UiO ¢ Department of Informatics
University of Oslo

INF 5860 Machine learning for image classification
Summary
June 5, 2018

‘/f
B
'_\,,._

UiO ¢ Department of Informatics 08059000 Page 3
University of Oslo

Progress

* TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning

UiO ¢ Department of Informatics 06055018
University of Oslo

Why do we need Deep learning

frameworks?
« Speed:

— Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation

« Automatic differentiations:
— Pre-implementation of the most common functions and it's gradients.

 Reuse:
— Easy to reuse other people’s models

 Less error prone:
— The more code you write yourself, the more errors

14.2.2018

UiO ¢ Department of Informatics 08059000 Pages

University of Oslo

TensorFlow

« TensorFlow graphs

 TensorFlow session

 TensorFlow constants
 TensorFlow variables

« TensorFlow feeding data to the graph
 Tensorboard

 TensorFlow save/restore models
 TensorFlow example

UiO ¢ Department of Informatics 05035015

University of Oslo

Graphs

f(X) =29 % x5 + X3 x Xy
fG) =z + 2z,

Of () Of 0z,
axl B 021 axl -

10

Green number: Forward propagation
Red numbers: Backward propagation

UiO ¢ Department of Informatics 06055018

University of Oslo

Defining a tensor in TensorFlow

« The main types of tensors are:
— tf.Variable / tf.get_variable
— tf.constant
— tf.placeholder

« Attributes (some of them):
— Shape
— dtype
— name

14.2.2018

UiO ¢ Department of Informatics 06055018
University of Oslo

Example of a tensors

In [4]: import tensorflow as tf

In [5]: a = tf.constant(value=3, name="myConstant', dtype=tf.float32, shape=())
print(a)

Tensor("myConstant_1:0", shape=(), dtype=float32)

In [17]: a = tf.variable(initial_value=3, trainable=True, name='myVariable', dtype=tf.float32)
print(a)

<tf.Variable 'myVariable 2:0' shape=() dtype=float32_ref>

In [124]: a = tf.placeholder(name="'myPlaceholder', dtype=tf.float32, shape=())
print(a)

Tensor("myPlaceholder:0", shape=(), dtype=float32)

14.2.2018

UiO ¢ Department of Informatics 06055018 °

University of Oslo

The graph

 The TensorFlow graph is a definition, not any computation.

« The computational graph is a series of TensorFlow operations arranged into a
graph. The graph is composed of two types of objects:

— Operation: Nodes in the graph
— Tensors: The edges in the graph

Mul
\8?‘ J@/@OS
Add Add_1
CT £3
c2 c4

14.2.2018

UiO ¢ Department of Informatics 06055018

University of Oslo

Executing the tf.Graph: tf.Session

« We have seen that variables and constants are handles to elements in the
computational graph only.

« We execute the graph using a tf.Session

In [S0]: ¢ = tf.add(3.0, 5.0)
sess = tf.Session()
c_val = sess.run(c)
sess.close()

print(c)
print(c_val)

Tensor(“"Add:@", shape=(), dtype=float32)
8.0

14.2.2018

10

UiO ¢ Department of Informatics 06055018 "

University of Oslo

Creating variables

We can define variables two ways:

create variables with tf.Variable
s = tf.Variable(3.0, name="scalar")

preferred

create variables with tf.get variable

s = tf.get variable("scalar", initializer=tf.constant(3.0))

14.2.2018

UiO ¢ Department of Informatics
University of Oslo

Initializing variables

« The variables to be used in the graph have to be either:
— Initialized
— Restored

tf.reset_default_graph()
X = tf.Variable(initial_value=tf.ones(4), name="array")

with tf.Session() as sess:
sess.run(x.initializer)

Xx_val = sess.run(x)
print(x_val)

E e & 3)

14.2.2018

INF 5860
08.03.2018

12

UiO ¢ Department of Informatics 06055018
University of Oslo

tf.placeholder

create a placeholder for a vector of 2 elements, type tf.float32

x = tf.placeholder(dtype=tf.float32, shape=[2], name="p")
y = tf.constant(value=[1, 2], dtype=tf.float32, name="c")
Z=X+Yy

with tf.Session() as sess:
z val = sess.run(z, feed dict={x: [3, 4]})
print(z_val)

[4. 6.]

add

14.2.2018

13

UiO ¢ Department of Informatics 06055018 "
University of Oslo

Tensorboard: Visualizing learning

R T | e T e e e e = B e = I e
€ C (0 ©® 192.168.16.1:6006 By B @0 @ OO O w @ da OO % 0

TensorBoard IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS

Write a regex to create a tag group b4 accuracy_1
|:] Split on underscores accuracy.1
[[] pata download links —
Tooltip sorting method: default v 0.700
Smoothing & - : :
V.IW
— s 0000 3000k 60.00k 90.00k
rq ==
e =

Horizontal Axis

cross_entropy

STEP RELATIVE WALL
cross_entropy/cost_function
Runs - |
80

Write a regex to filter runs
@ - &

0.600

0.000 3000k 60.00k 90.00

ra
wd

TOGGLE ALL RUNS

tensorboard/log/without-saver

UiO ¢ Department of Informatics
University of Oslo

tf.train.saver.save()

* How to save our model every 1000 iteration.

saver = tf.train.Saver()
global step = tf.Variable(8, dtype=tf.int32, trainable=False, name='global step')

with tf.Session() as sess:
for step in range(number_of_training_steps):
do training of the network

#Save the model every 1000 training step

if (step + 1) % 1000==0:
saver.save(sess, 'checkpoint_directory/model_name', global_step=global_step)

14.2.2018

INF 5860
08.03.2018

15

UiO ¢ Department of Informatics 08 05 a0y Page 16
University of Oslo

Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning

UiO ¢ Department of Informatics

University of Oslo

Convolutional layer

__— 32x32x3 image

/ 5x5x3 filter
e

-

|

32

convolve (slide) over all
spatial locations

INF 5860 17
08.03.2018

activation map

.

28

UiO ¢ Department of Informatics 05035015

University of Oslo

Convolutional layer

T 32x32x3 image activation maps

5x5x3 filter %
o

convolve (slide) over all

spatial locations
/ 28

28

=\

N\

w|
—_—

UiO ¢ Department of Informatics 05035015

University of Oslo

Convolutional layer

« If we filter the input volume 6 times using a 5x5x3 filter,
we get a output volume with 6 channels (depth)

activation maps

/ %2
Convolution Layer
s

y..

<
L
<
|
<
L

19

UiO ¢ Department of Informatics
University of Oslo

Activations

INF 5860 20
08.03.2018

« We use an activation function separately on all elements of the output volume

7

32

CONV,

RelLU
e.g.6
Bx5bx3
filters

A

y.

o |

28

CONYV,

RelLU
e.g. 10
S5X5x6
filters

A\

24

CONV,

RelLU

UiO ¢ Department of Informatics 06055018
University of Oslo

Stride

« Stride is the spatial step length in the convolution operation.
« Example: Input volume 7x7x1, kernel (filter) size 3x3x1

* The stride is an important parameter for determining the spatial size of the
output volume

7 7 7 7 7
—
3
el
(0p]
4 7 7
N
((b]
S
e’ 7 7 7
0p)]

UiO ¢ Department of Informatics PR
University of Oslo

08.03.2018

Padding

The output volume can get a lower spatial
resolution compared to the input volume. We can
solve this by padding the input volume. Common
to use zero padding

Abbreviations: Stride (S), filter size (F), input size

22

(N?), output size (N1) and padding (P)

For S = 1, we can achieve N° = N selecting P
equal to:

(= I8 [N = 1 = I (= I (=]

2

Calculation of the spatial output size:

) NO —F +2P
N = +1

S

UiO ¢ Department of Informatics 06055018 =
University of Oslo

How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in

the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @

Hidden
Layer

Hidden
Layer

Hidden

Layer
Input|$OOOOOOOOOOOOOOOO

INF 5860

UiO ¢ Department of Informatics 06055018 =
University of Oslo

How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in
the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @

5 influence the next Hidden

Layer

=N
= BB

et [0 000 000000000000 00

INF 5860

UiO ¢ Department of Informatics 06055018 *
University of Oslo

How large area influence the end
result?

« With a convolutional network
the receptive field increase with
each layer

« 3 inputs influence each node in
the firsthiddenlayer opmi 9o 0o 0o 0o o 0o 0 0 0o @ 0 @@ @ @

5 influence the next Hidden

« 7 influence the next H;;y; /T\
e o LTV
NN

Input | 00oco00000000Q00Q0O0Q@0O

UiO ¢ Department of Informatics 06055018 =
University of Oslo

The effect of strided convolutions

* We still cover the whole input

 We have increased the receptive field from 5-7 in hidden layer 2

Output O O O O O @) O O O

Hidden
Layer

=N
= AAA

it [0 0 0000000000000 000

INF 5860

UiO ¢ Department of Informatics 06055018 “r

University of Oslo

With strides, spatial dimensions will
become smaller

» Usually some of the of the network
capacity is preserved through an
increasing number of channels

UiO ¢ Department of Informatics
University of Oslo

Dilated convolutions

« Skipping values in the kernel

« Same as filling the kernel with every
other value as zero

« Still cover all inputs

« Larger kernel with no extra
parameters

INF 5860
08.03.2018

28

UiO ¢ Department of Informatics 06055018 *
University of Oslo

Visualizing and Understanding deeper
layers

» Looking at the filer coefficient directly at deeper layer is not meaningful.

* Visualization with Deconvnet

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks

UiO ¢ Department of Informatics 08.05.201

University of Oslo

Hierarchical learning

* A convolution neural network is built up as a hierarchy were the
complexity (abstraction) is increased by depth.

* A hierarchical structure is parameter efficient

30

UiO ¢ Department of Informatics 08 05 a0y Page 31
University of Oslo

Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning

INF 5860 Page 32

UiO ¢ Department of Informatics 08.03.2018
University of Oslo
Notation

 Formalization supervised learning:

— |Input: x
— Output: y
— Target function: f : X-> T

— Data: (x1,y1), (x2,¥2) -, (xn, Yn)

ol

— Hypothesis: h: X-> Y

Example:

Hypothesis set: y = w;x + wy

A hypothesis: y=2x+1

UiO ¢ Department of Informatics
University of Oslo

More notation

In-sample (colored): Training data available
to find your solution.

Out-of-sample (gray): Data from the real
world, the hypothesis will be used for.

Final hypothesis:
Target hypothesis:

Generalization: Difference between the
in-sample error and the out-of-sample error

INF 5860 Page 33
08.03.2018

O O
® @
O
‘/
© @
@

UiO ¢ Department of Informatics 08 05 a0y Page 34

University of Oslo

What is the expected out-of-sample
error?

For a randomly selected hypothesis

The closest error approximation is
the in-sample error

UiO ¢ Department of Informatics
University of Oslo

What is training?

* A general view of training:

— Training is a search through
possible hypothesis

— Use in-sample data to find the best
hypothesis

INF 5860
08.03.2018

Page 35

UiO ¢ Department of Informatics
University of Oslo

INF 5860
08.03.2018

Page 36

What is the effect of choosing the best

hypothesis?

 Smaller in-sample error

* Increasing the probability that
the result is a coincidence

« The expected out-of-sample
error is greater or equal to the
in-sample error

UiO ¢ Department of Informatics coohoony Faged

University of Oslo

Capacity of the model (hypothesis set)

 The model restrict the number of
hypothesis you can find

* Model capacity is a reference to how many
possible hypothesis you have

« Alinear model has a set of all linear
functions as its hypothesis

J = sign(w!x + b)

§=x"Wx+wa+b

UiO ¢ Department of Informatics caoaao el

University of Oslo

Measuring capacity

« Vapnik-Chervonenkis (VC) dimension

— Denoted: dy(H)
— Definition:
« The maximum number of points that can be arrange such that H can
shatter them.

UiO ¢ Department of Informatics oaoaao e

University of Oslo

Example VC dimension

+ (2D) Linear model i = sign(w’'x + b)

« Configuration (N =3)

UiO ¢ Department of Informatics oo o560 Page 40

University of Oslo

Splitting of data

« Training set (60%)
— Used to train our model

« Validation set (20%)
— Used to select the best hypothesis

 Testset (20%)
— Used to get a representative out-of-sample error

UiO ¢ Department of Informatics
University of Oslo

Important! No peeking

+ Keep a dataset that you don'’t look at until
evaluation (test set)

* The test set should be as different from
your training set as you expect the real
world to be

INF 5860
08.03.2018

Page 41

UiO ¢ Department of Informatics
University of Oslo

Learning curves

Simple hypothesis

\E‘(ut

L
Ein

Expected Error

Number of Data Points, NV

INF 5860 Page 42
08.03.2018

Complex hypothesis

E()m

Expected Error

/ Ein

Number of Data Points, N

UiO ¢ Department of Informatics 08 05 a0y Page 43
University of Oslo

Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning

UiO ¢ Department of Informatics
University of Oslo

INF 5860
08.03.2018

Recurrent Neural Network (RNN)

Takes a new input

Manipulate the state

Reuse weights

Gives a new output

Yt

Page 44

UiO ¢ Department of Informatics 08 05 a0y Page 45

University of Oslo

Recurrent Neural Network (RNN)

e Unrolled view

e x,:The input vector: Yt Yi| (V2| |V3

e h;: The hidden state of the RNN
e vy:: The output vector: T T T

UiO ¢ Department of Informatics
University of Oslo

(Vanilla) Recurrent Neural Network

* Input vector: x;

« Hidden state vector: h;

* Output vector: y;

« Weight matrices: Wy, Wyy, Wh,,

General form:
he = fw(he—1, x¢)

Vanilla RNN:
ht - tanh(Whhht_l + thxt + b)

Ve = Whyht

Yt

INF 5860
08.03.2018

Page 46

. = INF 5860 P 47
UiO ¢ Department of Informatics 08.03.2018 "o

University of Oslo

RNN: Computational Graph

L
P =
Y L Yo L Y; " Ls y- — L;
I T 5 5
hy =18 10 1y 1y T —'h,
/T T T
W % "5 X3

UiO ¢ Department of Informatics 08 05 a0y Page 48

University of Oslo

RNN: Predicting the next character

« Task: Predicting the next character

« Training sequence: “hello” larget chars: ‘e 1 ‘ o’
1.0 0.5 0.1 :
* Vocabulary: output layer [0.3 0.5 15
-3.0 1.0 1.9 0.1
— [h, e, |, 0] 4.1 1.2 1.1 2.2
. i) A 4
* Encoding: Onehot W_hy
0.3 1.0 0.1 |w hnl-0.3
hidden layer | -0.1 - 03 = -05|—= 09
* Model: 0.9 0.1 0.3 0.7
ht == tanh(Whhht_l + thxt + b) T ¢ t]W e
Ve = Wi ol B[] [6
input layer 0 0 1 1
0 0 0 | 0
input chars: “p” e’ T I

UiO ¢ Department of Informatics oo o560 Page 49

University of Oslo

Input-output structure of RNN’s

« One-to-one

* one-to-many

* many-to-one

* Many-to-many

* many-to-many (encoder-decoder)

UiO ¢ Department of Informatics canaans e

University of Oslo

Vanishing gradients - “less of a
problem”

* In contrast to feed-forward networks, RNNs will not stop learning in spite of
vanishing gradients.

« The network gets “fresh” inputs each step, so the weights will be updated.

« The challenge is to learning long range dependencies. This can be improved
using more advanced architectures.

« Outputs at time step t is mostly effected by the close previous state.

i

f X F & & F 8 % & F E P 2 K 2 OFE F £ ¥

M P P P

&

|

>
>
>
Be
>
>
>
>
>
>

£ & 2 * 1 1

JOONOOONNNNEENERRE

S o I
]

/i

UiO ¢ Department of Informatics oanaaos | oeedt

University of Oslo

Exploding or vanishing gradients

e tanh() solves the exploding value problem

e tanh() does NOT solve the exploding gradient problem, think of a scalar input
and a scalar hidden state.

ht = tanh(Whhht_l + thxt + b)

oh,
Ohy_q

= [1 - tanh2 (Whhht—l + thxt + b)] . Whh

The gradient can explode/vanish exponentially in time (steps)

« If |[Wy,| < 1, vanishing gradients
o If [Wy| > 1, exploding gradients

UiO ¢ Department of Informatics oanaans ool

University of Oslo

Gated Recurrent Unit (GRU)

GRU is adding or removing to the state, not “transforming the state”

Vanilla RNN
 Cell state h, = tanh(W™x, + W"h,_, + b)
GRU

With I'" as ones and I'* as zeros, GRU — Vanilla RNN

UiO ¢ Department of Informatics
University of Oslo

INF 5860
08.03.2018

Page 53

Multi-layer Recurrent Neural Networks

Multi-layer RNN can be used to enhance
model complexity

Similar as for feed forward neural networks,
stacking layers creates higher level feature
representation

Normally, 2 or 3 layer deep, not as deep as
conv nets

More complex relationships in time

depth

V"

UiO ¢ Department of Informatics oo o560 Page 54

University of Oslo

Bidirectional recurrent neural network

The blocks can be vanilla, LSTM and GRU recurrent units
Real time vs post processing

t = f(thxt + Whhht+1)

UiO ¢ Department of Informatics 8 0sag g%
University of Oslo

Progress

» TensorFlow

* Convolutional neural networks
* Generalization

* Recurrent neural networks

* Deep reinforcement learning

UiO ¢ Department of Informatics oanaans g%

University of Oslo

Branches of Machine Learning

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning

UiO ¢ Department of Informatics
University of Oslo

Reinforcement learning

* Reinforcement Learning ~ Science of
decision making

* In RL an agent learns from the
experiences it gains by interacting with the
environment.

« The goal is to maximize an accumulated
reward given by the environment.

* An agent interacts with the environment
via states, actions and rewards.

INF 5860
08.03.2018

Page 57

environment

RL Course by David Silver

UiO ¢ Department of Informatics oaoaaos | eese

University of Oslo

Reinforcement learning

« What makes reinforcement learning different from other machine learning
paradigms?

— There is no supervisor, only a reward signal
— Feedback is delayed, not instantaneous
— Time really matters (sequential, non i.i.d data)

— Agent’s actions affect the subsequent data it receives

UiO ¢ Department of Informatics
University of Oslo

Mountain Car

* Objective:
— Get to the goal

- State variables:
— Position and velocity

« Actions:
— Motor: Left, Neutral, right

* Reward:
— (-1) for each time step

INF 5860 Page 59
08.03.2018

MOUNTAIN CAR Goal

agent
Y N
N 3
F 3 NN -
2L A Y ¥
47\ } .
state AN\ 1 7! action
V4 , Ve S
A\ A <)
s AN e S R S A
(] S SO A N
J -
_(,,4—‘,,/, -
'_,J'
[¥

environment

UiO ¢ Department of Informatics oanaans | ooed

University of Oslo

History (trajectory) and State

* History / trajectory :
agent state S}
- Ht =Tt = OllAllRll 02,A2,R2, ey Ot;At; Rt ,?— T S N

A Ao N
v 7 T
4

observation /1 “_! 2y \) action

« Full observatory: — A —

— Agent direct observe the environment state. “ (ﬂ-\—

— Ot o Ste o Sta’ &

reward TR,

« State:

— The state is a summary (of the actions and

observations) that determines what happens next

given an action.
- S5 = f(Hy)

environment state $¢

« Partially observability:
— The agent indirectly observes the environment.
— Robot with a camera

UiO ¢ Department of Informatics
University of Oslo

Markov Property

 Definition:
— A state S; is Markov if and only if:
P[St+1|5t] = P[St+1 |S1» 52, ---;St]

« The state capture all relevant information from
the history

 The state is sufficient to describe the statistics
of the future.

INF 5860 Page 61
08.03.2018

e T
270 \)
Y RS i N .
state M I\ L A action
FA A [T SN (/,}
_> \ \
S' [7 ’ I Af

UiO ¢ Department of Informatics
University of Oslo

Reward and Return

The reward, R;, is a scalar value the agent
receives for each step t.

The return, G, is the total discounted
accumulated reward form a given time-step t.

= Gy =Ry +YRey1 + = Y=oV Ry

Discount factor:

— We can apply a discord factor, y € [0,1], to
weight how we evaluate return.

The agent's goal is to maximize the return

INF 5860 Page 62

08.03.2018
/,/'; o
g { X 7
e) e
state /AW AY A action
A A\ v \‘“l&q o l/,,‘/}
S' [- T~ At

UiO ¢ Department of Informatics oaoaaon | eee
University of Oslo

Markov Decision Process (MDP)

« The mathematical formulation of the reinforcement learning (RL) problem.

« A Markov Decision Process is a tuple, M = (S, A, P,R,y), where every state
has the Markov property.

S: Afinite set of states
A: A finite set of actions
P: The transition probability matrix
Psc,fstﬂ = P[St+1 = St41 | St = 50, Ar = aq]
R: Reward function:
RS = E[S; = s¢ Ar = a4]
y. is a discount factor ye [0,1]

UiO ¢ Department of Informatics
University of Oslo

Objective

« Our goal is it find the policy which maximize
the accumulated reward:

Ge =R +VYRey1+ = Xm0 V¥ Revi

* Due to the randomness of the transition
probability and the reward function, we use
the expected value in the definition of the
optimal policy.

m, = arg max E [G;]
T

INF 5860 Page 64
08.03.2018

Value Func¢tion

Value-Based

Actor
Critic

Policy

Policy-Based |

UiO ¢ Department of Informatics oaoaaon | eee

University of Oslo

Bellman (optimality) equation

« Lets define the optimal Q-value (action-value) function,Q,, to be the maximum
expected reward given an state, action pair.

Q.(sp,ae) = mﬁx Erl Ge | Ay = ag, S¢ = ¢l

e The optimal Q-value function, Q,, satisfy the following form of the bellman equation:

Q.(s¢,ar) = E [Ry + y max Q. (S¢41, Ar41) | Ar = ¢, Sp = St]

at+1

e Note: The optimal policy, m,, is achieved by taking the action with the highest Q-value.
e Note: We still need the expectation, as the randomness of the environment is unknown.

UiO ¢ Department of Informatics oanaans o

University of Oslo

Exploration vs Exploitation

* “The “max” property while sampling new episodes can lead to suboptimal
policy”

« Exploitation:

— By selecting the action with the highest g-value while sampling new
episodes, we can refine our policy efficiently from an already promising
region in the state action space.

 Exploration:

— To find a new and maybe more promising region within the state action
space, we do not want to limit our search in the state action space.

— We introduce a randomness while sampling new episodes.
— With a probability of € lets choose a random action:

a, = argmax Q(s,a), with probabillity 1 —¢€
m(als) = a€eA
random action, with probabillity €

UiO ¢ Department of Informatics oaoaao | eeer

University of Oslo

Function approximation

* In the Gridworld example, we stored the state-values for each state. What if the
state-action space is too large to be stored e.g. continuous?

« We approximate the Q-value using a parameterized function e.g. neural
network.

Q(s,a,0) = Q(s,a)

« We want the function to generalize:

— Similar states should get similar action-values, Q(s, a, #) can also
generalize to unseen states. A table version would just require to much
data.

* In supervised learning:
— Building a function approximation vs memorizing all images (table).

UiO ¢ Department of Informatics oaoaaon | eece

University of Oslo

Solving for the optimal policy:
Q-learning

« Goal: Find a Q-function satisfying the Bellman (optimality) equation.

« Idea: The Q-value at the last time step is bounded by the true Q-value, the
correctness of the Q-value estimates increase with time-steps.

* Init: Initialize the weights in the neural network e.g. randomly.

Q.(st,a,6;) =E [Re + y max Q,(St41, A1, 0i-1) | A = at, S¢ = St]

aty1

 Reference:
yi = E [Ry + ymax Q(S¢t1,Ar41,0i—1) | A = ¢, S¢ = St]

at4q

« Loss:
Li(6;) = IE:St,St:+1, ag,re~Di [(yl B Q(St' Ats Hi))z]

D; is your dataset with state action pairs s;,s;41 a¢, 1t

UiO ¢ Department of Informatics oaoaaon e

University of Oslo

Policy based methods

« Value function based methods:
— Learning the expected future reward for a given action.
— The policy was to act greedily or epsilon-greedily on the estimated values.

* Policy based methods:
— Learning the probability that an action is good directly.

 Advantage of Policy based methods:
— We might need a less complex function for approximating the best action
compared to estimate the final reward.
— Example: Think of Pong

UiO ¢ Department of Informatics canaans e

University of Oslo

Policy based methods

 Goal:
— The goal is to use experience/samples to try to make a policy better.

* ldea:
— If a trajectory achieves a high reward, the actions were good
— If a trajectory achieves a low reward, the actions were bad

— We will use gradients to enforce more of the good actions and less of the
bad actions. Hence the method is called Policy Gradients.

UiO ¢ Department of Informatics 8osang LageT
University of Oslo

Playing games of Pong

Examples of games/episodes UP__o DOWN o UP UP o DOWN_ o DOWN_g DOWN o UP WIN
DOWN UP UP DOWN uP upP LOSE
You play a lot of actions and
p y . UpP _;. upP . DOWN DOWN=.DOWN=. DOWN= UP LOSE
receive an reward at the end e o ¢ ¢
DOWN UP UP DOWN UP UP WIN

You get a result, WIN! Great, but
how do you know which action,
caused the victory?

— Well... you don’t

R T
H H B

UiO ¢ Department of Informatics canaans | oeer
University of Oslo

Which action caused the final results?

In a winning series there may be uP DOWN uP uP DOWN_ o DOWN_ o DOWN uP WIN
many non-optimal actions BERR . R
LOSE
. . ° UpP r® uP -® DOWN=' DOWN=.DOWN=. DOWN=. UP » LOSE
In a losing series there may be
. DOWN UP UP DOWN uP uP WIN
good actions

T A A
The true effect is found by - - .
averaging out the noise, as
winnings series tend to have
more good action and visa versa

. - INF 5860 P 73
UiO ¢ Department of Informatics 08.03.2018 e

University of Oslo

Policy gradients: High variance

. - INF 5860 P 74
UiO ¢ Department of Informatics 08.03.2018 e

University of Oslo

Policy gradients: High variance

UiO ¢ Department of Informatics oaoaao | een

University of Oslo

Variance - all choices get the reward

42 42 42 42 42 42 42 42 42

g g0 8 1 0 8 1 0 3§
CrOPO>O»OPOPCOPO>O+0 = 42

UiO ¢ Department of Informatics oanaans | eers

University of Oslo

Variance - other possible paths

42 42 42 42 42 42 42 42 42
g J 4 4 1 1 4 4 1

UiO ¢ Department of Informatics oaoaao e

University of Oslo

Variance - high probability to chose
some other path

42 42 42 42 42 42 42 42 42
g 71 4 ¢ 4 1 1 3

. - INF 5860 P 78
UiO ¢ Department of Informatics 08.03.2018 e

University of Oslo

Variance - same actions for same
state: now negative

