
INF 5860 Machine learning for image classification

Summary

June 5, 2018

INF 5860
08.03.2018

• TensorFlow

• Convolutional neural networks

• Generalization

• Recurrent neural networks

• Deep reinforcement learning

Page 3

Progress

INF 5860
08.03.2018

Why do we need Deep learning
frameworks?
• Speed:

– Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation

• Automatic differentiations:
– Pre-implementation of the most common functions and it’s gradients.

• Reuse:
– Easy to reuse other people’s models

• Less error prone:
– The more code you write yourself, the more errors

4

14.2.2018

INF 5860
08.03.2018

TensorFlow

• TensorFlow graphs

• TensorFlow session

• TensorFlow constants

• TensorFlow variables

• TensorFlow feeding data to the graph

• Tensorboard

• TensorFlow save/restore models

• TensorFlow example

Page 5

INF 5860
08.03.2018

Graphs

6

14.2.2018

INF 5860
08.03.2018

Defining a tensor in TensorFlow

• The main types of tensors are:

– tf.Variable / tf.get_variable

– tf.constant

– tf.placeholder

• Attributes (some of them):

– Shape

– dtype

– name

7

14.2.2018

INF 5860
08.03.2018

Example of a tensors

8

14.2.2018

INF 5860
08.03.2018

The graph

• The TensorFlow graph is a definition, not any computation.

• The computational graph is a series of TensorFlow operations arranged into a
graph. The graph is composed of two types of objects:

– Operation: Nodes in the graph

– Tensors: The edges in the graph

9

14.2.2018

INF 5860
08.03.2018

Executing the tf.Graph: tf.Session

10

• We have seen that variables and constants are handles to elements in the
computational graph only.

• We execute the graph using a tf.Session

14.2.2018

INF 5860
08.03.2018

Creating variables

11

We can define variables two ways:

preferred

14.2.2018

INF 5860
08.03.2018

Initializing variables

• The variables to be used in the graph have to be either:

– Initialized

– Restored

12

14.2.2018

INF 5860
08.03.2018

tf.placeholder

13

14.2.2018

INF 5860
08.03.2018

Tensorboard: Visualizing learning

14

14.2.2018

INF 5860
08.03.2018

tf.train.saver.save()

• How to save our model every 1000 iteration.

15

14.2.2018

INF 5860
08.03.2018

• TensorFlow

• Convolutional neural networks

• Generalization

• Recurrent neural networks

• Deep reinforcement learning

Page 16

Progress

INF 5860
08.03.2018

Convolutional layer

17

INF 5860
08.03.2018

Convolutional layer

18

INF 5860
08.03.2018

Convolutional layer

19

• If we filter the input volume 6 times using a 5x5x3 filter,
we get a output volume with 6 channels (depth)

INF 5860
08.03.2018

Activations

20

• We use an activation function separately on all elements of the output volume

INF 5860
08.03.2018

Stride

• Stride is the spatial step length in the convolution operation.

• Example: Input volume 7x7x1, kernel (filter) size 3x3x1

• The stride is an important parameter for determining the spatial size of the
output volume

S
tr

id
e

 1
S

tr
id

e
 2

INF 5860
08.03.2018

Padding
• The output volume can get a lower spatial

resolution compared to the input volume. We can
solve this by padding the input volume. Common
to use zero padding

• Abbreviations: Stride (𝑆), filter size (𝐹), input size
(𝑁଴), output size (𝑁ଵ) and padding (𝑃)

• For 𝑆 = 1, we can achieve 𝑁଴ = 𝑁ଵ selecting 𝑃
equal to:

𝑃 =
ிିଵ

ଶ

• Calculation of the spatial output size:

𝑁ଵ =
𝑁଴ − 𝐹 + 2𝑃

𝑆
+ 1

22

INF 5860
08.03.2018

How large area influence the end
result?

INF 5860

23

• With a convolutional network
the receptive field increase with
each layer

• 3 inputs influence each node in
the first hidden layer

INF 5860
08.03.2018

How large area influence the end
result?

• With a convolutional network
the receptive field increase with
each layer

• 3 inputs influence each node in
the first hidden layer

• 5 influence the next

INF 5860

24

INF 5860
08.03.2018

How large area influence the end
result?

25

• With a convolutional network
the receptive field increase with
each layer

• 3 inputs influence each node in
the first hidden layer

• 5 influence the next

• 7 influence the next

INF 5860
08.03.2018

The effect of strided convolutions

• We still cover the whole input

• We have increased the receptive field from 5

→7 in hidden layer 2

INF 5860

26

INF 5860
08.03.2018

With strides, spatial dimensions will
become smaller

• Usually some of the of the network
capacity is preserved through an
increasing number of channels

27

INF 5860
08.03.2018

Dilated convolutions

• Skipping values in the kernel

• Same as filling the kernel with every
other value as zero

• Still cover all inputs

• Larger kernel with no extra
parameters

28

INF 5860
08.03.2018

Visualizing and Understanding deeper
layers

• Looking at the filer coefficient directly at deeper layer is not meaningful.

• Visualization with Deconvnet

29

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks

INF 5860
08.03.2018

Hierarchical learning

• A convolution neural network is built up as a hierarchy were the
complexity (abstraction) is increased by depth.

• A hierarchical structure is parameter efficient

30

INF 5860
08.03.2018

• TensorFlow

• Convolutional neural networks

• Generalization

• Recurrent neural networks

• Deep reinforcement learning

Page 31

Progress

INF 5860
08.03.2018

Notation

• Formalization supervised learning:

– Input: 𝒙

– Output: 𝒚

– Target function: 𝑓 ∶ 𝒳

→ 𝒴

– Data: 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 ⋅⋅⋅ , 𝒙𝑵, 𝒚𝑵

– Hypothesis: h ∶ 𝒳

→ 𝒴

Example:

Hypothesis set: 𝑦 = 𝑤ଵ𝑥 + 𝑤଴

A hypothesis: 𝑦 = 2𝑥 + 1

Page 32

INF 5860
08.03.2018

More notation

• In-sample (colored): Training data available
to find your solution.

• Out-of-sample (gray): Data from the real
world, the hypothesis will be used for.

• Final hypothesis:

• Target hypothesis:

• Generalization: Difference between the
in-sample error and the out-of-sample error

Page 33

INF 5860
08.03.2018

What is the expected out-of-sample
error?

• For a randomly selected hypothesis

• The closest error approximation is
the in-sample error

Page 34

INF 5860
08.03.2018

What is training?

• A general view of training:

– Training is a search through
possible hypothesis

– Use in-sample data to find the best
hypothesis

Page 35

ℎଷ

ℎଵ

ℎଶ

INF 5860
08.03.2018

What is the effect of choosing the best
hypothesis?

• Smaller in-sample error

• Increasing the probability that
the result is a coincidence

• The expected out-of-sample
error is greater or equal to the
in-sample error

Page 36

ℎଷ

ℎଵ

ℎଶ

INF 5860
08.03.2018

Capacity of the model (hypothesis set)

• The model restrict the number of
hypothesis you can find

• Model capacity is a reference to how many
possible hypothesis you have

• A linear model has a set of all linear
functions as its hypothesis

Page 37

INF 5860
08.03.2018

Measuring capacity

• Vapnik-Chervonenkis (VC) dimension

– Denoted: 𝑑௏஼(ℋ)

– Definition:

• The maximum number of points that can be arrange such that ℋ can
shatter them.

Page 38

INF 5860
08.03.2018

Example VC dimension

Page 39

• (2D) Linear model

• Configuration (𝑁 =3)

ଵ

ଶ

INF 5860
08.03.2018

Splitting of data

• Training set (60%)

– Used to train our model

• Validation set (20%)

– Used to select the best hypothesis

• Test set (20%)

– Used to get a representative out-of-sample error

Page 40

INF 5860
08.03.2018

Important! No peeking

• Keep a dataset that you don’t look at until
evaluation (test set)

• The test set should be as different from
your training set as you expect the real
world to be

Page 41

INF 5860
08.03.2018

Learning curves

Page 42

Simple hypothesis Complex hypothesis

INF 5860
08.03.2018

• TensorFlow

• Convolutional neural networks

• Generalization

• Recurrent neural networks

• Deep reinforcement learning

Page 43

Progress

INF 5860
08.03.2018

Recurrent Neural Network (RNN)

• Takes a new input

• Manipulate the state

• Reuse weights

• Gives a new output

Page 44

௧

௧

INF 5860
08.03.2018

Recurrent Neural Network (RNN)

• Unrolled view

• 𝑥௧ : The input vector:

• ℎ௧: The hidden state of the RNN

• 𝑦௧ : The output vector:

Page 45

ଵ ଶ ଷ

ଵ ଶ ଷ

ଵ ଶ ଷ௧

௧

INF 5860
08.03.2018

(Vanilla) Recurrent Neural Network

• Input vector: 𝑥௧

• Hidden state vector: ℎ௧

• Output vector: 𝑦௧

• Weight matrices: 𝑊௛௛, 𝑊௛௫, 𝑊௛௬

General form:

ℎ௧ = 𝑓௪ ℎ௧ିଵ, 𝑥௧

Vanilla RNN:

ℎ௧ = tanh 𝑊௛௛ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏

𝑦௧ = 𝑊௛௬ℎ௧

Page 46

௧

௧

INF 5860
08.03.2018

RNN: Computational Graph

Page 47

INF 5860
08.03.2018

RNN: Predicting the next character

• Task: Predicting the next character

• Training sequence: “hello”

• Vocabulary:

– [h, e, l, o]

• Encoding: Onehot

• Model:

ℎ௧ = tanh 𝑊௛௛ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏

𝑦௧ = 𝑊௛௬ℎ௧

Page 48

INF 5860
08.03.2018

Input-output structure of RNN’s

• One-to-one

• one-to-many

• many-to-one

• Many-to-many

• many-to-many (encoder-decoder)

Page 49

INF 5860
08.03.2018

Vanishing gradients - “less of a
problem”

• In contrast to feed-forward networks, RNNs will not stop learning in spite of
vanishing gradients.

• The network gets “fresh” inputs each step, so the weights will be updated.

• The challenge is to learning long range dependencies. This can be improved
using more advanced architectures.

• Outputs at time step t is mostly effected by the close previous state.

Page 50

INF 5860
08.03.2018

Exploding or vanishing gradients

• tanh () solves the exploding value problem

• tanh () does NOT solve the exploding gradient problem, think of a scalar input
and a scalar hidden state.

ℎ௧ = 𝑡𝑎𝑛ℎ 𝑊௛௛ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏

𝜕ℎ௧

𝜕ℎ௧ିଵ
= 1 − tanhଶ(𝑊௛௛ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏) ⋅ 𝑊௛௛

The gradient can explode/vanish exponentially in time (steps)

• If |𝑊௛௛| < 1, vanishing gradients

• If |𝑊௛௛| > 1, exploding gradients

Page 51

INF 5860
08.03.2018

Gated Recurrent Unit (GRU)

Page 52

Vanilla RNN

• Cell state ℎ௧ = 𝑡𝑎𝑛ℎ(𝑊௛௫𝑥௧ + 𝑊௛௛ℎ௧ିଵ + 𝑏)

GRU

• Update gate Γ௨ = 𝜎(𝑊௨𝑥௧ + 𝑈௨ℎ௧ିଵ + 𝑏௨)

• Reset gate Γ௥ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ + 𝑏௥)

• Candidate cell state ℎ෨௧ = 𝑡𝑎𝑛ℎ 𝑊𝑥௧ + 𝑈(Γ௥∘ ℎ௧ିଵ + 𝑏)

• Final cell state ℎ௧ = Γ௨ ∘ ℎ௧ିଵ + 1 − Γ௨ ∘ ℎ෨௧

GRU is adding or removing to the state, not “transforming the state”

With Γ௥ as ones and Γ௨ as zeros, GRU → Vanilla RNN

INF 5860
08.03.2018

Multi-layer Recurrent Neural Networks

• Multi-layer RNN can be used to enhance
model complexity

• Similar as for feed forward neural networks,
stacking layers creates higher level feature
representation

• Normally, 2 or 3 layer deep, not as deep as
conv nets

• More complex relationships in time

Page 53

INF 5860
08.03.2018

Bidirectional recurrent neural network

• The blocks can be vanilla, LSTM and GRU recurrent units

• Real time vs post processing

Page 54

௧ ௛௫ ௧ ௛௛ ௧ିଵ

௧ ௛௫ ௧ ௛௛ ௧ାଵ

௧ ௛௬ ௧ ௧

INF 5860
08.03.2018

• TensorFlow

• Convolutional neural networks

• Generalization

• Recurrent neural networks

• Deep reinforcement learning

Page 55

Progress

INF 5860
08.03.2018

Branches of Machine Learning

Page 56

INF 5860
08.03.2018

Reinforcement learning

• Reinforcement Learning ~ Science of
decision making

• In RL an agent learns from the
experiences it gains by interacting with the
environment.

• The goal is to maximize an accumulated
reward given by the environment.

• An agent interacts with the environment
via states, actions and rewards.

Page 57

RL Course by David Silver

INF 5860
08.03.2018

Reinforcement learning

• What makes reinforcement learning different from other machine learning
paradigms?

– There is no supervisor, only a reward signal

– Feedback is delayed, not instantaneous

– Time really matters (sequential, non i.i.d data)

– Agent’s actions affect the subsequent data it receives

Page 58

INF 5860
08.03.2018

Mountain Car

• Objective:

– Get to the goal

• State variables:

– Position and velocity

• Actions:

– Motor: Left, Neutral, right

• Reward:

– (-1) for each time step

Page 59

INF 5860
08.03.2018

History (trajectory) and State

• History / trajectory :

– 𝐻௧ = 𝜏௧ = 𝑂ଵ, 𝐴ଵ, 𝑅ଵ, 𝑂ଶ, 𝐴ଶ, 𝑅ଶ, … , 𝑂௧, 𝐴௧, 𝑅௧

• Full observatory:

– Agent direct observe the environment state.

– 𝑂௧ = 𝑆௧
௘ = 𝑆௧

௔

• State:

– The state is a summary (of the actions and
observations) that determines what happens next
given an action.

– 𝑆௧ = 𝑓(𝐻௧)

• Partially observability:

– The agent indirectly observes the environment.

– Robot with a camera

Page 60

INF 5860
08.03.2018

Markov Property

Page 61

• Definition:

– A state 𝑆௧ is Markov if and only if:

ℙ 𝑆௧ାଵ 𝑆௧ = ℙ 𝑆௧ାଵ 𝑆ଵ, 𝑆ଶ , … , 𝑆௧

• The state capture all relevant information from
the history

• The state is sufficient to describe the statistics
of the future.

INF 5860
08.03.2018

Reward and Return

Page 62

• The reward, 𝑅௧, is a scalar value the agent
receives for each step t.

• The return, 𝐺௧, is the total discounted
accumulated reward form a given time-step t.

– 𝐺௧ = 𝑅௧ + 𝛾𝑅௧ାଵ + ⋯ = ∑ 𝛾௞ஶ
௞ୀ଴ 𝑅௧ା௞

• Discount factor:

– We can apply a discord factor, 𝛾 ∈ 0,1 , to
weight how we evaluate return.

• The agent's goal is to maximize the return

INF 5860
08.03.2018

Markov Decision Process (MDP)

• The mathematical formulation of the reinforcement learning (RL) problem.

• A Markov Decision Process is a tuple, ℳ = 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 , where every state
has the Markov property.

S: A finite set of states

A: A finite set of actions

P: The transition probability matrix
 𝑃௦೟௦೟శభ

௔ = ℙ 𝑆௧ାଵ = 𝑠௧ାଵ | 𝑆௧ = 𝑠௧, 𝐴௧ = 𝑎௧

R: Reward function:

𝑅௦
௔ = 𝔼 𝑆௧ = 𝑠௧, 𝐴௧ = 𝑎௧

𝛾: is a discount factor 𝛾∈ [0,1]

Page 63

INF 5860
08.03.2018

Objective

• Our goal is it find the policy which maximize
the accumulated reward:

𝐺௧ = 𝑅௧ + 𝛾𝑅௧ାଵ + ⋯ = ∑ 𝛾௞ஶ
௞ୀ଴ 𝑅௧ା௞

• Due to the randomness of the transition
probability and the reward function, we use
the expected value in the definition of the
optimal policy.

𝜋∗ = arg max
గ

𝔼 𝐺௧

Page 64

INF 5860
08.03.2018

Bellman (optimality) equation

• Lets define the optimal Q-value (action-value) function,𝑄∗, to be the maximum
expected reward given an state, action pair.

𝑄∗ 𝑠௧, 𝑎௧ = max
గ

𝔼గ 𝐺௧ | 𝐴௧ = 𝑎௧, 𝑆௧ = 𝑠௧

• The optimal Q-value function, 𝑄∗, satisfy the following form of the bellman equation:

𝑄∗ 𝑠௧, 𝑎௧ = 𝔼 𝑅௧ + 𝛾 max
௔೟శభ

𝑄∗ 𝑠௧ାଵ, 𝑎௧ାଵ | 𝐴௧ = 𝑎௧, 𝑆௧ = 𝑠௧

• Note: The optimal policy, 𝜋∗, is achieved by taking the action with the highest Q-value.

• Note: We still need the expectation, as the randomness of the environment is unknown.

Page 65

INF 5860
08.03.2018

Exploration vs Exploitation
• “The “𝑚𝑎𝑥” property while sampling new episodes can lead to suboptimal

policy”

• Exploitation:

– By selecting the action with the highest q-value while sampling new
episodes, we can refine our policy efficiently from an already promising
region in the state action space.

• Exploration:

– To find a new and maybe more promising region within the state action
space, we do not want to limit our search in the state action space.

– We introduce a randomness while sampling new episodes.

– With a probability of 𝜖 lets choose a random action:

𝜋 𝑎 𝑠 = ቐ
𝑎∗ = argmax

௔∈஺
𝑄(𝑠, 𝑎) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦 1 − 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦 𝜖

Page 66

INF 5860
08.03.2018

Function approximation

• In the Gridworld example, we stored the state-values for each state. What if the
state-action space is too large to be stored e.g. continuous?

• We approximate the Q-value using a parameterized function e.g. neural
network.

𝑄෠ 𝑠, 𝑎, 𝜃 ≈ 𝑄(𝑠, 𝑎)

• We want the function to generalize:

– Similar states should get similar action-values, 𝑄෠ 𝑠, 𝑎, 𝜃 can also
generalize to unseen states. A table version would just require to much
data.

• In supervised learning:

– Building a function approximation vs memorizing all images (table).

Page 67

INF 5860
08.03.2018

Solving for the optimal policy:
Q-learning
• Goal: Find a Q-function satisfying the Bellman (optimality) equation.

• Idea: The Q-value at the last time step is bounded by the true Q-value, the
correctness of the Q-value estimates increase with time-steps.

• Init: Initialize the weights in the neural network e.g. randomly.

𝑄∗ 𝑠௧, 𝑎௧, 𝜃௜ = 𝔼 𝑅௧ + 𝛾 max
௔೟శభ

𝑄∗ 𝑠௧ାଵ, 𝑎௧ାଵ, 𝜃௜ିଵ | 𝐴௧ = 𝑎௧, 𝑆௧ = 𝑠௧

• Reference:
𝑦௜ = 𝔼 𝑅௧ + 𝛾 max

௔೟శభ

𝑄 𝑠௧ାଵ, 𝑎௧ାଵ, 𝜃௜ିଵ | 𝐴௧ = 𝑎௧, 𝑆௧ = 𝑠௧

• Loss:

𝐿௜(𝜃௜) = 𝔼௦೟,௦೟శభ, ௔೟,௥೟~஽೔
𝑦௜ − 𝑄 𝑠௧, 𝑎௧, 𝜃௜

ଶ

𝐷௜ is your dataset with state action pairs 𝑠௧, 𝑠௧ାଵ, 𝑎௧, 𝑟௧

Page 68

INF 5860
08.03.2018

Policy based methods

• Value function based methods:
– Learning the expected future reward for a given action.
– The policy was to act greedily or epsilon-greedily on the estimated values.

• Policy based methods:
– Learning the probability that an action is good directly.

• Advantage of Policy based methods:
– We might need a less complex function for approximating the best action

compared to estimate the final reward.
– Example: Think of Pong

Page 69

INF 5860
08.03.2018

Policy based methods

• Goal:

– The goal is to use experience/samples to try to make a policy better.

• Idea:

– If a trajectory achieves a high reward, the actions were good

– If a trajectory achieves a low reward, the actions were bad

– We will use gradients to enforce more of the good actions and less of the
bad actions. Hence the method is called Policy Gradients.

Page 70

INF 5860
08.03.2018

Playing games of Pong

• Examples of games/episodes

• You play a lot of actions and
receive an reward at the end

• You get a result, WIN! Great, but
how do you know which action,
caused the victory?

– Well… you don’t

Page 71

INF 5860
08.03.2018

Which action caused the final results?

• In a winning series there may be
many non-optimal actions

• In a losing series there may be
good actions

• The true effect is found by
averaging out the noise, as
winnings series tend to have
more good action and visa versa

Page 72

INF 5860
08.03.2018

Policy gradients: High variance

Page 73

INF 5860
08.03.2018

Policy gradients: High variance

Page 74

42

INF 5860
08.03.2018

Variance - all choices get the reward

Page 75

42

424242424242424242

INF 5860
08.03.2018

Variance - other possible paths

Page 76

42

424242424242424242

INF 5860
08.03.2018

Variance - high probability to chose
some other path

Page 77

42

424242424242424242

-8

INF 5860
08.03.2018

Variance - same actions for same
state: now negative

Page 78

-8-8-8

-8

-8
-8

-8
-8

