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Progress

* TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning



UiO ¢ Department of Informatics 06055018
University of Oslo

Why do we need Deep learning

frameworks?
« Speed:

— Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation

« Automatic differentiations:
—  Pre-implementation of the most common functions and it's gradients.

 Reuse:
— Easy to reuse other people’s models

 Less error prone:
— The more code you write yourself, the more errors

14.2.2018
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TensorFlow

« TensorFlow graphs

 TensorFlow session

 TensorFlow constants
 TensorFlow variables

« TensorFlow feeding data to the graph
 Tensorboard

 TensorFlow save/restore models
 TensorFlow example
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Graphs

f(X) =29 % x5 + X3 x Xy
fG) =z + 2z,

Of () Of 0z,
axl B 021 axl -

10

Green number: Forward propagation
Red numbers: Backward propagation
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Defining a tensor in TensorFlow

« The main types of tensors are:
— tf.Variable / tf.get_variable
— tf.constant
— tf.placeholder

« Attributes (some of them):
— Shape
— dtype
— name

14.2.2018
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Example of a tensors

In [4]: import tensorflow as tf

In [5]: a = tf.constant(value=3, name="myConstant', dtype=tf.float32, shape=())
print(a)

Tensor("myConstant_1:0", shape=(), dtype=float32)

In [17]: a = tf.variable(initial_value=3, trainable=True, name='myVariable', dtype=tf.float32)
print(a)

<tf.Variable 'myVariable 2:0' shape=() dtype=float32_ref>

In [124]: a = tf.placeholder(name="'myPlaceholder', dtype=tf.float32, shape=())
print(a)

Tensor("myPlaceholder:0", shape=(), dtype=float32)

14.2.2018
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The graph

 The TensorFlow graph is a definition, not any computation.

« The computational graph is a series of TensorFlow operations arranged into a
graph. The graph is composed of two types of objects:

— Operation: Nodes in the graph
— Tensors: The edges in the graph
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Executing the tf.Graph: tf.Session

« We have seen that variables and constants are handles to elements in the
computational graph only.

« We execute the graph using a tf.Session

In [S0]: ¢ = tf.add(3.0, 5.0)
sess = tf.Session()
c_val = sess.run(c)
sess.close()

print(c)
print(c_val)

Tensor(“"Add:@", shape=(), dtype=float32)
8.0

14.2.2018
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Creating variables

We can define variables two ways:

# create variables with tf.Variable
s = tf.Variable(3.0, name="scalar")

preferred

# create variables with tf.get variable

s = tf.get variable("scalar", initializer=tf.constant(3.0))

14.2.2018
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Initializing variables

« The variables to be used in the graph have to be either:
— Initialized
— Restored

tf.reset_default_graph()
X = tf.Variable(initial_value=tf.ones(4), name="array")

with tf.Session() as sess:
sess.run(x.initializer)

Xx_val = sess.run(x)
print(x_val)

E e & 3 )

14.2.2018
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tf.placeholder

# create a placeholder for a vector of 2 elements, type tf.float32

x = tf.placeholder(dtype=tf.float32, shape=[2], name="p")
y = tf.constant(value=[1, 2], dtype=tf.float32, name="c")
Z=X+Yy

with tf.Session() as sess:
z val = sess.run(z, feed dict={x: [3, 4]})
print(z_val)

[ 4. 6.]

add

14.2.2018
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Tensorboard: Visualizing learning
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tf.train.saver.save()

* How to save our model every 1000 iteration.

saver = tf.train.Saver()
global step = tf.Variable(8, dtype=tf.int32, trainable=False, name='global step')

with tf.Session() as sess:
for step in range(number_of_training_steps):
# do training of the network

#Save the model every 1000 training step

if (step + 1) % 1000==0:
saver.save(sess, 'checkpoint_directory/model_name', global_step=global_step)

14.2.2018
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Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning
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Convolutional layer

__— 32x32x3 image

/ 5x5x3 filter
e
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convolve (slide) over all
spatial locations
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Convolutional layer

T 32x32x3 image activation maps

5x5x3 filter %
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Convolutional layer

« If we filter the input volume 6 times using a 5x5x3 filter,
we get a output volume with 6 channels (depth)

activation maps

/ %2
Convolution Layer
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Activations

INF 5860 20
08.03.2018

« We use an activation function separately on all elements of the output volume
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Stride

« Stride is the spatial step length in the convolution operation.
« Example: Input volume 7x7x1, kernel (filter) size 3x3x1

* The stride is an important parameter for determining the spatial size of the
output volume
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Padding

The output volume can get a lower spatial
resolution compared to the input volume. We can
solve this by padding the input volume. Common
to use zero padding

Abbreviations: Stride (S), filter size (F), input size

22

(N?), output size (N1) and padding (P)

For S = 1, we can achieve N° = N selecting P
equal to:

(= I8 [N = 1 = I (= I (= ]

2

Calculation of the spatial output size:

) NO —F +2P
N = +1

S
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How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in

the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @

Hidden
Layer

Hidden
Layer

Hidden

Layer
Input|$OOOOOOOOOOOOOOOO
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How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in
the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @
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How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in
the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @

5 influence the next Hidden

« 7 influence the next H;;y; /T\
e o LTV
NN
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The effect of strided convolutions

* We still cover the whole input

 We have increased the receptive field from 5-7 in hidden layer 2

Output O O O O O @) O O O

Hidden
Layer

=N
= AAA

it [0 0 0000000000000 000

INF 5860
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With strides, spatial dimensions will
become smaller

» Usually some of the of the network
capacity is preserved through an
increasing number of channels
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Dilated convolutions

« Skipping values in the kernel

« Same as filling the kernel with every
other value as zero

« Still cover all inputs

« Larger kernel with no extra
parameters

INF 5860
08.03.2018
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Visualizing and Understanding deeper
layers

» Looking at the filer coefficient directly at deeper layer is not meaningful.

* Visualization with Deconvnet

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks
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Hierarchical learning

* A convolution neural network is built up as a hierarchy were the
complexity (abstraction) is increased by depth.

* A hierarchical structure is parameter efficient

30
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Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning
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 Formalization supervised learning:

— |Input: x
— Output: y
— Target function: f : X-> T

— Data: (x1,y1), (x2,¥2) -, (xn, Yn)

ol

— Hypothesis: h: X-> Y

Example:

Hypothesis set:  y = w;x + wy

A hypothesis: y=2x+1
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More notation

In-sample (colored): Training data available
to find your solution.

Out-of-sample (gray): Data from the real
world, the hypothesis will be used for.

Final hypothesis:
Target hypothesis:

Generalization: Difference between the
in-sample error and the out-of-sample error

INF 5860 Page 33
08.03.2018
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What is the expected out-of-sample
error?

For a randomly selected hypothesis

The closest error approximation is
the in-sample error
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What is training?

* A general view of training:

— Training is a search through
possible hypothesis

— Use in-sample data to find the best
hypothesis

INF 5860
08.03.2018
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What is the effect of choosing the best

hypothesis?

 Smaller in-sample error

* Increasing the probability that
the result is a coincidence

« The expected out-of-sample
error is greater or equal to the
in-sample error
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Capacity of the model (hypothesis set)

 The model restrict the number of
hypothesis you can find

* Model capacity is a reference to how many
possible hypothesis you have

« Alinear model has a set of all linear
functions as its hypothesis

J = sign(w!x + b)

§=x"Wx+wa+b
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Measuring capacity

« Vapnik-Chervonenkis (VC) dimension

— Denoted: dy(H)
— Definition:
« The maximum number of points that can be arrange such that H can
shatter them.
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Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N =3)
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Splitting of data

« Training set (60%)
— Used to train our model

« Validation set (20%)
— Used to select the best hypothesis

 Testset (20%)
— Used to get a representative out-of-sample error
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Important! No peeking

+ Keep a dataset that you don'’t look at until
evaluation (test set)

* The test set should be as different from
your training set as you expect the real
world to be

INF 5860
08.03.2018
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Learning curves

Simple hypothesis

\E‘( ut

L
Ein

Expected Error

Number of Data Points, NV

INF 5860 Page 42
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Complex hypothesis

E()m

Expected Error

/ Ein

Number of Data Points, N
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Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning
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Recurrent Neural Network (RNN)

Takes a new input

Manipulate the state

Reuse weights

Gives a new output

Yt

Page 44
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Recurrent Neural Network (RNN)

e Unrolled view

e x,:The input vector: Yt Yi| (V2| |V3

e h;: The hidden state of the RNN
e vy:: The output vector: T T T
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(Vanilla) Recurrent Neural Network

* Input vector: x;

« Hidden state vector: h;

*  Output vector: y;

«  Weight matrices: Wy, Wyy, Wh,,

General form:
he = fw(he—1, x¢)

Vanilla RNN:
ht - tanh(Whhht_l + thxt + b)

Ve = Whyht

Yt

INF 5860
08.03.2018
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RNN: Computational Graph

L
P =
Y L Yo L Y; " Ls y- — L;
I T 5 5
hy =18 10 1y 1y T —'h,
/T T T
W % "5 X3
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RNN: Predicting the next character

« Task: Predicting the next character

« Training sequence: “hello” larget chars: ‘e 1 ‘ o’
1.0 0.5 0.1 :
* Vocabulary: output layer [ 0.3 0.5 15
-3.0 1.0 1.9 0.1
— [h, e, |, 0] 4.1 1.2 1.1 2.2
. i ) A 4
* Encoding: Onehot W_hy
0.3 1.0 0.1 |w hnl-0.3
hidden layer | -0.1 - 03 = -05|—= 09
*  Model: 0.9 0.1 0.3 0.7
ht == tanh(Whhht_l + thxt + b) T ¢ t ]W e
Ve = Wi ol B[] [6
input layer 0 0 1 1
0 0 0 | 0
input chars: “p” e’ T I
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Input-output structure of RNN’s

« One-to-one

* one-to-many

* many-to-one

* Many-to-many

* many-to-many (encoder-decoder)
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Vanishing gradients - “less of a
problem”

* In contrast to feed-forward networks, RNNs will not stop learning in spite of
vanishing gradients.

« The network gets “fresh” inputs each step, so the weights will be updated.

« The challenge is to learning long range dependencies. This can be improved
using more advanced architectures.

« Outputs at time step t is mostly effected by the close previous state.
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Exploding or vanishing gradients

e tanh() solves the exploding value problem

e tanh() does NOT solve the exploding gradient problem, think of a scalar input
and a scalar hidden state.

ht = tanh(Whhht_l + thxt + b)

oh,
Ohy_q

= [1 - tanh2 (Whhht—l + thxt + b)] . Whh

The gradient can explode/vanish exponentially in time (steps)

« If |[Wy,| < 1, vanishing gradients
o If [Wy| > 1, exploding gradients
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Gated Recurrent Unit (GRU)

GRU is adding or removing to the state, not “transforming the state”

Vanilla RNN
 Cell state h, = tanh(W™x, + W"h,_, + b)
GRU

With I'" as ones and I'* as zeros, GRU — Vanilla RNN
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Multi-layer Recurrent Neural Networks

Multi-layer RNN can be used to enhance
model complexity

Similar as for feed forward neural networks,
stacking layers creates higher level feature
representation

Normally, 2 or 3 layer deep, not as deep as
conv nets

More complex relationships in time

depth

V"
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Bidirectional recurrent neural network

The blocks can be vanilla, LSTM and GRU recurrent units
Real time vs post processing

t = f(thxt + Whhht+1)
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Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning
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Branches of Machine Learning

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning
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Reinforcement learning

* Reinforcement Learning ~ Science of
decision making

* In RL an agent learns from the
experiences it gains by interacting with the
environment.

« The goal is to maximize an accumulated
reward given by the environment.

* An agent interacts with the environment
via states, actions and rewards.

INF 5860
08.03.2018

Page 57

environment

RL Course by David Silver
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Reinforcement learning

« What makes reinforcement learning different from other machine learning
paradigms?

— There is no supervisor, only a reward signal
— Feedback is delayed, not instantaneous
— Time really matters (sequential, non i.i.d data)

— Agent’s actions affect the subsequent data it receives
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Mountain Car

* Objective:
— Get to the goal

- State variables:
— Position and velocity

« Actions:
— Motor: Left, Neutral, right

* Reward:
— (-1) for each time step

INF 5860 Page 59
08.03.2018

MOUNTAIN CAR Goal

agent
Y N
N 3
F 3 NN -
2L A Y ¥
47\ } .
state AN\ 1 7! action
V4 , Ve S
A\ A <)
s AN e S R S A
(] S SO A N
J -
_(,,4—‘,,/, -
'\_,J'
[¥

environment



UiO ¢ Department of Informatics oanaans | ooed

University of Oslo

History (trajectory) and State

* History / trajectory :
agent state S}
- Ht =Tt = OllAllRll 02,A2,R2, ey Ot;At; Rt ,?— T S N

A Ao N
v 7 T
4

observation /1 “_! 2y \ ) action

« Full observatory: — A —

— Agent direct observe the environment state. “ (ﬂ-\—

— Ot o Ste o Sta’ &

reward TR,

« State:

— The state is a summary (of the actions and

observations) that determines what happens next

given an action.
- S5 = f(Hy)

environment state $¢

« Partially observability:
— The agent indirectly observes the environment.
— Robot with a camera
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Markov Property

 Definition:
— A state S; is Markov if and only if:
P[St+1|5t] = P[St+1 |S1» 52, ---;St]

« The state capture all relevant information from
the history

 The state is sufficient to describe the statistics
of the future.

INF 5860 Page 61
08.03.2018
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Reward and Return

The reward, R;, is a scalar value the agent
receives for each step t.

The return, G, is the total discounted
accumulated reward form a given time-step t.

= Gy =Ry +YRey1 + = Y=oV Ry

Discount factor:

— We can apply a discord factor, y € [0,1], to
weight how we evaluate return.

The agent's goal is to maximize the return

INF 5860 Page 62
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Markov Decision Process (MDP)

« The mathematical formulation of the reinforcement learning (RL) problem.

« A Markov Decision Process is a tuple, M = (S, A, P,R,y), where every state
has the Markov property.

S: Afinite set of states
A: A finite set of actions
P: The transition probability matrix
Psc,fstﬂ = P[St+1 = St41 | St = 50, Ar = aq]
R: Reward function:
RS = E[S; = s¢ Ar = a4]
y. is a discount factor ye [0,1]
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Objective

« Our goal is it find the policy which maximize
the accumulated reward:

Ge =R +VYRey1+ = Xm0 V¥ Revi

* Due to the randomness of the transition
probability and the reward function, we use
the expected value in the definition of the
optimal policy.

m, = arg max E [G;]
T

INF 5860 Page 64
08.03.2018

Value Func¢tion

Value-Based

Actor
Critic

Policy

Policy-Based |
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Bellman (optimality) equation

« Lets define the optimal Q-value (action-value) function,Q,, to be the maximum
expected reward given an state, action pair.

Q.(sp,ae) = mﬁx Erl Ge | Ay = ag, S¢ = ¢l

e The optimal Q-value function, Q,, satisfy the following form of the bellman equation:

Q.(s¢,ar) = E [ Ry + y max Q. (S¢41, Ar41) | Ar = ¢, Sp = St]

at+1

e Note: The optimal policy, m,, is achieved by taking the action with the highest Q-value.
e Note: We still need the expectation, as the randomness of the environment is unknown.



UiO ¢ Department of Informatics oanaans o

University of Oslo

Exploration vs Exploitation

*  “The “max” property while sampling new episodes can lead to suboptimal
policy”

« Exploitation:

— By selecting the action with the highest g-value while sampling new
episodes, we can refine our policy efficiently from an already promising
region in the state action space.

 Exploration:

— To find a new and maybe more promising region within the state action
space, we do not want to limit our search in the state action space.

— We introduce a randomness while sampling new episodes.
— With a probability of € lets choose a random action:

a, = argmax Q(s,a), with probabillity 1 —¢€
m(als) = a€eA
random action, with probabillity €
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Function approximation

* In the Gridworld example, we stored the state-values for each state. What if the
state-action space is too large to be stored e.g. continuous?

« We approximate the Q-value using a parameterized function e.g. neural
network.

Q(s,a,0) = Q(s,a)

« We want the function to generalize:

— Similar states should get similar action-values, Q(s, a, #) can also
generalize to unseen states. A table version would just require to much
data.

* In supervised learning:
— Building a function approximation vs memorizing all images (table).
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Solving for the optimal policy:
Q-learning

« Goal: Find a Q-function satisfying the Bellman (optimality) equation.

« Idea: The Q-value at the last time step is bounded by the true Q-value, the
correctness of the Q-value estimates increase with time-steps.

* Init: Initialize the weights in the neural network e.g. randomly.

Q.(st,a,6;) =E [ Re + y max Q,(St41, A1, 0i-1) | A = at, S¢ = St]

aty1

 Reference:
yi = E [ Ry + ymax Q(S¢t1,Ar41,0i—1) | A = ¢, S¢ = St]

at4q

« Loss:
Li(6;) = IE:St,St:+1, ag,re~Di [(yl B Q(St' Ats Hi))z]

D; is your dataset with state action pairs s;,s;41 a¢, 1t
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Policy based methods

« Value function based methods:
— Learning the expected future reward for a given action.
— The policy was to act greedily or epsilon-greedily on the estimated values.

* Policy based methods:
— Learning the probability that an action is good directly.

 Advantage of Policy based methods:
— We might need a less complex function for approximating the best action
compared to estimate the final reward.
— Example: Think of Pong
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Policy based methods

 Goal:
— The goal is to use experience/samples to try to make a policy better.

* ldea:
— If a trajectory achieves a high reward, the actions were good
— If a trajectory achieves a low reward, the actions were bad

— We will use gradients to enforce more of the good actions and less of the
bad actions. Hence the method is called Policy Gradients.
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Playing games of Pong

Examples of games/episodes UP__o DOWN o UP UP o DOWN_ o DOWN_g DOWN o UP WIN
DOWN UP UP DOWN uP upP LOSE
You play a lot of actions and
p y . UpP _;. upP . DOWN DOWN=.DOWN=. DOWN= UP LOSE
receive an reward at the end e o ¢ ¢
DOWN UP UP DOWN UP UP WIN

You get a result, WIN! Great, but
how do you know which action,
caused the victory?

— Well... you don’t
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Which action caused the final results?

In a winning series there may be uP DOWN uP uP DOWN_ o DOWN_ o DOWN uP WIN
many non-optimal actions BERR . R
LOSE
. . ° UpP r® uP -® DOWN=' DOWN=.DOWN=. DOWN=. UP » LOSE
In a losing series there may be
. DOWN UP UP DOWN uP uP WIN
good actions

T A A
The true effect is found by - - .
averaging out the noise, as
winnings series tend to have
more good action and visa versa
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Policy gradients: High variance
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Policy gradients: High variance
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Variance - all choices get the reward

42 42 42 42 42 42 42 42 42

g g0 8 1 0 8 1 0 3§
CrOPO>O»OPOPCOPO>O+0 = 42
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Variance - other possible paths

42 42 42 42 42 42 42 42 42
g J 4 4 1 1 4 4 1



UiO ¢ Department of Informatics oaoaao e

University of Oslo

Variance - high probability to chose
some other path

42 42 42 42 42 42 42 42 42
g 71 4 ¢ 4 1 1 3
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Variance - same actions for same
state: now negative




