UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification
Lecture : Training a neural net — part |

Initialization, activations, normalizations and
other practical details

Anne Solberg
February 28, 2018

oo

.f'_\l
_ [f
N \; | B

Ul @

UiO ¢ Department of Informatics
University of Oslo

Reading material

— Reading material:
e http://cs231n.github.io/neural _networks-2
— Data scaling, weight initialization, batch normalization

» http://cs231n.github.io/neural-networks-3/
— Monitoring the loss, parameter update schemes,

« Deep Learning 6.2.2 and 6.3 on activation functions
« Deep Learning 8.7.1 on Batch normalization

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Today

* Recap of the optimization problem
 Activation functions

« Mini-batch gradient descent

« Data preprocessing

* Weight initialization

« Batch normalization

* Weight update schemes

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap of the optimization problem

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap: forward propagation

®
¢ o o @ |
&) ; Z :
| Output layer

Hidden layers

[
{IE Q(Z 13 1]—i—bf])

C)
@)

JONCRORC

®

Input layer |

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap:
Update weights using gradient descent

We want to find values for our weights and biases

0C
u‘ﬂ — u‘ﬁ — A _C {
i‘)u.'g.i
o
by + by —A—m
db,
for all
g =1 ... nli—1]
E =1,..., nll
I =1..... V&

This is done with the so-called backpropagation algorithm.

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap: cross entropy cost

Cost function over a minibatch of samples

Ty

C(O QEI‘&IH :Grram — _;ZZ J,L 02 Y. -

1=1 k=1

Cross-entropy loss for a single sample

Ty

*C(E Z J;) log L;';(:)-

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap: backprop for a single sample

oL 0L p_y

NN I = (21a)
(‘)u-'j[,.ﬁ]c JzL]

oL oL

= A b =1, . 00 dt (21b)
C)bk ()/.,k

nli+1] -

oL 1 10 O [+1] _ _

o — (:k) o [+1] 'li’kj - b=l s L—-1 (21(:)
()Zk j=1 dzj

oL . N
5 o] — Yk~ Yk- (21d)
“k

Note that
- Egs. (21a)— (21c) are generally applicable

- Eq. (21d) assumes that £ is the cross-entropy loss, and that al’! = s(z[£]) with s as
the softmax function.

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Recap: convolutional networks

Layers:

Convolutional layers
Pooling layers
Fully-connected layers

INF 5860

Training: we still use
backpropagation

UiO ¢ Department of Informatics
University of Oslo

Recap: Mini-batch SGD

* Loop:
1. Sample a batch of training data

2. Forward propagate it through
the net to compute the loss/cost 1 Sh N
C Cp = E Z Z y;i) log '.U;E:)
3. Backprop to calculate gradients
with respect to all weights

4. Update the parameters using
the gradient

1=1 k=1
0« 68— A\Vy(Cy

INF 5860 11

UiO ¢ Department of Informatics
University of Oslo

Next: training a neural network In
practise

INF 5860

12

UiO ¢ Department of Informatics
University of Oslo

Where we are

« Activation functions

Data preprocessing

Weight initialization

Batch normalization

Weight update schemes
Searching for the best parameters

INF 5860

13

UiO ¢ Department of Informatics
University of Oslo

Sigmoid activation

9(2) ==
+e
9'(2) =9(2)1-9(2)

* Qutput between 0 and 1
» Historically popular
* Has some shortcomings

INF 5860

09

0.8 r

0.7

0.6

0.5}

04rF

03[

0.2 r

01

sigmoid

14

UiO ¢ Department of Informatics

University of Oslo

Remember: chain rule is the core of
backpropagation —we need the derivative of

C with respect to all WJI]

For a function f dependent on g which is
dependent on z

df _djdyg
dz dgdz

z — g(x) — f(g)

For a function f dependent on multiple
g1y -y gn, all which are dependent on z

INF 5860

Conlls)
o)

g f(g;, ceey gn) \

e

g.(0)

15

UiO ¢ Department of Informatics
University of Oslo

Chain rule and gradients for a
sigmoid node

X Activations
oL oL oz . |
OX 07 OX o7 L
Sigmoid
X P—

. oL

What happens when: o=

=-10 0z

x=0
x=10

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Sigmoid problems

1. Sigmoids kill gradients

What is the consequence of this?

INF 5860

17

UiO ¢ Department of Informatics

University of Oslo

Sigmoids are not zero-centered

allowed

gradient

update

directions

Zig zag path

allowed
gradient
update

directions

INF 5860

The mean is positive

18

UiO ¢ Department of Informatics

University of Oslo

Tanh activation

g(z) =tanh(z)
Scaled version of
sigmoid
Output between -1 and 1
Zero-centered

Saturates and Kill
gradients

Preferred to sigmoid due
to the zero-centering

INF 5860

0.8 r

06

0.4 r

02}

021

-0.4 1

06

-0.8 -

19

UiO ¢ Department of Informatics
University of Oslo

RelLU activation

RelLU(z) = max(z,0)
Derivative of ReLU :max(z,0)=1if z>0
and 0 otherwise

 Redctified Linear Unit

INF 5860

—
(=]

| © - M w £ [52] [=2] -~ (=] [(=]

RelU

20

UiO ¢ Department of Informatics
University of Oslo

RelLU

X Activations
oL oL oz
oX 0z Ox 0z
OX

What happens when:
x=-10
x=0
x=10

INF 5860

RelLU

oL
0z

21

UiO ¢ Department of Informatics
University of Oslo

RelLU and dead neurons

Data cloud

of samples Active ReLU

INF 5860

Dead RelLU
No data points here

22

UiO ¢ Department of Informatics
University of Oslo

RelLU activation

« Does not saturate/kill gradients
 Fast to compute
« Converge fast

« Drawback: can sometimes ‘die’ during
training and become inactive

— If this happens, the gradients will be 0 from that
point

— Be careful with the learning rate

Currently: the best starting point recommendation

INF 5860

23

UiO ¢ Department of Informatics
University of Oslo

Leaky RelL U activation

Leaky ReLU(z) = max(0.01z, z)

« Converge fast
* Will not die

 Results are not consistent that
Leaky RelLU is better than RelLU

INF 5860

Leaky ReLU

24

UiO ¢ Department of Informatics
University of Oslo

ELU activation

Exponential Linear Unit (ELU)(z)=2, z>0
a(exp(z) -1)

 Will not die —ELU

== L RelLU

« Closer to zero-mean outputs it
 Benefits of ReLU, but more

fix)

expensive to compute

« Compared to Leaky Relu, the ,,//7

negative saturation adds some
robustness to noise.

* Requires exp()

INF 5860

25

UiO ¢ Department of Informatics
University of Oslo

Maxout activation

Maxout(z) = max(w,z +b,w,z +hb,)

* Here there are two weights for
each node

« Can be seen as a generalization
of ReLU/Leaky Relu

* Doubles the amount of
parameters per node compared to
RelLU.

INF 5860

26

UiO ¢ Department of Informatics
University of Oslo

Activation recommendations

« Start by using RelLU

* Monitor the training process, look or dead
neurons.

— Consider e.g. Leaky RelLU or Maxout if dead
neurons seems to be an issue.

* Do not use Sigmoid

INF 5860

27

UiO ¢ Department of Informatics
University of Oslo

Where we are

Activation functions

Data preprocessing

Weight initialization

Batch normalization

Weight update schemes
Searching for the best parameters

INF 5860

28

UiO ¢ Department of Informatics
University of Oslo

Patterns in backward flow

x 3.00

add gate: gradient distributor
max gate: gradient router
mul gate: be careful
f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:

If a gate get one large and one
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is
important

INF 5860 29

UiO ¢ Department of Informatics
University of Oslo

Data not zero-centered

allowed

gradient

update

directions

Zig zag path

allowed
gradient
update
directions

Similar effect as sigmoid:
dynamics of the net change, slow convergence

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Convergence of gradient descent

60

* Consider features with different scaling.
« The error surface is then locally like an ellipse.
 Does a gradient descent lead us fast in the direction we want?

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Common normalization

« Standardize data to zero mean and unit variance
« Remark: STORE pn and ¢ because new data/test data must have the same
normalization.

original data zero-centered data normalized data

-10

Figure from http://cs231 n.github.io/neural-networks-2/

INF 5860 32

UiO ¢ Department of Informatics
University of Oslo

Consider whitening the data

 |f features are highly correlated, principal component transform
can be considered to whiten the data.

« Drawback: computationally heavy for image data,
— Normally not used for image data

« Consider to use on other input types.
original data decorrelated data whitened data

INF 5860 33

UiO ¢ Department of Informatics
University of Oslo

Common normalization for image data

« Consider e.g. CIFAR-10 image (32,32,3)

« Two alternatives:

— Subtract the mean image
« Keep track of a mean image of (32,32,3)

— Subtract the mean of each channel (r,g,b...)
« Keep track of the channel mean, 3 values for RGB.

INF 5860 34

UiO ¢ Department of Informatics
University of Oslo

Where we are

Activation functions

Data preprocessing

Weight initialization

Batch normalization

Weight update schemes
Searching for the best parameters

INF 5860

35

UiO ¢ Department of Informatics
University of Oslo

What if all weights are initialized with
the same value?

Hidden layers

What are the gradients during backpropagation?

INF 5860

36

UiO ¢ Department of Informatics
University of Oslo

Weight initialization — alternative 1

* Initialize weights to small random numbers
« W =0.01*np.random.randn(D,H)
« Every node will have a different random value.

« Works OK for small networks, but not so good for deeper nets.
» Look at statistics for activations

INF 5860

37

UiO ¢ Department of Informatics
University of Oslo

In [1]: import numpy as np
import matplotlib.pyplot as plt
#import time

“matplotlib inline

In [25]: D = np.random.rand(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh'l*len(hidden_layer_sizes)

In [36]: act = {'relu’':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in range(len(hidden_layer_sizes)):
X =D if i== 0 else Hs[i-1]
fan_in = X.shape[1]
fan_out = hidden_layer_sizes[i]

W = np.random.randn(fan_in, fan_out)*0.01
H = np.dot(X,w)

H = act[nonlinearities[i]] (H)

Hs[il = H

In [38]): # look at distribution of each layer

print('input layer has mean %f and std %f' % (np.mean(D), np.std(D)))
layer_means = np.zeros(len(Hs))
layer_std = np.zeros(len(Hs))
for i in range(len(Hs)):
layer_means[i] = np.mean(Hs[i])
layer_std[i] = np.std(Hs[i])
print ('hidden layer %d has mean %f and std %f' % (i+l, layer_means[i], layer_std[i]))

Plot the means adn stds.

plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)

plt.plot(Hs.keys(), layer_std, ‘'or-')
plt.title('layer std')

plt.figure()
plt.hist(H[O].ravel(), 30, range=[-0.5,0.5])
Plot the raw distribution
plt.figure()
for i in range(len(Hs)):
plt.figure()

plt.title('Layer %d' %i)
plt.hist(H[i].ravel(), 30, range=[-0.5,0.5])

UiO ¢ Department of Informatics
University of Oslo

Activation plots

out[39]:

input layer has mean 0.4

1dden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

ayer as
layer 4 has
layer 5 has
layer 6 has
layer 7 has
layer 8 has
layer 9 has

e an

click to scroll output; double click to hide Elg

mean
mean
mean
mean
mean
mean
mean

Text(0.5,1, '"layer std')

99225 and std 0.288535
0.007881 and std 0.125487
-0.000940 and std 0.028207
0.000272 and std 0.006154
-0.000058 and std 0.001346
0.000003 and std 0.000308
-0.000000 and std 0.000066
0.000000 and std 0.000015
-0.000000 and std 0.000003
0.000000 and std 0.000001
layer 10 has mean 0.000000 and std 0.000000

layer mean layer std
0.008
0.12 1
0.006 0.10 1
0.08 1
0.004
0.06 1
0.002 0.04
0.02 1
0.000
0.00 1
2 4 6 8 0 4 6

INF 5860

In forward prop:
activations become 0!

39

UiO ¢ Department of Informatics
University of Oslo

In [1]:

In [25]:

In [36]:

import numpy as np
import matplotlib.pyplot as plt

#Import time

%matplotlib inline

D = np.random. rand (1000, 500)
hidden_layer_sizes = [S00]*10

nonlinearities = ['tanh']*len(hidden_layer_sizes)

act = {'relu’':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}

Hs = {}

for i in range(len(hidden_layer_sizes)):
X =D if i== 0 else Hs[i-1]
fan_in = X.shapel[1]
fan_out = hidden_layer_sizes[i]

W = np.random.randn(fan_in, fan_out)*0.01
H = np.dot(X,w)

H = act[nonlinearities[i]](H)

Hs[i] = H

INF 5860

D —

Now change the scaling to 1

40

UiO ¢ Department of Informatics
University of Oslo

With scaling 1 and tanh, the nodes are saturated to either -1 or +1
What happes to the gradient then?

input layer has mean 0.499941 and std 0.288825
hidden layer 1 has mean -0.036934 and std 0.967268
hidden layer 2 has mean 0.002872 and std 0.981866

hidden layer 3 has mean -0.016049 and std 0.981460
hidden layer 4 has mean 0.001268 and std 0.981459
hidden layer 5 has mean -0.019339 and std 0.981384
hidden layer 6 has mean 0.006637 and std 0.981697
hidden layer 7 has mean 0.005504 and std 0.981727
hidden layer 8 has mean 0.009093 and std 0.981660
hidden layer 9 has mean 0.012191 and std 0.981723 RS 75014 5014 2501 -
hidden layer 10 has mean -0.002316 and std 0.981707] 2504 250(1
layer mean layer std - |
Yy - y 200 20d 2001 |4 200 |- 200 |4 200/ 4 200 200!+
0.01 1 2001 20011
980
0.00 - a7 150 1 150l 150{[{ 1504 ssoll 501 1sofd 159 15011 150}
—0.01 976
g74 100 1 100({ 104{ 200[{ 100!l 200 100l 200{{ 1091 100
-0.02 1 972
970 01 sajy saf SO solf SOf sof Sa1 9] sal
-0.03 -
968
2 i % 2 2 X L 0 T ‘I.GMA ™ -n'%-%'%w
@ 2 & 2 9B g £ ® W 9 -101-101-101-101101101-10 1-10 1-10 1-1

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Weight initialization — normalizing the
variance.

« Consider a neuron with n inputs and Z=ZWiXi (n is called fan-in)
 The variance of z is

Var(z) =Var(y wx,) This is called Xavier-
=1 initalization
|t can be shown that

Var(z) = (nVar(w))(Var(x))

» If we make sure that Var(w,)=1/n for all i, so by scaling each weight wi
by J1/n, the variance of the output will be 1. (Called Xavier
initialization)

INF 5860 42

UiO ¢ Department of Informatics
University of Oslo

With Xavier initialization and tanh

layer mean layer std
045
double click to hide 0.40
001] With tanh
. 030 1 activation,
L 025 | Xavier works
5 2 a4 & =8 5 > a & =& better as we
&0 S <l =l want
so { [?°|7 so/
40 -
20 - o/ 0 |
10 - o | ol - ol ol ol oA ol

-101-101101-101-101-10131101-101-10 1-10 1

nesso W = np.random.rand(n)*sqrt(/n)

UiO ¢ Department of Informatics
University of Oslo

Xavier with ReLU — activations
become zero again

In [25]: D = np.random.rand(1000,500)

hidden_layer_sizes = [500]*10 Try ‘relu,

nonlinearities = ['tanh~*len(hidden_layer_sizes)

layer mean layer std
0.25 S 0.35 -
020 - 0.30
0.25
0O.15 A
0.20 A
0.10 10-15 A
0.10
0.05 A
0.05 A
0.00 v
o 2 4 (= 8 o 2 = (=3 8
S00 o1 0|4 5S00 | O | 0 |4 0|4 S00|1 S00 |4 O |4
400 - 0|+ Ol 0O |4 0 |+ 0 |1 0|4 400|4 <400 |4 O |1
300 A 0|4 0|4 O |1 O |4 0 |4 O|4 300|4 300 |4 0 |
200 ol ol o |4 o |4 o |4 o|{ 200|{ 200| 0 |
100 A O | 4 O | O |+ O |+ O | O|4{ 1004 100 |4 O |
o o } o o & o

10110110 1-101-10110 110 110110 1-10 1

INF 5860

UiO ¢ Department of Informatics
University of Oslo

He initialization — normalizing the
variance.

Xavier-normalization was developed for linear combinations, but we have
a max-operator.

He et al. propose to use: w = np.random.rand(n)*sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.

Use this or ReLU!

INF 5860 45

UiO ¢ Department of Informatics
University of Oslo

He initalization

w = np.random.rand(n)*sqrt(2/n)

0.35
oso
a3 a9
0.33 o.a8
S 047
046
0.31
o.as
0.30
0.aa
029
Ll 043 L Ll 1 T
o 2 a 3 8 o 2 a &
300 300 300 300
250 o[2s0l|{ 2so|{ 2s0 P01 250|- o
200 o [200|{ =200|{ 200 PO |1 2po| ol-
150 150 |4 150 150 150 PO|1 150| ol
100 o [100|{ 100|{ 100 pbo|{ 1bo ol
50 50 | so|{ so|l{ so|{ |so|{ |so|{ |sol-

o -
-1 13+1013+-1901+-190313+10 110110 110 110 110 1

layer mean

layer std

INF 5860

Now the
activations

are not zero.

Why do we have a
peak at 07?

46

UiO ¢ Department of Informatics
University of Oslo

Initializing the bias terms

 When W is initalized to small random numbers,
symmetry is broken and b can be initialized with O.

 |tis also common to initialize all b’s to a common
constant, e.g. 0.01

INF 5860

47

UiO ¢ Department of Informatics
University of Oslo

Initialization: Active area of research

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe etal, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krdhenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

INF 5860 48

UiO ¢ Department of Informatics
University of Oslo

Where we are

 Activation functions

« Data preprocessing

* Weight initialization

« Batch normalization

* Weight update schemes

« Searching for the best parameters

INF 5860

49

UiO ¢ Department of Informatics
University of Oslo

Batch normalization

« So far, we noticed that normalizing the inputs and the initial
weights to zero mean, unit variance help convergence.

« As training progresses, the mean and variance of the weights
will change, and at a certain point they make converenge slow
again.

— This is called a covariance shift.

« Batch normalization (loffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

INF 5860 50

UiO ¢ Department of Informatics
University of Oslo

Batch normalization

I » ldea: make your layer input to have a given mean

FC and variance
l
£t » This layer makes the input gaussian with zero
1 mean and unit variance by applying
tanh
s _ K T M
X, = —F/———=
arix
> (%)
'
- 1, andVar(x,)

l is computed after each mini batch
tanh during training.

INF 5860 51

UiO ¢ Department of Informatics
University of Oslo

« This normalization (zero mean, unit variance) can limit the expressive
power of the unit. To maintain this we rescale toy,

Y = VX + B

« What? Does this help?

— Yes, because the network can learn y, and B, during backpropagation, and it learns
faster. Learning without the new parameter scaling must be done through the input
weights and is much more complicated.

« Batch normalization significantly speeds up gradient descent,
and often improves the accuracy. TRY IT!

INF 5860 52

UiO ¢ Department of Informatics
University of Oslo

Batch normalization: training

Input: Values of x over a mini-batch: B = {1, };
Parameters to be learned: v, 3
Output: {yi = BN’T,_ﬁ(xi)}

T
UB 1 T // mini-batch mean
%
1 m.
og +— = Z(:r:B — ng)? // mini-batch variance
=1
i — UB

T; // normalize

\/J?g i

Yi < YZ; + B = BN, g(z;) // scale and shift

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Batch normalization: test time

At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).

Remark: use running average to update

Input: Values of z over a mini-batch: B = {z1,_,,};
Parameters to be learned: v, 3
QOutput: {yi = BNw,_ﬁ(iﬁz’)}

1 T
— — i // mini-batch mean
o e 230,
i=1
1 m
2 & 2 .
0 — = Z(’r,E — UB) // mini-batch variance
=1
i Ty — [;
Ty — — i // normalize

\/O’%‘l—ﬁ

Yi &+ 7Z; + B = BN, g(z;) // scale and shift

54

UiO ¢ Department of Informatics
University of Oslo

Where we are

Activation functions
Data preprocessing
Weight initialization
« Batch normalization
 Weight update schemes

INF 5860

55

UiO ¢ Department of Informatics
University of Oslo

Learning with minibatch gradient
descent

* Recently, a number of methods for
improving the convergence of minibatch
gradient descent have been proposed:

— Momentum and Nesterov Momentum
« Momentum is a well-established optimization method

— AdaGrad
— RMSProp
— ADAM

INF 5860

56

UiO ¢ Department of Informatics
University of Oslo

Learning with minibatch gradient
descent

« Setting the learning n rate is difficult, and the
performance is sensitive to it.
— Too low: slow convergence
— Too high: oscillating performance

* |n practise when using minibatch gradient
descent: decay the learning rate linearly until
iteration t, then leave n constant:

- N =(1-a) N o+ a n ., where a=k/t,

INF 5860 57

UiO ¢ Department of Informatics
University of Oslo

Gradient descent with momentum

v=mu*v - learning_rate*df # Integrate velocity
f+=v #Integrate position

* Physical interpretation: ball rolling downhill
* mu: friction coefficient

* mu normally between 0.5 and 0.99
— Can gradually decrease from 0.5 to 0.99 e.g.

 Allows velocity to build up in shallow directions, but
Is dampened in steep directions because of the sign
changes.

INF 5860 58

UiO ¢ Department of Informatics
University of Oslo

30 F——

n =0.01

) vs. regular gradient descent (blue), 100 it.

Notice that momentum overshoots the minimum,but then goes back.

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Nesterov momentum

» l|dea: if we are at point x, with momentum the next estimate is x+mu*v

due to velocity from previous iterations.
* Momentum update has two parts: v=mu*v - learning_rate*df
— One due to velocity, and one due to current gradient

« Since velocity is pushing us to x+mu*v, why not compute the gradient
at point x+mu*v, not point x? (Look ahead)

x_ahead = x + mu*v #Only the velocity part
Evaluate the gradient at x_ahead

vV = mu*v — learning_rate*dx(x_ahead)
X+=vV

INF 5860

60

UiO ¢ Department of Informatics
University of Oslo

Nesterov momentum

 x_ahead = x + mu*v #Only the velocity part
« # Evaluate the gradient at x_ahead
* Vv =mu*v - learning_rate*dx(x_ahead)

° X+=vVv
I X_ahead
10 1 \ /]
N
51 N 1
X\\\

_h&.

-2 -1.5 -1 -0.5 0 0.5 1 1.5

INF 5860

61

UiO ¢ Department of Informatics
University of Oslo

Nesterov momentum

N

) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Implementing Nesterov

* Notice that Nesterov creates the gradient at
X_ahead, while we go directly from x to x+v.

|t is more convenient to avoid computing the

gradient at a different location by rewriting

qsl® Vv-prev=v # Back this up
vV =mu * Vv — learning_rate * dx
X +=-mu*v_prev + (1-mu)*v

INF 5860 63

UiO ¢ Department of Informatics
University of Oslo

AdaGrad updates (DL 8.5.1)

* From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
« Keep a cache of elementwise squared gradients g=dx

Adagrad update
cache += dx**2
X += -learning_rate * dx/(np.sqrt(cache)+1e-7)

 Note that x, dx and cache are vectors.

» cache builds of the accumulated gradients in each direction.

— If one direction has large gradient, we will take a smaller step in that
direction.

« A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
— Use RMSprop or ADAM instead

INF 5860

64

UiO ¢ Department of Informatics
University of Oslo

RMSprop update

« DL8.5.2and
http://www.cs.toronto.edu/~tiimen/csc321/slides/lecture slides lec6.pdf

RMSprop update

decay =0.9

cache = decay*cache + (1-decay)*dx**2

X += -learning_rate * dx/(np.sqrt(cache)+1e-7)

» Here cache is a moving average of the gradients for each weight
* Works better than AdaGrad.

INF 5860

65

UiO ¢ Department of Informatics

University of Oslo

RMSprop update

20
15_—______—__7 ——

10
5
0
-5
= —

Blue: Nesterov
Red: RMSprop

INF 5860

66

UiO ¢ Department of Informatics
University of Oslo

ADAM update

« DL 8.5.3 and https://arxiv.org/abs/1412.6980
* Like RMSprop but with momentum

ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001

initialize first and second moment variables
s=0, r=0

tau = t+1

s =rho1*s + (1-rho1)*dx

r =rho2%r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)

rb =r/(1-rho2**tau)

X = X — eps”*sb/(sqrt(rb) +1e-8)

INF 5860

UiO ¢ Department of Informatics
University of Oslo

Beyond the gradient: Hessian matrices (DL 4.3.1)

« |f W has N components, we can compute the derivative g of the

cost function J with respect to all N components

« We can compute the derivative of any of these with respect to
the N components again to get the second derivative of
component i with respect to component j.

« The second derivative, H, is then a matrix of size NxN, and is
called the Hessian.

« We approximate the cost function J locally using a second-
order approximation around X, : (g is the vector of derivatives
and H the matrix of second-order derivatives):

T l T T
9= I0%) + (X=%)" g+ 2 (X = %) H(x =)
« Remark: storing H for large nets is memory demanding!

INF 5860

68

UiO ¢ Department of Informatics
University of Oslo

Second-order methods and their limitations (DL 8.6)

Newton’s method would update x as:
-1
Xe = Xiog — [Hf (Xt—l)] \4i (Xt—l)

« Appears convenient — no parameters!

« Challenge: if we have N parameters/weight, H has size NxN!!
Impossible to invert, hard also to store H' in memory.

« One alternative that approximates H-! and avoid storing it is
Limited Memory BFGS (L-BFGS)
— See https://en.wikipedia.org/wiki/Limited-memory BFGS

— Drawback: only works well for full batch gradient descent, so it
currently not commonly used for large deep nets.

INF 5860 69

UiO ¢ Department of Informatics
University of Oslo

Covered today

Activation functions
Data preprocessing
Weight initialization
Batch normalization
Weight update schemes

To be contiued next week, with a focus on
generalization and regularization

INF 5860 70

