UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification

Lecture 8: Generalization
Tollef Jahren
March 7 , 2018




UiO ¢ Department of Informatics 07059008 Page3

University of Oslo

Outline

* Is learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

« Learning from small datasets

* Rethinking generalization

« Capacity of dense neural networks
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About today

« Part1: Learning theory

« Part2: Practical aspects of learning
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Readings

» Learning theory (caltech course):
— https://work.caltech.edu/lectures.html
— Lecture (Videos): 2,5,6,7,8,11

« Read: CS231n: section “Dropouts”
— http://cs231n.qgithub.io/neural-networks-2/

+ Optional:
— Read: The Curse of Dimensionality in classification

e http://www.visiondummy.com/2014/04/curse-dimensionality-affect-
classification/

— Read: Rethinking generalization
» https://arxiv.org/pdf/1611.03530.pdf
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Progress

* Is learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Is learning feasible?

« Classification is to find the decision boundary
« Butisitlearning?
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Notation

 Formalization supervised learning:

— |Input: x
— Output: y
— Target function: f : X-> T

— Data: (x1,y1), (x2,¥2) -, (xn, Yn)

ol

— Hypothesis: h: X-> Y

Example:

Hypothesis set:  y = w;x + wy

A hypothesis: y=2x+1
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More notation

In-sample (colored): Training data available
to find your solution.

Out-of-sample (gray): Data from the real
world, the hypothesis will be used for.

Final hypothesis:
Target hypothesis:

Generalization: Difference between the
in-sample error and the out-of-sample error
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Learning diagram

 The Hypothesis Set

UNKNOWN TARGET FUNCTION
H = {h} geEH

£ Xt

l

TRAINING EXAMPLES
(%%, s o (X 3,)

 The Learning Algorithm
— e.g. Gradient descent

The hypothesis set and the

learning algorithm are referred

FINAL
to as the Learning model LEARNING

HYPOTHESIS
g=f

ALGORITHM

HYPOTHESIS SET
H
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Learning puzzle
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The target function is UNKNOWN

« We cannot know what we have not seen!

* What can save us?
— Answer: Probability
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Drawing from the same distribution

* Requirement:

— The in-sample and out-of-sample data must be
drawn from the same distribution (process)
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What is the expected out-of-sample
error?

For a randomly selected hypothesis

The closest error approximation is
the in-sample error
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What is training?

* A general view of training:

— Training is a search through
possible hypothesis

— Use in-sample data to find the best
hypothesis
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What is the effect of choosing the best

hypothesis?

 Smaller in-sample error

* Increasing the probability that
the result is a coincidence

« The expected out-of-sample
error is greater or equal to the
in-sample error
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Searching through all possibilities

« The extreme case search through all possibilities
« Then you are guaranteed 0% in-sample error rate

* No information about the out-of-sample error
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Capacity of the model (hypothesis set)

 The model restrict the number of
hypothesis you can find

* Model capacity is a reference to how many
possible hypothesis you have

« Alinear model has a set of all linear
functions as its hypothesis

J = sign(w!x + b)

§=x"Wx+wa+b
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Measuring capacity

« Vapnik-Chervonenkis (VC) dimension

— Denoted: dy(H)
— Definition:
« The maximum number of points that can be arrange such that H can
shatter them.
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N =3)
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N =3)
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Example VC dimension
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Example VC dimension
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N = 4)
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Example VC dimension
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N = 4)
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N = 4)

No separating line
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VC dimension

» Definition
— The maximum number of points that can be arrange such that ' can
shatter them.

« The VC dimension of a linear model in dimension d is:
- dVC(}[lin) =d+1

« Capacity increases with the number of effective parameters
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Growth function

« The growth function is a measure of the capacity of the hypothesis set.

« Given a set of N samples and an unrestricted hypothesis set, the value of the
growth function is:

« For arestricted (limited) hypothesis set the growth function is bounded by:

dyc

=311

i=0 Maximum power is N %vc
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Growth function for linear model
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Generalization error

« Error measure binary classification:

(0, if g(xn) = fxy)
e(g(xn)rf(xn)) - {1, if g(x,) # f(x,)

 In-sample error:

N
1
Ein(9) = ) e(g0en), f(x)
n=1

 Out-of-sample error:

Eout(g) = Ex[e(g(x)» f(x))]

« Generalization error:
G(g) — Ein(g) - Eout(g)

Page 39
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Upper generalization bound

Number of In-sample samples, N
Generalization threshold, e
Growth function: m4()

The Vapnik-Chervonenkis Inequality

loay

< 4my(2N) e78

N\

Maximum power is N 4vc

P |Ein(g) - Eout(g)l > &
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What makes learning feasible?

« Restricting the capacity of the hypothesis set!

 But are we satisfied?
— Nol

« The overall goal is to have a small E,,,;:(g)
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The goal is small E,,;(g)

1
< 4my2N)e 8N = §

P [lEin - Eoutl > €

= Q(N, %, 5)

T INTYTT S

P |Ein_Eout|<Q >1-6

With probability > 1 — é:

Eout <Ein +Q
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A model with wrong hypothesis will
never be correct

[ Hypotheses space ’\

Cannot be found
All hypotheses
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Noise

 The in-sample data will contain noise.

« Origin of noise:
— Measurement (sensor) noise
— The in-sample data may not include all parameters
— Our H has not the capacity to fit the target function
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The role of noise

« We want to fit our hypothesis to the
target function, not the noise

« Example:

— Target function: second order
polynomial

— Noisy in-sample data

— Hypothesis: Fourth order
polynomial

Result: E;;, = 0, E,y; is huge
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Overfitting - Training to hard

35 1 T 1 ] T |l T L] 1
 Initially, the hypothesis is not
selected from the data and E;;,, and 3k
E,,: are similar. "
« While training, we are exploring 21
more of the hypothesis space
2..
« The effective VC dimension is 5
growing at the beginning, and = \
defined by the number of free |
parameters at the end
1 Early stopping E .
““——____.__—--"‘-‘/
05F 1
E.
in
00 10100 20[00 30100 40100 50100 Bf;EO 70100 8(;00 90100 10000

Epochs
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« With a tiny weight penalty, we can reduce the effect of noise significantly.

Minimizing  Eip(w) + % w'w  for different \'s:

A=10 A = 0.0001 A= 0.01 N=1
© Data
— Target
—Fit
r T E T

overfitting — — — — underfitting
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Splitting of data

« Training set (60%)
— Used to train our model

« Validation set (20%)
— Used to select the best hypothesis

 Testset (20%)
— Used to get a representative out-of-sample error
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Important! No peeking

+ Keep a dataset that you don'’t look at until
evaluation (test set)

* The test set should be as different from
your training set as you expect the real
world to be

INF 5860
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A typical scenario

] _ _ — - Training error
Underfitting zone| Overfitting zone .
——  Test error
5
ﬁ
\
\ I Generalization gap
—
. I .
0 Optimal Capacity

Capacity
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Learning curves

Simple hypothesis

\E‘( ut

L
Ein

Expected Error

Number of Data Points, NV
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Complex hypothesis

E()m

Expected Error

/ Ein

Number of Data Points, N
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Learning from a small datasets

* Regularization

« Dropouts

« Data augmentation
« Transfer learning

« Multitask learning
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Dropouts

Regularization technique

Drop nodes with probability, p

O
AN

/A

NYOrX X

\s )

f‘~ X
&

£\

(\

Y

(b) After applying dropout.

(a) Standard Neural Net
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Dropouts

* Force the network to make redundant representations
« Stochastic in nature, difficult for the network to memories.

« Remember to scale with 1/p

a) Standard Neural Net (b) After applying dropout.
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Data augmentation

* Increasing the dataset!

« Examples:

Horizontal flips
Cropping and scaling
Contrast and brightness
Rotation

Shearing

INF 5860
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Data augmentation

* Horizontal Flip
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Data augmentation

* Cropping and scaling
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Data augmentation

« Change Contrast and brightness




UiO ¢ Department of Informatics ocroaans ol

University of Oslo

Transfer learning

» Use a pre-trained network

convl conv2 conv3d  convd convs fel fc2 fc3 softmax

* Neural networks share o W W s s e[l Wi i
representations across classes

* You can reuse these features for Wi \i\
many different applications e

* Depending on the amount of data,
finetune:

— the last layer only
— the last couple of layers



UiO ¢ Department of Informatics oroaao | eeed

University of Oslo

What can you transfer to?

* Detecting special views in Ultrasound
« Initially far from ImageNet

+ Benefit from fine-tuning imagenet features

Standard Plane Localization in Fetal Ultrasound via Domain Transferred
Deep Neural Networks
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Transfer learning from pretrained
network

« Since you have less parameters to train, you are less likely to overfit.
 Need a lot less time to train.

OBS! Since networks trained on ImageNet have a lot of layers, it is still possible to
overfit.
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Multitask learning

* Many small datasets
« Different targets

* Share base-representation

INF 5860 Page 65
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(TaskA ) (TaskB) ( Task C)

—

*
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Is traditional theory valid for deep
neural networks?

« “UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING
GENERALIZATION”

« Experiment:
— Deep neural networks have the capacity to memories many datasets
— Deep neural networks show small generalization error

Page 67
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Progress

* s learning feasible?

* Model complexity

« Overfitting

« Evaluating performance

* Learning from small datasets

* Rethinking generalization

» Capacity of dense neural networks
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Have some fun

« Capacity of dense neural networks

« http://playground.tensorflow.org



UiO ¢ Department of Informatics oroaans el
University of Oslo

Tips for small data

1. Try a pre-trained network
2. Get more data

a) 1000 images with 10 mins per label is 20 working days...

b) Sounds like a lot, but you can spend a lot of time getting transfer learning
to work

1. Do data-augmentation

2. Try other stuff (Domain-adaption, multitask learning, simulation, etc.)



