 30.00k 60.00k 90.00k			
TOGGLE ALL RUNS				
tensorboard/log/without-saver				http://blog.csdn.net/u01009950

Tensorboard: Visualizing learning

```
x = tf.get_variable(name='x', initializer=tf.random_normal(shape=()))
y = tf.get_variable(name='y', initializer=tf.random_normal(shape=()))
z = x + y
tf.summary.scalar('x', x)
tf.summary.scalar('z', z)
summary_op = tf.summary.merge_all()
tensorboard_writer = tf.summary.FileWriter(logdir='./graphs', graph=tf.get_default_graph())
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    z_val, summary_str = sess.run([z, summary_op])
    tensorboard_writer.add_summary(summary_str)
```

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorfFow example

Save/restore models

- We often want to be able to save and store our models.
 - Unexpected power shoot down
 - Reuse of the already trained network weights
 - Sharing our work e.g. github

tf.train.saver.save()

• How to save our model every 1000 iteration.

```
saver = tf.train.Saver()
global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
with tf.Session() as sess:
    for step in range(number_of_training_steps):
        # do training of the network
        #Save the modeL every 1000 training step
        if (step + 1) % 1000==0:
            saver.save(sess, 'checkpoint_directory/model_name', global_step=global_step)
```

tf.train.saver.restore()

• How to restore a model.

```
#Define your graph
# Restore variable values
all_variables = tf.global_variables()
restorer = tf.train.Saver(all_variables)
ckpt = tf.train.latest_checkpoint('checkpoint_directory/model_name')
restorer.restore(sess, ckpt)
```

#Continue to train your network

Progress

- Deep learning frameworks
- TensorFlow
 - TensorFlow graphs
 - TensorFlow session
 - TensorFlow constants
 - TensorFlow variables
 - TensorFlow feeding data to the graph
 - Tensorboard
 - TensorFlow Save/restore models
 - TensorFlow Cifar10 example

TensorFlow example: Cifar10

- Define a "dataClass"
- Define a structure of the network (graph)
- Define a loss function
- Define an optimizer
- Train the neural network

Define a "dataClass"

- Properties of "dataClass":
 - Read in the cifar10 images
 - Perform preprocessing
 - Have a "next_training_batch" function
 - have a "get_test_data" function

```
from six.moves import cPickle as pickle
UiO Department o
                            import numpy as np
                            import os
        University of Oslo import platform
                            class dataClass:
                                def init (self, cifar10_dir):
                                    X train, y train, X test, y test = load CIFAR10(cifar10 dir)
                                    # Preprocessing: reshape the image data into rows
                                    X train = np.reshape(X train, (X train.shape[0], -1))
                                    X test = np.reshape(X test, (X test.shape[0], -1))
                                    # Normalize the data: subtract the mean image
                                    mean image = np.mean(X train, axis=0)
                                    X train -= mean image
                                    X test -= mean image
                                    # add bias dimension and transform into columns
                                    X train = np.hstack([X train, np.ones((X train.shape[0], 1))])
                                    X test = np.hstack([X test, np.ones((X test.shape[0], 1))])
                                    self.X train = X train
                                    self.X test = X test
                                    self.y train = y train
                                    self.y test = y test
                                    self.numbOfTrainSamples = self.X train.shape[0]
                                    self.numbOfFeatures
                                                            = self.X train.shape[1]
                                    self.numbOfClasses
                                                            = 10
                                    return
                                def next training batch(self, batch size):
                                             = np.random.randint(self.numbOfTrainSamples, size=batch size)
                                    ind
                                    y onehot = np.zeros((batch size, self.numbOfClasses))
                                    y onehot[np.arange(batch size), self.y train[ind]] = 1
                                    return self.X train[ind, :], y onehot
                                def get test data(self):
                                    batch size = self.X test.shape[0]
                                    y onehot = np.zeros((batch size, self.numbOfClasses))
                                    y onehot[np.arange(batch size), self.y test] = 1
                                    return self.X test, y onehot
           14.2.2018
                                def load CIFAR10(ROOT):
                                    #.....
```

78

UiO **Department of Informatics**

University of Oslo

Import

```
import tensorflow as tf
from utils import dataClass
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
```

```
#Load cifar10 data
cifar10_dir = 'inf5860/datasets/cifar-10-batches-py'
myData = dataClass.dataClass(cifar10_dir)
```

Define placeholder's

#Define placeholders for being able to feed data to the tensorflow graph data = tf.placeholder(shape=(None, myData.numbOfFeatures), dtype=tf.float32, name='data') labels_onehot = tf.placeholder(shape=(None, myData.numbOfClasses), dtype=tf.int32, name='labels_onehot') global_step = tf.Variable(initial_value=0, trainable=False, name='global_step')

Define the network structure (graph)

```
# N -> number of training samples
# D1 -> number of input features
# D2 -> number of output features
# C -> number of output features
# - W: A array of shape (D1, D2) containing weights.
# - data: A array of shape (N, D1) containing a minibatch of data.
# - Labels onehot: A array of shape (N, C) containing training Labels
# Lets define a fully connected neural network
hiddenLayerSizes = [myData.numbOfFeatures, 1024, 265, myData.numbOfClasses]
a = data
for ii in range(len(hiddenLaverSizes)-1):
   layerName = f'layer%s' % ii
   with tf.variable scope(layerName):
       ny = hiddenLayerSizes[ii]
       nx = hiddenLayerSizes[ii+1]
       W = tf.get_variable(name='W', shape=(ny, nx), initializer=tf.contrib.layers.xavier_initializer())
       z = tf.matmul(a, W, name='matmul')
        a = tf.tanh(z, name='activation function')
```

Define the loss

#Define your Loss function
logits = a
loss = tf.losses.softmax_cross_entropy(onehot_labels=labels_onehot, logits=logits)

Define an optimizer

#Define an optimizer
all_variables = tf.trainable_variables()
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.05)
train_op = optimizer.minimize(loss, global_step=global_step, var_list=all_variables)

Define an accuracy measure

#Calculate the accuracy
estimated_class = tf.arg_max(logits, dimension=1)
labels = tf.arg_max(labels_onehot, dimension=1)
accuracy = tf.reduce_mean(tf.cast(tf.equal(estimated_class, labels), tf.float32), name='accuracy')

UiO **Department of Informatics**

University of Oslo

Train the network

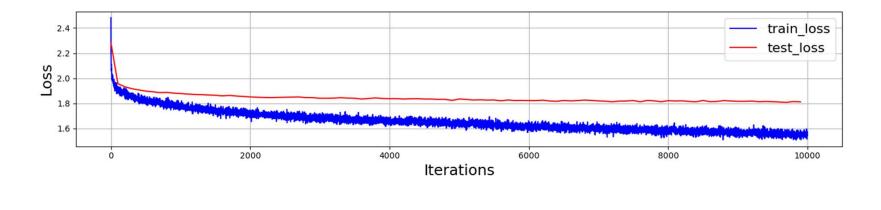
```
# Hyperparameters
numbOfTrainingSteps = 10000
batch size
                   = 1000
#Log train loss/accuracy and test loss/accuracy
train loss = np.zeros(numbOfTrainingSteps)
train_accuracy = np.zeros(numbOfTrainingSteps)
test loss = []
test accuracy = []
test inds = []
t = tqdm(range(numbofTrainingSteps), desc='', leave=True, mininterval=2, miniters=2)
with tf.Session() as sess:
    sess.run(tf.global variables initializer())
   for ii in t:
       npData, npLabels onehot = myData.next training batch(batch size)
       loss_val, accuracy_val, _ = sess.run([loss, accuracy, train_op],
                                                                feed dict={data: npData, labels onehot: npLabels onehot})
       train loss[ii]
                             = loss val
       train accuracy[ii] = accuracy val
       printStr = 'Train Loss: %0.5f | Train Accuracy: %0.3f ' % (loss_val, accuracy_val)
       t.set description(printStr)
       t.refresh()
       if ii % 100 == 0:
           npData, npLabels onehot = myData.get test data()
           loss val, accuracy val, = sess.run([loss, accuracy, train op],
                                                feed dict={data: npData, labels onehot: npLabels onehot})
           test loss.append(loss val)
           test accuracy.append(accuracy val)
           test inds.append(ii)
```

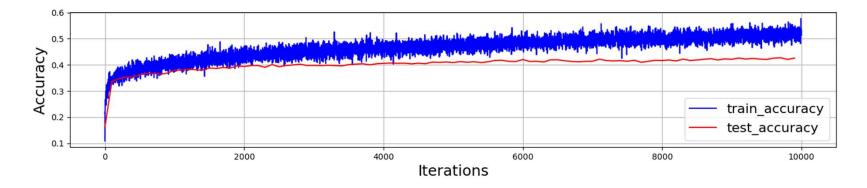
14.2.2018

UiO **Department of Informatics**

University of Oslo

Result





INF 5860

14.2.2018

TensorFlow integrates well with NumPy

- tf.int32 == np.int32 \Rightarrow True
- tf.ones([2, 2], np.float32)
- The output of a tf.Session.run(ops) ⇒ will be a n-D NumPy array if "ops" is a n-D tensor
- But use tf datatypes if possible

Higher level of abstraction wrappers

- Open source software libraries for numerical computation using data flow graphs:
 - High level wrappers
 - Kears
 - TF-Slim
 - Tf-layers
 - Pretty Tensor
 - TFLearn
 - We will use TensorFlow "core" as it is the fundamental library and it is then easier to learn the higher level wrappers

Next week

Convolutional neural networks