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Reading material

– Reading material: 
• http://cs231n.github.io/neural_networks-2

– Data scaling, weight initialization, batch normalization
• http://cs231n.github.io/neural-networks-3/

– Monitoring the loss, parameter update schemes,
• Deep Learning 6.2.2 and 6.3 on activation functions
• Deep Learning 8.7.1 on Batch normalization
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Today

• Recap of the optimization problem
• Activation functions
• Mini-batch gradient descent
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
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Recap of the optimization problem
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Recap: forward propagation
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Recap: 
Update weights using gradient descent
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Recap: cross entropy cost
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Cost function over a minibatch of samples

Cross-entropy loss for a single sample



Recap: backprop for a single sample
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Recap: convolutional networks
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Layers:
Convolutional layers
Pooling layers
Fully-connected layers

Training: we still use
backpropagation



Recap: Mini-batch SGD

• Loop:
1. Sample a batch of training data
2. Forward propagate it through

the net to compute the loss/cost
C

3. Backprop to calculate gradients 
with respect to all weights

4. Update the parameters using
the gradient
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Next: training a neural network in 
practise
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Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters
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Sigmoid activation

• Output between 0 and 1
• Historically popular
• Has some shortcomings
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Remember: chain rule is the core of
backpropagation – we need the derivative of
C with respect to all W[l]
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Chain rule and gradients for a 
sigmoid node
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Sigmoid problems

1. Sigmoids kill gradients

What is the consequence of this?
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Sigmoids are not zero-centered
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The mean is positive



Tanh activation

• Scaled version of
sigmoid

• Output between -1 and 1
• Zero-centered
• Saturates and kill 

gradients
• Preferred to sigmoid due 

to the zero-centering
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ReLU activation

• Rectified Linear Unit
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ReLU
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ReLU and dead neurons
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Data cloud
of samples

Active ReLU

Dead ReLU
No data points here



ReLU activation

• Does not saturate/kill gradients
• Fast to compute
• Converge fast
• Drawback: can sometimes ‘die’ during 

training and become inactive
– If this happens, the gradients will be 0 from that

point
– Be careful with the learning rate
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Currently: the best starting point recommendation



Leaky ReLU activation

•

• Converge fast
• Will not die
• Results are not consistent that

Leaky ReLU is better than ReLU
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ELU activation

•

• Will not die
• Closer to zero-mean outputs
• Benefits of ReLU, but more 

expensive to compute
• Compared to Leaky Relu, the

negative saturation adds some
robustness to noise. 

• Requires exp()
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Maxout activation

•

• Here there are two weights for 
each node

• Can be seen as a generalization
of ReLU/Leaky Relu

• Doubles the amount of
parameters per node compared to 
ReLU. 
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Activation recommendations

• Start by using ReLU
• Monitor the training process, look or dead

neurons. 
– Consider e.g. Leaky ReLU or Maxout if dead

neurons seems to be an issue. 
• Do not use Sigmoid
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Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters
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Patterns in backward flow
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add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:
If a gate get one large and one 
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is 
important



Data not zero-centered
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Similar effect as sigmoid: 
dynamics of the net change, slow convergence



Convergence of gradient descent

• Consider features with different scaling. 
• The error surface is then locally like an ellipse.
• Does a gradient descent lead us fast in the direction we want?
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Common normalization
• Standardize data to zero mean and unit variance
• Remark: STORE  and  because new data/test data must have the same 

normalization.
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Figure from http://cs231n.github.io/neural-networks-2/



Consider whitening the data

• If features are highly correlated,  principal component transform
can be considered to whiten the data. 

• Drawback: computationally heavy for image data, 
– Normally not used for image data

• Consider to use on other input types.

INF 5860 33



Common normalization for image data

• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image 
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB. 
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Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters
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What if all weights are initialized with
the same value?
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What are the gradients during backpropagation?



Weight initialization – alternative 1
• Initialize weights to small random numbers
• W = 0.01*np.random.randn(D,H)
• Every node will have a different random value. 

• Works OK for small networks, but not so good for deeper nets. 
• Look at statistics for activations
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• … to be added
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Activation plots 
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In forward prop:
activations become 0!
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Now change the scaling to 1 



With scaling 1 and tanh, the nodes are saturated to either -1 or +1
What happes to the gradient then?
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Weight initialization – normalizing the
variance.
• Consider a neuron with n inputs and               (n is called fan-in) 
• The variance of z is 

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling each weight wi
by        , the variance of the output will be 1. (Called Xavier
initialization)

INF 5860 42





n

i
ii xwz

1





n

i
ii xwVarzVar

1

)()(

))())((()( xVarwnVarzVar 

n/1

This is called Xavier-
initalization



With Xavier initialization and tanh
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With tanh
activation, 
Xavier works
better as we
want

w = np.random.rand(n)*sqrt(/n) 



Xavier with ReLU – activations
become zero again
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Try ‘relu’



He initialization – normalizing the
variance.

Xavier-normalization was developed for linear combinations, but we have 
a max-operator.
He et al. propose to use:  w = np.random.rand(n)*sqrt(2/n)  for ReLU
because of the max-operation that will alter the distribution.

Use this or ReLU!
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He initalization
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w = np.random.rand(n)*sqrt(2/n) 

Now the
activations
are not zero.
Why do we have a 
peak at 0?



Initializing the bias terms

• When W is initalized to small random numbers, 
symmetry is broken and b can be initialized with 0.

• It is also common to initialize all b’s to a common
constant, e.g. 0.01
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Initialization: Active area of research
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Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters
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Batch normalization

• So far, we noticed that normalizing the inputs and the initial 
weights to zero mean, unit variance help convergence. 

• As training progresses, the mean and variance of the weights
will change, and at a certain point they make converenge slow
again. 
– This is called a covariance shift. 

• Batch normalization (Ioffe and Szegedy) 
https://arxiv.org/abs/1502.03167 countereffects this.
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Batch normalization

• Idea: make your layer input to have a given mean
and variance

• This layer makes the input gaussian with zero 
mean and unit variance by applying
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during training.



• This normalization (zero mean, unit variance) can limit the expressive
power of the unit. To maintain this we rescale to yk

• What? Does this help? 
– Yes, because the network can learn k and k during backpropagation, and it learns

faster. Learning  without the new parameter scaling must be done through the input 
weights and is much more complicated.

• Batch normalization significantly speeds up gradient descent, 
and often improves the accuracy.  TRY IT! 
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Batch normalization: training 
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Batch normalization: test time 
• At test time: mean/std is computed for the ENTIRE TRAINING  set, not 

mini batches used during backprop (you should store these).
• Remark: use running average to update
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Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
•
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Learning with minibatch gradient 
descent

• Recently, a number of methods for  
improving the convergence of minibatch 
gradient descent have been proposed:
– Momentum and Nesterov Momentum

• Momentum is  a well-established optimization method

– AdaGrad
– RMSProp
– ADAM
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Learning with minibatch gradient 
descent
• Setting the learning η rate is difficult, and the

performance is sensitive to it. 
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient 
descent: decay the learning rate linearly until
iteration , then leave η constant:
– η k=(1-) η 0+  η , where =k/,   
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Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g. 

• Allows velocity to build up in shallow directions, but
is dampened in steep directions because of the sign
changes.  

INF 5860 58

v=mu*v - learning_rate*df # Integrate velocity
f += v                             #Integrate position



Gradient descent with momentum
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Momentum with mu=0.9 (green) vs. regular gradient descent (blue), 100 it.
Notice that momentum overshoots the minimum,but then goes back.

η =0.01



Nesterov momentum
• Idea: if we are at point x, with momentum the next estimate is  x+mu*v 

due to velocity from previous iterations.
• Momentum update has two parts: v=mu*v - learning_rate*df

– One due to velocity, and one due to current gradient
• Since velocity is pushing us to x+mu*v, why not compute the gradient 

at point x+mu*v, not point x? (Look ahead)
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x_ahead = x + mu*v #Only the velocity part
# Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v



Nesterov momentum
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• x_ahead = x + mu*v #Only the velocity part
• # Evaluate the gradient at x_ahead
• v = mu*v – learning_rate*dx(x_ahead)
• x += v

x
x_ahead

New x



Nesterov momentum
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Momentum (green) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.



Implementing Nesterov

• Notice that Nesterov creates the gradient at 
x_ahead, while we go directly from x to x+v. 

• It is more convenient to avoid computing the
gradient at a different location by rewriting
as: 
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• v_prev = v # Back this up
• v = mu * v – learning_rate * dx
• x += -mu*v_prev + (1-mu)*v 



AdaGrad updates (DL 8.5.1)
• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors. 
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction. 

• A problem with AdaGrad is that cache builds up larger and 
larger, and the step size can be smaller and smaller. 
– Use RMSprop or ADAM instead
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# Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



RMSprop update
• DL 8.5.2 and 

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad. 
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# RMSprop update
decay =0.9 
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)



RMSprop update
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Blue: Nesterov
Red: RMSprop



ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum
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# ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
# initialize first and second moment variables 
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)



Beyond the gradient: Hessian matrices ( DL 4.3.1)

• If W has N components, we can compute the derivative g of the
cost function J with respect to all N components

• We can compute the derivative of any of these with respect to 
the N components again to get the second derivative of
component i with respect to component j.

• The second derivative, H,  is then a matrix of size NxN, and is 
called the Hessian. 

• We approximate the cost function J locally using a second-
order  approximation around x0 : (g is the vector of derivatives 
and H the matrix of second-order derivatives):

• Remark: storing H for large nets is memory demanding!
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Second-order methods and their limitations (DL 8.6)

• Newton’s method would update x as:

• Appears convenient – no parameters!
• Challenge: if we have N parameters/weight, H has size NxN!! 

Impossible to invert, hard also to store H-1 in memory.
• One alternative that approximates H-1 and avoid storing it is 

Limited Memory BFGS (L-BFGS)
– See https://en.wikipedia.org/wiki/Limited-memory_BFGS
– Drawback: only works well for full batch gradient descent, so it 

currently not commonly used for large deep nets.   
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Covered today

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes

• To be contiued next week, with a focus on
generalization and regularization
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