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Why do we need Deep learning 
frameworks?
• Speed:

– Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation

• Automatic differentiations:
– Pre-implementation of the most common functions and it’s gradients.

• Reuse:
– Easy to reuse other people’s models 

• Less error prone:
– The more code you write yourself, the more errors
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TensorFlow

• TensorFlow graphs

• TensorFlow session

• TensorFlow constants

• TensorFlow variables

• TensorFlow feeding data to the graph

• Tensorboard

• TensorFlow save/restore models

• TensorFlow example
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Graphs
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Defining a tensor in TensorFlow

• The main types of tensors are:

– tf.Variable / tf.get_variable

– tf.constant

– tf.placeholder

• Attributes (some of them):

– Shape

– dtype

– name
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Example of a tensors
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The graph

• The TensorFlow graph is a definition, not any computation.

• The computational graph is a series of TensorFlow operations arranged into a 
graph. The graph is composed of two types of objects:

– Operation: Nodes in the graph

– Tensors: The edges in the graph

9
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Executing the tf.Graph: tf.Session
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• We have seen that variables and constants are handles to elements in the 
computational graph only. 

• We execute the graph using a tf.Session
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Creating variables
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We can define variables two ways: 

preferred
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Initializing variables

• The variables to be used in the graph have to be either:

– Initialized

– Restored

12
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tf.placeholder

13
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Tensorboard: Visualizing learning

14
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tf.train.saver.save()

• How to save our model every 1000 iteration.
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Convolutional layer
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Convolutional layer
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Convolutional layer
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• If we filter the input volume 6 times using a 5x5x3 filter, 
we get a output volume with 6 channels (depth)
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Activations

20

• We use an activation function separately on all elements of the output volume  



INF 5860
08.03.2018

Stride

• Stride is the spatial step length in the convolution operation.

• Example: Input volume 7x7x1, kernel (filter) size 3x3x1

• The stride is an important parameter for determining the spatial size of the 
output volume
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Padding
• The output volume can get a lower spatial 

resolution compared to the input volume. We can 
solve this by padding the input volume. Common 
to use zero padding

• Abbreviations: Stride (𝑆), filter size (𝐹), input size 
(𝑁 ), output size (𝑁 ) and padding (𝑃)

• For 𝑆 = 1, we can achieve 𝑁 = 𝑁 selecting 𝑃
equal to:

𝑃 =

• Calculation of the spatial output size:

𝑁 =
𝑁 − 𝐹 + 2𝑃

𝑆
+ 1
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How large area influence the end 
result?

INF 5860
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• With a convolutional network 
the receptive field increase with 
each layer

• 3 inputs influence each node in 
the first hidden layer
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How large area influence the end 
result?

• With a convolutional network 
the receptive field increase with 
each layer

• 3 inputs influence each node in 
the first hidden layer

• 5 influence the next
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How large area influence the end 
result?
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• With a convolutional network 
the receptive field increase with 
each layer

• 3 inputs influence each node in 
the first hidden layer

• 5 influence the next

• 7 influence the next
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The effect of strided convolutions 

• We still cover the whole input

• We have increased the receptive field from 5
 

→7 in hidden layer 2

INF 5860
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With strides, spatial dimensions will 
become smaller

• Usually some of the of the network 
capacity is preserved through an 
increasing number of channels
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Dilated convolutions

• Skipping values in the kernel

• Same as filling the kernel with every 
other value as zero

• Still cover all inputs

• Larger kernel with no extra 
parameters
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Visualizing and Understanding deeper 
layers

• Looking at the filer coefficient directly at deeper layer is not meaningful. 

• Visualization with Deconvnet

29

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks
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Hierarchical learning

• A convolution neural network is built up as a hierarchy were the 
complexity (abstraction) is increased by depth.

• A hierarchical structure is parameter efficient

30
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Notation

• Formalization supervised learning:

– Input: 𝒙

– Output: 𝒚

– Target function: 𝑓 ∶ 𝒳
 

→ 𝒴 

– Data: 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 ⋅⋅⋅  , 𝒙𝑵, 𝒚𝑵

– Hypothesis: h ∶ 𝒳
 

→ 𝒴 

Example:

Hypothesis set:     𝑦 = 𝑤 𝑥 + 𝑤

A hypothesis:   𝑦 = 2𝑥 + 1
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More notation

• In-sample (colored): Training data available 
to find your solution.

• Out-of-sample (gray): Data from the real 
world, the hypothesis will be used for.

• Final hypothesis:

• Target hypothesis:

• Generalization: Difference between the    
in-sample error and the out-of-sample error
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What is the expected out-of-sample 
error?

• For a randomly selected hypothesis

• The closest error approximation is 
the in-sample error
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What is training?

• A general view of training:

– Training is a search through 
possible hypothesis

– Use in-sample data to find the best 
hypothesis

Page 35
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What is the effect of choosing the best 
hypothesis?

• Smaller in-sample error

• Increasing the probability that 
the result is a coincidence

• The expected out-of-sample 
error is greater or equal to the 
in-sample error
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Capacity of the model (hypothesis set)

• The model restrict the number of 
hypothesis you can find

• Model capacity is a reference to how many 
possible hypothesis you have

• A linear model has a set of all linear 
functions as its hypothesis

Page 37
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Measuring capacity

• Vapnik-Chervonenkis (VC) dimension

– Denoted: 𝑑 (ℋ)

– Definition: 

• The maximum number of points that can be arrange such that ℋ can 
shatter them.
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Example VC dimension

Page 39

• (2D) Linear model

• Configuration (𝑁 =3)
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Splitting of data

• Training set (60%)

– Used to train our model

• Validation set (20%)

– Used to select the best hypothesis

• Test set (20%)

– Used to get a representative out-of-sample error

Page 40
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Important! No peeking

• Keep a dataset that you don’t look at until 
evaluation (test set)

• The test set should be as different from 
your training set as you expect the real 
world to be
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Learning curves

Page 42

Simple hypothesis Complex hypothesis
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Recurrent Neural Network (RNN)

• Takes a new input

• Manipulate the state

• Reuse weights

• Gives a new output
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Recurrent Neural Network (RNN)

• Unrolled view

• 𝑥  : The input vector:

• ℎ : The hidden state of the RNN

• 𝑦  : The output vector:
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(Vanilla) Recurrent Neural Network

• Input vector: 𝑥

• Hidden state vector: ℎ

• Output vector: 𝑦

• Weight matrices: 𝑊 , 𝑊 , 𝑊

General form:

ℎ = 𝑓 ℎ , 𝑥

Vanilla RNN:

ℎ = tanh 𝑊 ℎ + 𝑊 𝑥 + 𝑏

𝑦 = 𝑊 ℎ
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RNN: Computational Graph
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RNN: Predicting the next character

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot

• Model:

ℎ = tanh 𝑊 ℎ + 𝑊 𝑥 + 𝑏

𝑦 = 𝑊 ℎ
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Input-output structure of RNN’s

• One-to-one 

• one-to-many 

• many-to-one 

• Many-to-many

• many-to-many (encoder-decoder)
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Vanishing gradients - “less of a 
problem”

• In contrast to feed-forward networks, RNNs will not stop learning in spite of 
vanishing gradients.

• The network gets “fresh” inputs each step, so the weights will be updated.

• The challenge is to learning long range dependencies. This can be improved 
using more advanced architectures.

• Outputs at time step t is mostly effected by the close previous state.
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Exploding or vanishing gradients

• tanh () solves the exploding value problem

• tanh () does NOT solve the exploding gradient problem, think of a scalar input 
and a scalar hidden state.

ℎ = 𝑡𝑎𝑛ℎ 𝑊 ℎ + 𝑊 𝑥 + 𝑏

𝜕ℎ

𝜕ℎ
= 1 − tanh (𝑊 ℎ + 𝑊 𝑥 + 𝑏) ⋅ 𝑊

The gradient can explode/vanish exponentially in time (steps)

• If |𝑊 | < 1, vanishing gradients

• If |𝑊 | > 1, exploding gradients
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Gated Recurrent Unit (GRU)

Page 52

Vanilla RNN

• Cell state ℎ = 𝑡𝑎𝑛ℎ(𝑊 𝑥 + 𝑊 ℎ + 𝑏)

GRU

• Update gate Γ =  𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 )

• Reset gate Γ =  𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 )

• Candidate cell state ℎ  = 𝑡𝑎𝑛ℎ 𝑊𝑥 + 𝑈(Γ ∘ ℎ + 𝑏)

• Final cell state ℎ =  Γ ∘ ℎ + 1 − Γ ∘ ℎ   

GRU is adding or removing to the state, not “transforming the state” 

With Γ as ones and Γ as zeros, GRU → Vanilla RNN 
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Multi-layer Recurrent Neural Networks

• Multi-layer RNN can be used to enhance 
model complexity 

• Similar as for feed forward neural networks, 
stacking layers creates higher level feature 
representation

• Normally, 2 or 3 layer deep, not as deep as 
conv nets

• More complex relationships in time
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Bidirectional recurrent neural network

• The blocks can be vanilla, LSTM and GRU recurrent units

• Real time vs post processing
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• Deep reinforcement learning
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Branches of Machine Learning
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Reinforcement learning

• Reinforcement Learning ~ Science of 
decision making

• In RL an agent learns from the 
experiences it gains by interacting with the 
environment. 

• The goal is to maximize an accumulated 
reward given by the environment.

• An agent interacts with the environment 
via states, actions and rewards.

Page 57
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Reinforcement learning

• What makes reinforcement learning different from other machine learning 
paradigms? 

– There is no supervisor, only a reward signal 

– Feedback is delayed, not instantaneous 

– Time really matters (sequential, non i.i.d data) 

– Agent’s actions affect the subsequent data it receives

Page 58



INF 5860
08.03.2018

Mountain Car

• Objective:

– Get to the goal

• State variables:

– Position and velocity

• Actions:

– Motor: Left, Neutral, right

• Reward:

– (-1) for each time step

Page 59
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History (trajectory) and State

• History / trajectory :

– 𝐻 = 𝜏 =  𝑂 , 𝐴 , 𝑅 , 𝑂 , 𝐴 , 𝑅 , … , 𝑂 , 𝐴 , 𝑅

• Full observatory:

– Agent direct observe the environment state. 

– 𝑂 =  𝑆 = 𝑆

• State:

– The state is a summary (of the actions and 
observations) that determines what happens next 
given an action.

– 𝑆 = 𝑓(𝐻 )

• Partially observability: 

– The agent indirectly observes the environment. 

– Robot with a camera
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Markov Property

Page 61

• Definition:

– A state 𝑆 is Markov if and only if:

ℙ 𝑆 𝑆 = ℙ 𝑆   𝑆 ,  𝑆 , … , 𝑆

• The state capture all relevant information from 
the history

• The state is sufficient to describe the statistics 
of the future.
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Reward and Return

Page 62

• The reward, 𝑅 , is a scalar value the agent 
receives for each step t.

• The return, 𝐺 , is the total discounted 
accumulated reward form a given time-step t. 

– 𝐺 = 𝑅 + 𝛾𝑅 + ⋯ =  ∑ 𝛾 𝑅

• Discount factor: 

– We can apply a discord factor, 𝛾 ∈ 0,1 , to 
weight how we evaluate return. 

• The agent's goal is to maximize the return
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Markov Decision Process (MDP)

• The mathematical formulation of the reinforcement learning (RL) problem. 

• A Markov Decision Process is a tuple, ℳ = 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 , where every state 
has the Markov property.

S: A finite set of states

A: A finite set of actions

P: The transition probability matrix
      𝑃 = ℙ 𝑆 = 𝑠  | 𝑆 = 𝑠 , 𝐴 = 𝑎

R: Reward function:

𝑅 =  𝔼 𝑆 = 𝑠 , 𝐴 = 𝑎  

𝛾: is a discount factor 𝛾∈ [0,1]
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Objective

• Our goal is it find the policy which maximize 
the accumulated reward:

𝐺 = 𝑅 + 𝛾𝑅 + ⋯ =  ∑ 𝛾 𝑅

• Due to the randomness of the transition 
probability and the reward function, we use 
the expected value in the definition of the 
optimal policy.

𝜋∗ = arg max 𝔼 𝐺  
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Bellman (optimality) equation

• Lets define the optimal Q-value (action-value) function,𝑄∗, to be the maximum 
expected reward given an state, action pair.

𝑄∗ 𝑠 , 𝑎 =  max 𝔼  𝐺  | 𝐴 = 𝑎 , 𝑆 = 𝑠  

• The optimal Q-value function, 𝑄∗, satisfy the following form of the bellman equation:

𝑄∗ 𝑠 , 𝑎 = 𝔼  𝑅 + 𝛾 max 𝑄∗ 𝑠 , 𝑎 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Note: The optimal policy, 𝜋∗, is achieved by taking the action with the highest Q-value.

• Note: We still need the expectation, as the randomness of the environment is unknown. 
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Exploration vs Exploitation
• “The “𝑚𝑎𝑥” property while sampling new episodes can lead to suboptimal 

policy”

• Exploitation:

– By selecting the action with the highest q-value while sampling new 
episodes, we can refine our policy efficiently from an already promising 
region in the state action space.

• Exploration:

– To find a new and maybe more promising region within the state action 
space, we do not want to limit our search in the state action space. 

– We introduce a randomness while sampling new episodes.

– With a probability of 𝜖 lets choose a random action:

𝜋 𝑎 𝑠 =
𝑎∗ = argmax

∈
𝑄(𝑠, 𝑎) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦   1 − 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦  𝜖

Page 66



INF 5860
08.03.2018

Function approximation

• In the Gridworld example, we stored the state-values for each state. What if the 
state-action space is too large to be stored e.g. continuous?

• We approximate the Q-value using a parameterized function e.g. neural 
network. 

𝑄 𝑠, 𝑎, 𝜃 ≈ 𝑄(𝑠, 𝑎)

• We want the function to generalize:

– Similar states should get similar action-values, 𝑄 𝑠, 𝑎, 𝜃 can also 
generalize to unseen states. A table version would just require to much 
data. 

• In supervised learning: 

– Building a function approximation vs memorizing all images (table).
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Solving for the optimal policy: 
Q-learning
• Goal: Find a Q-function satisfying the Bellman (optimality) equation.

• Idea: The Q-value at the last time step is bounded by the true Q-value, the 
correctness of the Q-value estimates increase with time-steps.

• Init: Initialize the weights in the neural network e.g. randomly. 

𝑄∗ 𝑠 , 𝑎 , 𝜃 = 𝔼  𝑅 + 𝛾 max 𝑄∗ 𝑠 , 𝑎 , 𝜃 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Reference: 
𝑦 =  𝔼  𝑅 + 𝛾 max 𝑄 𝑠 , 𝑎 , 𝜃 | 𝐴 = 𝑎 , 𝑆 = 𝑠

• Loss:

𝐿 (𝜃 ) = 𝔼 , , , ~ 𝑦 − 𝑄 𝑠 , 𝑎 , 𝜃

𝐷 is your dataset with state action pairs 𝑠 , 𝑠 , 𝑎 , 𝑟  
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Policy based methods

• Value function based methods: 
– Learning the expected future reward for a given action.
– The policy was to act greedily or epsilon-greedily on the estimated values. 

• Policy based methods: 
– Learning the probability that an action is good directly.

• Advantage of Policy based methods:
– We might need a less complex function for approximating the best action 

compared to estimate the final reward.
– Example: Think of Pong
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Policy based methods

• Goal:

– The goal is to use experience/samples to try to make a policy better. 

• Idea:

– If a trajectory achieves a high reward, the actions were good

– If a trajectory achieves a low reward, the actions were bad

– We will use gradients to enforce more of the good actions and less of the 
bad actions. Hence the method is called Policy Gradients.
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Playing games of Pong

• Examples of games/episodes

• You play a lot of actions and 
receive an reward at the end

• You get a result, WIN! Great, but 
how do you know which action, 
caused the victory?

– Well… you don’t
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Which action caused the final results?

• In a winning series there may be 
many non-optimal actions

• In a losing series there may be 
good actions

• The true effect is found by 
averaging out the noise, as 
winnings series tend to have 
more good action and visa versa
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Policy gradients: High variance
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Policy gradients: High variance
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Variance - all choices get the reward
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Variance - other possible paths
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Variance - high probability to chose 
some other path
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Variance - same actions for same 
state: now negative
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