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Outline

• Is learning feasible?

• Model complexity

• Overfitting

• Evaluating performance

• Learning from small datasets

• Rethinking generalization

• Capacity of dense neural networks
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About today

• Part1: Learning theory 

• Part2: Practical aspects of learning
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Readings

• Learning theory (caltech course):
– https://work.caltech.edu/lectures.html
– Lecture (Videos): 2,5,6,7,8,11

• Read: CS231n: section “Dropouts”

– http://cs231n.github.io/neural-networks-2/

• Optional:

– Read: The Curse of Dimensionality in classification

• http://www.visiondummy.com/2014/04/curse-dimensionality-affect-
classification/

– Read: Rethinking generalization

• https://arxiv.org/pdf/1611.03530.pdf
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• Overfitting

• Evaluating performance

• Learning from small datasets

• Rethinking generalization

• Capacity of dense neural networks
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Is learning feasible?

• Classification is to find the decision boundary

• But is it learning?
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Notation

• Formalization supervised learning:

– Input: 𝒙

– Output: 𝒚

– Target function: 𝑓 ∶ 𝒳
 

→ 𝒴 

– Data: 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 ⋅⋅⋅  , 𝒙𝑵, 𝒚𝑵

– Hypothesis: h ∶ 𝒳
 

→ 𝒴 

Example:

Hypothesis set:     𝑦 = 𝑤ଵ𝑥 + 𝑤଴

A hypothesis:   𝑦 = 2𝑥 + 1
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More notation

• In-sample (colored): Training data available 
to find your solution.

• Out-of-sample (gray): Data from the real 
world, the hypothesis will be used for.

• Final hypothesis:

• Target hypothesis:

• Generalization: Difference between the    
in-sample error and the out-of-sample error
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Learning diagram
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• The Hypothesis Set
         ℋ = ℎ           g ∈ ℋ

• The Learning Algorithm

– e.g. Gradient descent

The hypothesis set and the 
learning algorithm are referred 
to as the Learning model
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Learning puzzle
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The target function is UNKNOWN

• We cannot know what we have not seen!

• What can save us? 

– Answer: Probability
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Drawing from the same distribution

• Requirement:

– The in-sample and out-of-sample data must be 
drawn from the same distribution (process)
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What is the expected out-of-sample 
error?

• For a randomly selected hypothesis

• The closest error approximation is 
the in-sample error
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What is training?

• A general view of training:

– Training is a search through 
possible hypothesis

– Use in-sample data to find the best 
hypothesis
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What is the effect of choosing the best 
hypothesis?

• Smaller in-sample error

• Increasing the probability that 
the result is a coincidence

• The expected out-of-sample 
error is greater or equal to the 
in-sample error
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Searching through all possibilities

• The extreme case search through all possibilities

• Then you are guaranteed 0% in-sample error rate

• No information about the out-of-sample error
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• Is learning feasible?

• Model complexity

• Overfitting

• Evaluating performance

• Learning from small datasets

• Rethinking generalization

• Capacity of dense neural networks
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Capacity of the model (hypothesis set)

• The model restrict the number of 
hypothesis you can find

• Model capacity is a reference to how many 
possible hypothesis you have

• A linear model has a set of all linear 
functions as its hypothesis
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Measuring capacity

• Vapnik-Chervonenkis (VC) dimension

– Denoted: 𝑑௏஼(ℋ)

– Definition: 

• The maximum number of points that can be arrange such that ℋ can 
shatter them.
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Example VC dimension
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• (2D) Linear model

• Configuration (𝑁 =3)
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Example VC dimension
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Example VC dimension
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Example VC dimension
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Example VC dimension
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Example VC dimension
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Example VC dimension
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• (2D) Linear model

• Configuration (𝑁 = 4)
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VC dimension

• Definition

– The maximum number of points that can be arrange such that ℋ can 
shatter them.

• The VC dimension of a linear model in dimension 𝑑 is:

– 𝑑௏஼ ℋ௟௜௡ = 𝑑 + 1

• Capacity increases with the number of effective parameters
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Growth function

• The growth function is a measure of the capacity of the hypothesis set. 

• Given a set of N samples and an unrestricted hypothesis set, the value of the 
growth function is:

𝑚ℋ 𝑁 = 2ே

• For a restricted (limited) hypothesis set the growth function is bounded by:

𝑚ℋ 𝑁 ≤ ෍
𝑁

𝑖

ௗೇ಴

௜ୀ଴
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Growth function for linear model
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Generalization error

• Error measure binary classification:

𝑒 𝑔 𝒙௡ , 𝑓 𝒙௡ =  ቊ
0,  𝑖𝑓 𝑔 𝒙௡ = 𝑓 𝒙௡

1,  𝑖𝑓 𝑔 𝒙௡ ≠ 𝑓 𝒙௡

• In-sample error:

𝐸௜௡ 𝑔 =  
1

𝑁
෍ 𝑒 𝑔 𝒙௡ , 𝑓 𝒙௡

ே

௡ୀଵ 

• Out-of-sample error:
𝐸௢௨௧ 𝑔 = Ε𝒙 𝑒 𝑔 𝒙 , 𝑓 𝒙

• Generalization error: 
𝐺(𝑔) = 𝐸௜௡ 𝑔 − 𝐸௢௨௧ 𝑔
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Upper generalization bound

• Number of In-sample samples, 𝑁

• Generalization threshold, 𝜖

• Growth function: 𝑚ℋ()

• The Vapnik-Chervonenkis Inequality

𝑃 𝐸௜௡ 𝑔 − 𝐸௢௨௧ 𝑔 >  𝜀
 

  ≤ 4 𝑚ℋ 2𝑁  𝑒ି
ଵ
଼

ఌమே
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What makes learning feasible?

• Restricting the capacity of the hypothesis set!

• But are we satisfied? 

– No!

• The overall goal is to have a small 𝐸௢௨௧ 𝑔
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T

𝑃 𝐸௜௡ − 𝐸௢௨௧ >  𝜀
 

  ≤ 4 𝑚ℋ 2𝑁  𝑒ି
ଵ
଼

ఌమே =  𝛿

𝜀 =  
8

𝑁
ln

4𝑚ℋ(2𝑁)

𝛿
 =  Ω(𝑁, ℋ, 𝛿)

𝑃 𝐸௜௡ − 𝐸௢௨௧ < Ω
 

  > 1 −  𝛿
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With probability >  1 − 𝛿:

𝐸௢௨௧ < 𝐸௜௡ + Ω
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A model with wrong hypothesis will 
never be correct
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• Is learning feasible?

• Model complexity

• Overfitting

• Evaluating performance

• Learning from small datasets

• Rethinking generalization

• Capacity of dense neural networks
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Noise

• The in-sample data will contain noise.

• Origin of noise:

– Measurement (sensor) noise 

– The in-sample data may not include all parameters

– Our ℋ has not the capacity to fit the target function

Page 45



INF 5860
07.03.2018

The role of noise

• We want to fit our hypothesis to the 
target function, not the noise

• Example: 

– Target function: second order 
polynomial

– Noisy in-sample data

– Hypothesis: Fourth order 
polynomial

Result: 𝐸௜௡ = 0, 𝐸௢௨௧ 𝑖𝑠 ℎ𝑢𝑔𝑒

Page 46



INF 5860
07.03.2018

Overfitting - Training to hard

Page 47

• Initially, the hypothesis is not 
selected from the data and 𝐸௜௡ and  
𝐸௢௨௧ are similar.

• While training, we are exploring 
more of the hypothesis space

• The effective VC dimension is 
growing at the beginning, and 
defined by the number of free 
parameters at the end
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Regularization
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• With a tiny weight penalty, we can reduce the effect of noise significantly.
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• Rethinking generalization

• Capacity of dense neural networks
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Splitting of data

• Training set (60%)

– Used to train our model

• Validation set (20%)

– Used to select the best hypothesis

• Test set (20%)

– Used to get a representative out-of-sample error
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Important! No peeking

• Keep a dataset that you don’t look at until 
evaluation (test set)

• The test set should be as different from 
your training set as you expect the real 
world to be
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A typical scenario
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Learning curves
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Simple hypothesis Complex hypothesis
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• Is learning feasible?

• Model complexity

• Overfitting

• Evaluating performance

• Learning from small datasets

• Rethinking generalization

• Capacity of dense neural networks
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Learning from a small datasets

• Regularization

• Dropouts

• Data augmentation

• Transfer learning 

• Multitask learning
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Dropouts
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• Regularization technique
• Drop nodes with probability, 𝑝
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Dropouts

• Force the network to make redundant representations

• Stochastic in nature, difficult for the network to memories.

• Remember to scale with 1/𝑝
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Data augmentation

• Increasing the dataset!

• Examples:

– Horizontal flips

– Cropping and scaling

– Contrast and brightness

– Rotation

– Shearing
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Data augmentation

• Horizontal Flip
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Data augmentation

• Cropping and scaling
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Data augmentation

• Change Contrast and brightness
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Transfer learning

• Use a pre-trained network

• Neural networks share 
representations across classes

• You can reuse these features for 
many different applications

• Depending on the amount of data, 
finetune:

– the last layer only

– the last couple of layers
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What can you transfer to?

• Detecting special views in Ultrasound

• Initially far from ImageNet

• Benefit from fine-tuning imagenet features
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Standard Plane Localization in Fetal Ultrasound via Domain Transferred 
Deep Neural Networks
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Transfer learning from pretrained 
network

• Since you have less parameters to train, you are less likely to overfit.

• Need a lot less time to train.

OBS! Since networks trained on ImageNet have a lot of layers, it is still possible to 
overfit.
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Multitask learning

• Many small datasets

• Different targets

• Share base-representation
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Is traditional theory valid for deep 
neural networks?

• “UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING 
GENERALIZATION”

• Experiment: 

– Deep neural networks have the capacity to memories many datasets

– Deep neural networks show small generalization error
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Have some fun

• Capacity of dense neural networks

• http://playground.tensorflow.org
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Tips for small data

1. Try a pre-trained network

2. Get more data

a) 1000 images with 10 mins per label is 20 working days…

b) Sounds like a lot, but you can spend a lot of time getting transfer learning 
to work

1. Do data-augmentation

2. Try other stuff (Domain-adaption, multitask learning, simulation, etc.)
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