
INF 5860 Machine learning for image classification

Lecture : Training a neural net – part I
Initialization, activations, normalizations and
other practical details
Anne Solberg
February 28, 2018

Reading material

– Reading material:
• http://cs231n.github.io/neural_networks-2

– Data scaling, weight initialization, batch normalization
• http://cs231n.github.io/neural-networks-3/

– Monitoring the loss, parameter update schemes,
• Deep Learning 6.2.2 and 6.3 on activation functions
• Deep Learning 8.7.1 on Batch normalization

INF 5860 3

Today

• Recap of the optimization problem
• Activation functions
• Mini-batch gradient descent
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes

INF 5860 4

Recap of the optimization problem

INF 5860 5

Recap: forward propagation

INF 5860 6

Recap:
Update weights using gradient descent

INF 5860 7

Recap: cross entropy cost

INF 5860 8

Cost function over a minibatch of samples

Cross-entropy loss for a single sample

Recap: backprop for a single sample

INF 5860 9

Recap: convolutional networks

INF 5860 10

Layers:
Convolutional layers
Pooling layers
Fully-connected layers

Training: we still use
backpropagation

Recap: Mini-batch SGD

• Loop:
1. Sample a batch of training data
2. Forward propagate it through

the net to compute the loss/cost
C

3. Backprop to calculate gradients
with respect to all weights

4. Update the parameters using
the gradient

INF 5860 11

Next: training a neural network in
practise

INF 5860 12

Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters

INF 5860 13

Sigmoid activation

• Output between 0 and 1
• Historically popular
• Has some shortcomings

INF 5860 14

)(1)(()('
1

1)(

zgzgzg
e

zg z




 

Remember: chain rule is the core of
backpropagation – we need the derivative of
C with respect to all W[l]

INF 5860 15

Chain rule and gradients for a
sigmoid node

INF 5860 16

Sigmoid

x

z

Activations

x
z

x

z
z
L

x
L











z
L

What happens when:

x=-10
x=0
x=10

Sigmoid problems

1. Sigmoids kill gradients

What is the consequence of this?

INF 5860 17

Sigmoids are not zero-centered

INF 5860 18

The mean is positive

Tanh activation

• Scaled version of
sigmoid

• Output between -1 and 1
• Zero-centered
• Saturates and kill

gradients
• Preferred to sigmoid due

to the zero-centering

INF 5860 19

)tanh()(zzg 

ReLU activation

• Rectified Linear Unit

INF 5860 20

 otherwise 0 and
 0z if 1 max(z,0) :ReLU of Derivative

)0,max()(ReLU


 zz

ReLU

INF 5860 21

ReLU

x

z

Activations

x
z

x

z
z
L

x
L











z
L

What happens when:

x=-10
x=0
x=10

ReLU and dead neurons

INF 5860 22

Data cloud
of samples

Active ReLU

Dead ReLU
No data points here

ReLU activation

• Does not saturate/kill gradients
• Fast to compute
• Converge fast
• Drawback: can sometimes ‘die’ during

training and become inactive
– If this happens, the gradients will be 0 from that

point
– Be careful with the learning rate

INF 5860 23

Currently: the best starting point recommendation

Leaky ReLU activation

•

• Converge fast
• Will not die
• Results are not consistent that

Leaky ReLU is better than ReLU

INF 5860 24

),01.0max()(ReLULeaky zzz 

ELU activation

•

• Will not die
• Closer to zero-mean outputs
• Benefits of ReLU, but more

expensive to compute
• Compared to Leaky Relu, the

negative saturation adds some
robustness to noise.

• Requires exp()

INF 5860 25

1)-(exp(z)

0z ,)((ELU)it Linear Unal Exponenti


 zz

Maxout activation

•

• Here there are two weights for
each node

• Can be seen as a generalization
of ReLU/Leaky Relu

• Doubles the amount of
parameters per node compared to
ReLU.

INF 5860 26

),max()(Maxout 2211 bzwbzwz 

Activation recommendations

• Start by using ReLU
• Monitor the training process, look or dead

neurons.
– Consider e.g. Leaky ReLU or Maxout if dead

neurons seems to be an issue.
• Do not use Sigmoid

INF 5860 27

Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters

INF 5860 28

Patterns in backward flow

INF 5860 29

add gate: gradient distributor
max gate: gradient router
mul gate: be careful

f=x*y means that
df/dx=y and df/dy=x

Remark on multiplier gate:
If a gate get one large and one
small input, backprop will use the
big input to cause a large change
on the small input, and vice versa.
This is partly why feature scaling is
important

Data not zero-centered

INF 5860 30

Similar effect as sigmoid:
dynamics of the net change, slow convergence

Convergence of gradient descent

• Consider features with different scaling.
• The error surface is then locally like an ellipse.
• Does a gradient descent lead us fast in the direction we want?

INF 5860 31

Common normalization
• Standardize data to zero mean and unit variance
• Remark: STORE  and  because new data/test data must have the same

normalization.

INF 5860 32

Figure from http://cs231n.github.io/neural-networks-2/

Consider whitening the data

• If features are highly correlated, principal component transform
can be considered to whiten the data.

• Drawback: computationally heavy for image data,
– Normally not used for image data

• Consider to use on other input types.

INF 5860 33

Common normalization for image data

• Consider e.g. CIFAR-10 image (32,32,3)
• Two alternatives:

– Subtract the mean image
• Keep track of a mean image of (32,32,3)

– Subtract the mean of each channel (r,g,b…)
• Keep track of the channel mean, 3 values for RGB.

INF 5860 34

Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters

INF 5860 35

What if all weights are initialized with
the same value?

INF 5860 36

What are the gradients during backpropagation?

Weight initialization – alternative 1
• Initialize weights to small random numbers
• W = 0.01*np.random.randn(D,H)
• Every node will have a different random value.

• Works OK for small networks, but not so good for deeper nets.
• Look at statistics for activations

INF 5860 37

• … to be added

INF 5860 38

Activation plots

INF 5860 39

In forward prop:
activations become 0!

INF 5860 40

Now change the scaling to 1

With scaling 1 and tanh, the nodes are saturated to either -1 or +1
What happes to the gradient then?

INF 5860 41

Weight initialization – normalizing the
variance.
• Consider a neuron with n inputs and (n is called fan-in)
• The variance of z is

• It can be shown that

• If we make sure that Var(wi)=1/n for all i, so by scaling each weight wi
by , the variance of the output will be 1. (Called Xavier
initialization)

INF 5860 42





n

i
ii xwz

1





n

i
ii xwVarzVar

1

)()(

))())((()(xVarwnVarzVar 

n/1

This is called Xavier-
initalization

With Xavier initialization and tanh

INF 5860 43

With tanh
activation,
Xavier works
better as we
want

w = np.random.rand(n)*sqrt(/n)

Xavier with ReLU – activations
become zero again

INF 5860 44

Try ‘relu’

He initialization – normalizing the
variance.

Xavier-normalization was developed for linear combinations, but we have
a max-operator.
He et al. propose to use: w = np.random.rand(n)*sqrt(2/n) for ReLU
because of the max-operation that will alter the distribution.

Use this or ReLU!

INF 5860 45

He initalization

INF 5860 46

w = np.random.rand(n)*sqrt(2/n)

Now the
activations
are not zero.
Why do we have a
peak at 0?

Initializing the bias terms

• When W is initalized to small random numbers,
symmetry is broken and b can be initialized with 0.

• It is also common to initialize all b’s to a common
constant, e.g. 0.01

INF 5860 47

Initialization: Active area of research

INF 5860 48

Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
• Searching for the best parameters

INF 5860 49

Batch normalization

• So far, we noticed that normalizing the inputs and the initial
weights to zero mean, unit variance help convergence.

• As training progresses, the mean and variance of the weights
will change, and at a certain point they make converenge slow
again.
– This is called a covariance shift.

• Batch normalization (Ioffe and Szegedy)
https://arxiv.org/abs/1502.03167 countereffects this.

INF 5860 50

Batch normalization

• Idea: make your layer input to have a given mean
and variance

• This layer makes the input gaussian with zero
mean and unit variance by applying

INF 5860 51

 k

kk
k xVar

xx 
ˆ

 kk xVar and 

is computed after each mini batch
during training.

• This normalization (zero mean, unit variance) can limit the expressive
power of the unit. To maintain this we rescale to yk

• What? Does this help?
– Yes, because the network can learn k and k during backpropagation, and it learns

faster. Learning without the new parameter scaling must be done through the input
weights and is much more complicated.

• Batch normalization significantly speeds up gradient descent,
and often improves the accuracy. TRY IT!

INF 5860 52

kkkk xy   ˆ

Batch normalization: training

INF 5860 53

Batch normalization: test time
• At test time: mean/std is computed for the ENTIRE TRAINING set, not

mini batches used during backprop (you should store these).
• Remark: use running average to update

INF 5860 54

Where we are

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes
•

INF 5860 55

Learning with minibatch gradient
descent

• Recently, a number of methods for
improving the convergence of minibatch
gradient descent have been proposed:
– Momentum and Nesterov Momentum

• Momentum is a well-established optimization method

– AdaGrad
– RMSProp
– ADAM

INF 5860 56

Learning with minibatch gradient
descent
• Setting the learning η rate is difficult, and the

performance is sensitive to it.
– Too low: slow convergence
– Too high: oscillating performance

• In practise when using minibatch gradient
descent: decay the learning rate linearly until
iteration , then leave η constant:
– η k=(1-) η 0+  η , where =k/,

INF 5860 57

Gradient descent with momentum

• Physical interpretation: ball rolling downhill
• mu: friction coefficient
• mu normally between 0.5 and 0.99

– Can gradually decrease from 0.5 to 0.99 e.g.

• Allows velocity to build up in shallow directions, but
is dampened in steep directions because of the sign
changes.

INF 5860 58

v=mu*v - learning_rate*df # Integrate velocity
f += v #Integrate position

Gradient descent with momentum

INF 5860 59

Momentum with mu=0.9 (green) vs. regular gradient descent (blue), 100 it.
Notice that momentum overshoots the minimum,but then goes back.

η =0.01

Nesterov momentum
• Idea: if we are at point x, with momentum the next estimate is x+mu*v

due to velocity from previous iterations.
• Momentum update has two parts: v=mu*v - learning_rate*df

– One due to velocity, and one due to current gradient
• Since velocity is pushing us to x+mu*v, why not compute the gradient

at point x+mu*v, not point x? (Look ahead)

INF 5860 60

x_ahead = x + mu*v #Only the velocity part
Evaluate the gradient at x_ahead
v = mu*v – learning_rate*dx(x_ahead)
x += v

Nesterov momentum

INF 5860 61

• x_ahead = x + mu*v #Only the velocity part
• # Evaluate the gradient at x_ahead
• v = mu*v – learning_rate*dx(x_ahead)
• x += v

x
x_ahead

New x

Nesterov momentum

INF 5860 62

Momentum (green) vs. regular gradient descent (blue), Nesterov (magenta)
Notice that Nesterov reduces overshoot near minimum.

Implementing Nesterov

• Notice that Nesterov creates the gradient at
x_ahead, while we go directly from x to x+v.

• It is more convenient to avoid computing the
gradient at a different location by rewriting
as:

INF 5860 63

• v_prev = v # Back this up
• v = mu * v – learning_rate * dx
• x += -mu*v_prev + (1-mu)*v

AdaGrad updates (DL 8.5.1)
• From http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
• Keep a cache of elementwise squared gradients g=dx

• Note that x, dx and cache are vectors.
• cache builds of the accumulated gradients in each direction.

– If one direction has large gradient, we will take a smaller step in that
direction.

• A problem with AdaGrad is that cache builds up larger and
larger, and the step size can be smaller and smaller.
– Use RMSprop or ADAM instead

INF 5860 64

Adagrad update
cache += dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

RMSprop update
• DL 8.5.2 and

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

• Here cache is a moving average of the gradients for each weight
• Works better than AdaGrad.

INF 5860 65

RMSprop update
decay =0.9
cache = decay*cache + (1-decay)*dx**2
x += -learning_rate * dx/(np.sqrt(cache)+1e-7)

RMSprop update

INF 5860 66

Blue: Nesterov
Red: RMSprop

ADAM update

• DL 8.5.3 and https://arxiv.org/abs/1412.6980
• Like RMSprop but with momentum

INF 5860 67

ADAM update, all variables are vectors
rho1 = 0.9, rho2 = 0.999, eps=0.001
initialize first and second moment variables
s=0, r=0
tau = t+1
s = rho1*s + (1-rho1)*dx
r = rho2*r + (1-rho2)*dx.*dx #elementwise
sb=s/(1-rho1**tau)
rb =r/(1-rho2**tau)
x = x – eps*sb/(sqrt(rb) +1e-8)

Beyond the gradient: Hessian matrices (DL 4.3.1)

• If W has N components, we can compute the derivative g of the
cost function J with respect to all N components

• We can compute the derivative of any of these with respect to
the N components again to get the second derivative of
component i with respect to component j.

• The second derivative, H, is then a matrix of size NxN, and is
called the Hessian.

• We approximate the cost function J locally using a second-
order approximation around x0 : (g is the vector of derivatives
and H the matrix of second-order derivatives):

• Remark: storing H for large nets is memory demanding!

INF 5860 68

   TTT xxxxxxxJxJ 0000 2
1)()()( Hg

Second-order methods and their limitations (DL 8.6)

• Newton’s method would update x as:

• Appears convenient – no parameters!
• Challenge: if we have N parameters/weight, H has size NxN!!

Impossible to invert, hard also to store H-1 in memory.
• One alternative that approximates H-1 and avoid storing it is

Limited Memory BFGS (L-BFGS)
– See https://en.wikipedia.org/wiki/Limited-memory_BFGS
– Drawback: only works well for full batch gradient descent, so it

currently not commonly used for large deep nets.

INF 5860 69

 )()(1
1

11 


  tttt xfxHfxx

Covered today

• Activation functions
• Data preprocessing
• Weight initialization
• Batch normalization
• Weight update schemes

• To be contiued next week, with a focus on
generalization and regularization

INF 5860 70

