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Outline

• Motivation

• Introduction to reinforcement learning (RL)

• Value function based methods (Q-learning)

• Policy based methods (policy gradients)

• Value function and policy based methods (Actor-Critic)

• Miscellaneous
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About today

• Introduction to main concepts and terminology of reinforcement learning

• The goal is for you to be familiar with policy gradients and Q-learning
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Readings

• Video:

– CS231n: Lecture 14 | Deep Reinforcement Learning: 
https://www.youtube.com/watch?v=lvoHnicueoE&index=14&list=PLC1qU-
LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&t=3s

• Text:

– Karpathy blog: (Reinforcement learning/Policy learning) 
http://karpathy.github.io/2016/05/31/rl/

• Optional: 

– RL Course by David Silver: 
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-
wCZcQn5IqyuWhBZ8fOxT&index=0
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Branches of Machine Learning
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Supervised learning

• Given a training set with input 𝑥 and desired output 𝑦:

– Ω = 𝑥 , 𝑦 , (𝑥 , 𝑦( )), … , (𝑥 , 𝑦 )

• The goal is to create a function 𝑓 that “approximates” this mapping:

– 𝑓 𝑥 ≈ 𝑦,    ∀(x,y)  ∈  Ω

• Hope that this generalizes well to unseen examples:

– 𝑓 𝑥 = 𝑦 ≈ 𝑦,    ∀(x,y)  ∈  Ω

• Examples:

– Classification, regression, object detection,

– Segmentation, image captioning.

Page 8



INF 5860
09.05.2018

Unsupervised learning

• Our training set consists of input 𝑥 only:

– Ω = 𝑥 , 𝑥 , … , 𝑥

• We do not have any labeled data. Our goal is to find an underlaying structure of 
the data. 

• Examples:

– Data clustering

– Anomality detection

– Signal generation

– Signal compression
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INF 5860
09.05.2018

Reinforcement learning

• Reinforcement Learning ~ Science of 
decision making

• In RL an agent learns from the 
experiences it gains by interacting with the 
environment. 

• The goal is to maximize an accumulated 
reward given by the environment.

• An agent interacts with the environment 
via states, actions and rewards.
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Reinforcement learning

• What makes reinforcement learning different from other machine learning 
paradigms? 

– There is no supervisor, only a reward signal 

– Feedback is delayed, not instantaneous 

– Time really matters (sequential, non i.i.d data) 

– Agent’s actions affect the subsequent data it receives
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Mountain Car

• Objective:

– Get to the goal

• State variables:

– Position and velocity

• Actions:

– Motor: Left, Neutral, right

• Reward:

– (-1) for each time step
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Robots
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Objective:
Get the robot to move forward

State variables:
Angle and positions of the joints

Actions:
Torques applied on joints

Reward:
(+1) at each time step upright + 
forward movement
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• https://www.youtube.com/watch?v=rhNxt0VccsE
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Atari games
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Objective:
Complete the game with the 
highest score

State variables:
Raw pixel inputs of the game 
state

Actions:
Game controls, e.g. left, right, 
up, down, shoot.

Reward:
Score increases/decreases at 
each time step
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Distinguishing images with small 
differences

• You have high resolution images 

• You separate classes based on small, but characteristic differences 

– Birds 

– Tumors 

– Brands
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Distinguishing images with small 
differences

• Pre-trained CNN features

• Attention network output 
confidence map

• Spatial softmax for finding 
probabilities of locations

• Crop and resize image 
features
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Fully Convolutional Attention Networks for Fine-Grained 
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History (trajectory) and State

• History / trajectory :

– 𝐻 = 𝜏 =  𝑂 , 𝐴 , 𝑅 , 𝑂 , 𝐴 , 𝑅 , … , 𝑂 , 𝐴 , 𝑅

• Full observatory:

– Agent direct observe the environment state. 

– 𝑂 =  𝑆 = 𝑆

• State:

– The state is a summary (of the actions and 
observations) that determines what happens next 
given an action.

– 𝑆 = 𝑓(𝐻 )

• Partially observability: 

– The agent indirectly observes the environment. 

– Robot with a camera
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Markov Property
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• Definition:

– A state 𝑆 is Markov if and only if:

ℙ 𝑆 𝑆 = ℙ 𝑆   𝑆 ,  𝑆 , … , 𝑆

• The state capture all relevant information from 
the history

• The state is sufficient to describe the statistics 
of the future.
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Policy

• The agent’s policy defines it’s behavior. 

• A policy, 𝜋, is a map from state to actions

– Deterministic policy: 𝜋(𝑠 )

– Stochastic policy: 𝜋 𝑎 𝑠 = ℙ(𝐴 = 𝑎 |𝑆 = 𝑠 )
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Reward and Return
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• The reward, 𝑅 , is a scalar value the agent 
receives for each step t.

• The return, 𝐺 , is the total discounted 
accumulated reward form a given time-step t. 

– 𝐺 = 𝑅 + 𝛾𝑅 + ⋯ =  ∑ 𝛾 𝑅

• Discount factor: 

– We can apply a discord factor, 𝛾 ∈ 0,1 , to 
weight how we evaluate return. 

• The agent's goal is to maximize the return
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Markov Decision Process (MDP)

• The mathematical formulation of the reinforcement learning (RL) problem. 

• A Markov Decision Process is a tuple, ℳ = 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 , where every state 
has the Markov property.

S: A finite set of states

A: A finite set of actions

P: The transition probability matrix
      𝑃 = ℙ 𝑆 = 𝑠  | 𝑆 = 𝑠 , 𝐴 = 𝑎

R: Reward function:

𝑅 =  𝔼 𝑆 = 𝑠 , 𝐴 = 𝑎  

𝛾: is a discount factor 𝛾∈ [0,1]
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Markov Decision Process (timeline)
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• The environment samples an initial state, 𝑠 , for time-step t=0.

• For time-step, t, until termination:

– Agent selects an action given a policy: a =  𝜋 𝑎 𝑠 = ℙ(𝐴 = 𝑎 |𝑆 = 𝑠 )

– Environment samples a reward: 𝑟 =  ℙ 𝑅 = 𝑟  | 𝑆 = 𝑠 , 𝐴 = 𝑎

– Environment samples next state: 𝑠 =  ℙ 𝑆 = 𝑠  | 𝑆 = 𝑠 , 𝐴 = 𝑎

– Agent receives the next state, 𝑠 , and the reward, 𝑟 .
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Objective

• The objective in reinforcement learning (RL) 
is to find the optimal policy, 𝜋∗, which 
maximize the expected accumulated reward.

• Agent’s taxonomy to find the optimal policy in 
reinforcement learning
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Objective

• Our goal is it find the policy which maximize the accumulated reward:

𝐺 = 𝑅 + 𝛾𝑅 + ⋯ =  ∑ 𝛾 𝑅

• Due to the randomness of the transition probability and the reward function, we 
use the expected value in the definition of the optimal policy.

𝜋∗ = arg max 𝔼 𝐺  
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State-value function and action-value 
function

• While we follow our policy, we would like to know if we are not a good or bad 
state/position. Imagine trajectory: 𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑎 , 𝑟 , …

• Definition: a state-value function, 𝑣 𝑠 , of an MDP is the expected return 
starting from state, s, and then following the policy 𝜋. In general, how good is it 
to be in this state.

𝑣 𝑠 =  𝔼  𝐺   S = s]

• Definition: an action-value (q-value) function, 𝑞 𝑠, 𝑎 , is the expected return 
starting from state, s, taking action, a, and following policy, 𝜋. In general, how 
good it is to take this action.

𝑞 𝑠, 𝑎 =  𝔼  𝐺  | 𝐴 = 𝑎, 𝑆 = 𝑠
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State-value function and action-value 
function

• Define:  𝜋 ≥  𝜋     𝑖𝑓    𝑣 𝑠 ≥ 𝑣 𝑠 ,   ∀𝑠

• Definition: The optimal state-value function 𝑣∗ 𝑠 , is the maximum value 
function over all policies:

• 𝑣∗ 𝑠 =  max 𝑣 𝑠

• Definition: The optimal action-value function 𝑞∗ 𝑠, 𝑎 , is the maximum action-
value function over all policies:

• 𝑞∗ 𝑠, 𝑎 =  max 𝑞 𝑠, 𝑎

• Note: If we knew 𝑞∗ 𝑠, 𝑎 the RL problem is solved.
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Bellman (expectation) equation

• The Bellman equation is a recursive equation which can decompose the value 
function into two part:

– Immediate reward, 𝑅

– Discounted value of successor state, 𝛾𝑣(𝑆 )

𝑣 𝑠 = 𝔼   𝐺   S = s]

 = 𝔼  𝑅 + 𝛾𝑅 + 𝛾 𝑅 +𝛾 𝑅 + ⋯        S = s]

= 𝔼 𝑅 + 𝛾(𝑅 + 𝛾 𝑅 +𝛾 𝑅 + ⋯ )   S = s]

= 𝔼 𝑅 + 𝛾𝐺  S = s]

= 𝔼  𝑅 + 𝛾𝑣(𝑆 )  S = s]
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How to find the best policy?

• We will go though a simple example, Gridworld, to show how the Bellman 
equation can be used iteratively to evaluate a policy, 𝜋. The Goal is to give an 
intuition of how the Bellman equation is used.

𝑣 𝑠  = 𝔼  𝑅 + 𝛾𝑣 𝑆    S = s]
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• Terminal states are shown as shaded

• Actions leading out of the grid leave state unchanged 

• Reward is (-1) until a terminal state is reached

• Agent follows uniform random policy

𝜋 𝑛 ⋅ = 𝜋 𝑠 ⋅ = 𝜋 𝑒 ⋅ = 𝜋 𝑤 ⋅ = 0.25

Evaluating a Random Policy in 
Gridworld using the Bellman eq.
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Policy evaluation
• We can evaluate the policy 𝜋, by iteratively 

update the state-value function.

𝑣 𝑠  = 𝔼  𝑅 + 𝛾𝑣 𝑆    S = s]

• We can improve the policy by acting greedily 
with respect to 𝑣 . 

𝜋 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑣 )

• In our example, we found the optimal policy, 
𝜋 = 𝜋∗, after one iteration only.

• In general, iterating between policy evaluation 
and policy improvement is required before 
finding the optimal policy

• This was an example with a known MDP, we 
knew the rewards and the transitions 
probabilities.
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Bellman (optimality) equation

• Lets define the optimal Q-value (action-value) function,𝑄∗, to be the maximum 
expected reward given an state, action pair.

𝑄∗ 𝑠 , 𝑎 =  max 𝔼  𝐺  | 𝐴 = 𝑎 , 𝑆 = 𝑠  

• The optimal Q-value function, 𝑄∗, satisfy the following form of the bellman equation:

𝑄∗ 𝑠 , 𝑎 = 𝔼  𝑅 + 𝛾 max 𝑄∗ 𝑠 , 𝑎 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Note: The optimal policy, 𝜋∗, is achieved by taking the action with the highest Q-value.

• Note: We still need the expectation, as the randomness of the environment is unknown. 
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Solving for the optimal policy

The goal is to find a Q-value function which satisfy the Bellman (optimality) 
equation. An algorithm, value iteration, can be used to iteratively update our Q-
value function. 

𝑄 𝑠 , 𝑎 = 𝔼  𝑅 + 𝛾 max 𝑄 𝑠 , 𝑎 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Notation: 𝑖, is the iteration update step, 𝑡, is the sequential time-step in an 
episode.

• The Q-value, 𝑄 , will converge to 𝑄∗ under some mathematical conditions.

• While solving for the optimal Q-value function, we normally encounter two 
challenges:

– The “𝑚𝑎𝑥” property while sampling new episodes can lead to suboptimal 
policy.

– The state-action space is too large to store.
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Exploration vs Exploitation
• “The “𝑚𝑎𝑥” property while sampling new episodes can lead to suboptimal 

policy”

• Exploitation:

– By selecting the action with the highest q-value while sampling new 
episodes, we can refine our policy efficiently from an already promising 
region in the state action space.

• Exploration:

– To find a new and maybe more promising region within the state action 
space, we do not want to limit our search in the state action space. 

– We introduce a randomness while sampling new episodes.

– With a probability of 𝜖 lets choose a random action:

𝜋 𝑎 𝑠 =
𝑎∗ = argmax

∈
𝑄(𝑠, 𝑎) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦   1 − 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦  𝜖
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Function approximation

• In the Gridworld example, we stored the state-values for each state. What if the 
state-action space is too large to be stored e.g. continuous?

• We approximate the Q-value using a parameterized function e.g. neural 
network. 

𝑄 𝑠, 𝑎, 𝜃 ≈ 𝑄(𝑠, 𝑎)

• We want the function to generalize:

– Similar states should get similar action-values, 𝑄 𝑠, 𝑎, 𝜃 can also 
generalize to unseen states. A table version would just require to much 
data. 

• In supervised learning: 

– Building a function approximation vs memorizing all images (table).
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Solving for the optimal policy: 
Q-learning
• Goal: Find a Q-function satisfying the Bellman (optimality) equation.

• Idea: The Q-value at the last time step is bounded by the true Q-value, the 
correctness of the Q-value estimates increase with time-steps.

• Init: Initialize the weights in the neural network e.g. randomly. 

𝑄∗ 𝑠 , 𝑎 , 𝜃 = 𝔼  𝑅 + 𝛾 max 𝑄∗ 𝑠 , 𝑎 , 𝜃 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Reference: 
𝑦 =  𝔼  𝑅 + 𝛾 max 𝑄 𝑠 , 𝑎 , 𝜃 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Loss:

𝐿 (𝜃 ) = 𝔼 , , , ~ 𝑦 − 𝑄 𝑠 , 𝑎 , 𝜃

𝐷 is your dataset with state action pairs 𝑠 , 𝑠 , 𝑎 , 𝑟  
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Solving for the optimal policy: 
Q-learning
• Loss:

𝐿 (𝜃 ) = 𝔼 , , , ~ 𝑦 − 𝑄 𝑠 , 𝑎 , 𝜃

• Compute gradients:

∇ 𝐿 (𝜃 )  = 𝔼 , , , ~ 2 𝑦 − 𝑄 𝑠 , 𝑎 , 𝜃 ⋅ ∇ 𝑄 𝑠 , 𝑎 , 𝜃

• Update weights 𝜃:

𝜃 = 𝜃 − 𝛼 ∇ 𝐿 (𝜃 )
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Example: Deep Q-learning (Atari Games)
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Objective:
Complete the game with the 
highest score

State variables:
Raw pixel inputs of the game 
state

Actions:
Game controls, e.g. left, right, 
up, down, shoot.

Reward:
Score increases/decreases at 
each time step
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Deep Q-learning (Atari Games)

• Example taken from: [Mnih er al. NIPS Workshop 2013; Nature 2015] 

• Q-network architecture:

– FC-4 outputs Q values for all actions

– A state, 𝑠 , is a set pixels from stacked frames
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Experience replay

• Loss:

𝐿 𝜃 = 𝔼 , , , ~ 𝑦 − 𝑄 𝑠 , 𝑎 , 𝜃

• The loss function is defined by two state action pairs, 𝑠 , 𝑟 , 𝑎 , 𝑠 . We can 
store a replay memory table form the episodes played. The table is updated 
when new episodes are available.

• Normally, state action pairs from the same episode are used to update the 
network. However, we can select random mini batches for the replay memory. 
This breaks the correlation between the data used to update the network. 

• More data efficient as we can reuse the data.
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• https://www.youtube.com/watch?v=V1eYniJ0Rnk
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• Miscellaneous
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Policy based methods

• Value function based methods: 
– Learning the expected future reward for a given action.
– The policy was to act greedily or epsilon-greedily on the estimated values. 

• Policy based methods: 
– Learning the probability that an action is good directly.

• Advantage of Policy based methods:
– We might need a less complex function for approximating the best action 

compared to estimate the final reward.
– Example: Think of Pong
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Policy based methods

• Goal:

– The goal is to use experience/samples to try to make a policy better. 

• Idea:

– If a trajectory achieves a high reward, the actions were good

– If a trajectory achieves a low reward, the actions were bad

– We will use gradients to enforce more of the good actions and less of the 
bad actions. Hence the method is called Policy Gradients.
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Policy Gradients

• Our policy, 𝜋 , is a parametric function of parameter 𝜃.

• We can define an objective function for a given policy as:

𝒥 𝜃 = 𝔼 ∑ 𝛾 𝑟 |𝜋

• Note: 

– 𝛾 is the discord factor

– 𝑟 is the reward at time-step t.

• Assuming our policy is differentiable we can use gradient ascent to maximum 𝒥
w.r.t to 𝜃
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REINFORCE algorithm (not curriculum)

• Our environment and sampling of our action is stochastic. Lets define the return as 
the expected accumulated reward.

𝒥 𝜃 = 𝔼 ~ ( , )[𝑟(𝜏)]

= ∫ 𝑟 𝜏 𝑝 𝜏, 𝜃 𝑑𝜏

• Note:

– Trajectory: 𝜏 = 𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑎 , 𝑟 , … , 𝑠 , 𝑎 , 𝑟

• We need the gradient of the objective function to update the parameters, 𝜃. 

 ∇  𝒥 𝜃  =  ∫ 𝑟 𝜏  ∇ 𝑝 𝜏, 𝜃 𝑑𝜏
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REINFORCE algorithm (not curriculum)

 ∇  𝒥 𝜃  =  ∇ 𝔼 ~ ( , )[𝑟(𝜏)]

= ∫ 𝑟 𝜏  ∇ 𝑝 𝜏, 𝜃 𝑑𝜏

• We can rewrite the equation to become an expectation of an gradient using the 
following trick:

 ∇ 𝑝 𝜏, 𝜃 = 𝑝 𝜏, 𝜃
 ∇ ,

,
= 𝑝 𝜏, 𝜃  ∇ log 𝑝 𝜏, 𝜃  

  ∇  𝒥 𝜃 = ∫ 𝑝 𝜏, 𝜃 𝑟 𝜏   ∇ log 𝑝 𝜏, 𝜃  𝑑𝜏

=  𝔼 ~ ( , ) 𝑟 𝜏   ∇ log 𝑝 𝜏, 𝜃
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REINFORCE algorithm (not curriculum)

 ∇  𝒥 𝜃 =  𝔼 ~ ( , ) 𝑟 𝜏   ∇ log 𝑝 𝜏, 𝜃

• Expanding the probability of a trajectory based on the term,  ∇ log 𝑝 𝜏, 𝜃 :

𝑝 𝜏, 𝜃 =  ∏ 𝑝 𝑠 |𝑠 , 𝑎  𝜋 (𝑎 |𝑠 )

log 𝑝 𝜏, 𝜃 =  ∑ log 𝑝 𝑠 |𝑠 , 𝑎 + log 𝜋 (𝑎 |𝑠 )

 ∇ log 𝑝 𝜏, 𝜃 = ∑  ∇  log 𝜋 (𝑎 |𝑠 )

• We can sample trajectories to get estimates of the gradient.

 ∇  𝒥 𝜃 ≈ ∑ 𝑟 𝜏  ∇  log 𝜋 (𝑎 |𝑠 )
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REINFORCE algorithm (Pseudocode) 
(not curriculum)
• Update parameters by stochastic gradient ascent

• Using 𝑟 as the return at time-step t.

Δ𝜃 =  𝛼  ∇  log 𝜋 (𝑎 |𝑠 ) 𝑟

function REINFORCE

Initialize 𝜃 arbitrarily

for each episode {𝜏 = 𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑎 , 𝑟 , … , 𝑠 , 𝑎 , 𝑟 } ~𝜋 do

for 𝑡 = 1 to 𝑇 − 1 do

𝜃 ← 𝜃 + 𝛼  ∇  log 𝜋 (𝑎 |𝑠 ) 𝑟

end

end

return 𝜃

end function
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Game of Pong
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Policy learning: Pong 

• Policy learning

– We take input images as states

– Output probability of being good action

– Choose an action

– Observe: reward (/punishment)

– Improve

• The game: 

– Actions: 

• Up

• Down

– Reward:

• Winning = +1

• Losing   = −1
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Supervised learning vs Reinforcement 
learning 

• Imagine you play pong and the 
agent predicts:

– Up → log 𝑝 = −1.2 (30%)

– Down → log 𝑝 = −0.36 (70%)

– correct action is “Up”

• Supervised learning:

– You choose the output with the 
highest probability

– You get an immediate reward

• Policy learning:

– You sample an action with given 
the probability distribution

– Wait until you get an reward to 
backprop (May be many steps)
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Playing games of Pong

• Examples of games/episodes

• You play a lot of actions and 
receive an reward at the end

• You get a result, WIN! Great, but 
how do you know which action, 
caused the victory?

– Well… you don’t
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Which action caused the final results?

• In a winning series there may be 
many non-optimal actions

• In a losing series there may be 
good actions

• The true effect is found by 
averaging out the noise, as 
winnings series tend to have 
more good action and visa versa
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A chain of actions can cause large 
variations in performance

• If we change one action early in 
the network, we can easily move 
into unchartered territory.

• Imagine a self-driving car model 
that is used to driving on roads. 
If it happens to miss the road, it 
may have no idea what to do.

• If one action in the chain 
changes, other earlier actions 
may go from WIN, WIN, WIN to 
LOSE, LOSE, LOSE

• This high variance gradients 
make learning slow
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Policy gradients: High variance
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Policy gradients: High variance
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Variance - all choices get the reward
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Variance - other possible paths
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Variance - high probability to chose 
some other path
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Variance - same actions for same 
state: now negative
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Variance reduction

• In pong and most other 
applications, the final actions 
leading up to the win relate more to 
the final result than other actions.
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Variance reduction

• Gradient estimator: 

 ∇  𝒥 𝜃 ≈ ∑ 𝑟 𝜏  ∇  log 𝜋 (𝑎 |𝑠 )

• First idea: The return can be the accumulative reward from the state and to the 
end.

 ∇  𝒥 𝜃 ≈ 𝑟 ∇  log 𝜋 (𝑎 |𝑠 )

• Second idea: Add the discount factor, 𝛾, to reduce the effect of delayed 
rewards 

 ∇  𝒥 𝜃 ≈ 𝛾 𝑟 ∇  log 𝜋 (𝑎 |𝑠 )
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Variance reduction: Baseline (not 
curriculum)
• The accumulated discounted reward is not necessarily a reasonable value to be 

used for changing our probability distribution of the agent e.g. all reward are 
positive. 

• What we care about is whether an action is better or worse then expected. We 
can subtract an estimate of the goodness of the state (baseline). 

 ∇  𝒥 𝜃 ≈ 𝛾 𝑟 − 𝑏(𝑠 ) ∇  log 𝜋 (𝑎 |𝑠 )

• The most naive form of the baseline could be to use an moving average of the 
return experienced by all trajectories so far.
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Variance reduction: Baseline (not 
curriculum)
• Question: Can we find a better alternative?

 ∇  𝒥 𝜃 ≈ 𝛾 𝑟 − 𝑏(𝑠 ) ∇  log 𝜋 (𝑎 |𝑠 )

• In general, we want to increase the probability of choosing an action if the 
action is better than the expected return from the particular state.

 ∇  𝒥 𝜃 ≈ 𝑄 𝑎 , 𝑠 − 𝑉(𝑠 ) ∇  log 𝜋 𝑎 𝑠

• 𝑄: Is the q-value (action value) function

• 𝑉: Is the state-value function
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Q-learning vs Policy learning

Policy learning:

• More stabile

• The policy can be simpler to represent

• Imagine pong:
• It can be easy to find out that you have 

to move in one direction
• It can be hard to estimate the actual 

return for that step

• Effective:
• You get the policy directly

• “Built-in” stochastic polices

Q-learning

• Can converge faster

• Can be more flexible as you need state pair 
to learn only

• Experience replay
• Don’t need full episodes
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• Motivation

• Introduction to reinforcement learning (RL)

• Value function based methods (Q-learning)

• Policy based methods (policy gradients)

• Value function and policy based methods (Actor-Critic)

• Miscellaneous
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Actor-Critic Algorithm (not curriculum)

• From policy gradients, we wanted to find values for 𝑄 and 𝑉:

 ∇  𝒥 𝜃 ≈ 𝑄 𝑎 , 𝑠 − 𝑉(𝑠 ) ∇  log 𝜋 𝑎 𝑠

• Solution: We can use Q-learning to estimate 𝑄 and 𝑉. The Actor-Critic 
algorithm is a combination of Policy gradients and Q-learning.

– The actor (policy) is defined by Policy gradients

– The critic is defined by Q-learning
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Actor-Critic Algorithm (not curriculum)

• The actor (policy) decides which action to take, the critic reverts back with how 
good the action was compared to the average action.

• We don’t get the same variance problem since we only learn transition between 
steps at a time.
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• Motivation

• Introduction to reinforcement learning (RL)

• Value function based methods (Q-learning)

• Policy based methods (policy gradients)

• Value function and policy based methods (Actor-Critic)

• Miscellaneous
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Model based RL

• We can model the environment using 
e.g. a neural network. The network can 
be trained in a supervised way.

• By modeling the environment, we can 
“look ahead” and use search trees for 
evaluating our action. 

• Important in e.g. games as chess and go 
where a single wrong action can make 
you loose.
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