
repetition lecture
INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede
05.06.2018

University of Oslo

Outline

∙ Dense neural networks
∙ CNN architectures
∙ Object detection and image segmentation
∙ Unsupervised learning
∙ Generative adversarial networks

1

dense neural networks

Supervised learning

∙ Given a training set with input x and desired output y

Ωtrain = {(x(1), y(1)), . . . , (x(m), y(m))}

∙ Create a function f that “approximates” this mapping

f(x) ≈ y, ∀(x, y) ∈ Ωtrain

∙ Hope that this generalises well to unseen examples, such that

f(x) = ŷ ≈ y, ∀(x, y) ∈ Ωtest

where Ωtest is a set of relevant unseen examples.
∙ Hope that this is also true for all unseen relevant examples.

3

Deep learning

1. Build a function f that maps input to output
∙ Input: Array of numbers.
∙ Output: Probability mass function conditional on observed input.

2. This function will have multiple layers, where each layer is a representation of the
previous.

3. Measure how well the output of the function is approximating the true output
4. Use information from the error to update the function
5. Repeat step 3 and 4 with multiple training examples

4

All connections

a
[l]
k = g

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

 , k ∈ {1, 2, . . . , n[l]}, l ∈ {1, 2, . . . , L}
5

Activation in node 3 of layer 1

a
[1]
3 = g

 nx∑
j=1

w
[1]
j3xj + b

[1]
3


6

Activation in node 4 of layer 2

a
[2]
4 = g

n[1]∑
j=1

w
[2]
j4a

[1]
j + b

[2]
4


7

Activation functions

∙ Functions that introduce non-linearity to our
network

∙ Without it, our network just becomes a linear
mapping from input to output

∙ Enables DNN to become universal function
approximators

∙ Can in theory be any function that is
∙ Non-linear
∙ Differentiable (if you are using a gradient-based
optimization)

(a) Sigmoid

(b) Hyperbolic tangent

(c) Rectified linear unit (ReLU)

Figure 1: Some common activation functions

8

Output layer

z
[L]
k =

n[L−1]∑
j=1

w
[L]
jk a

[L−1]
j + b

[L]
k

a
[L]
k = s(z

[L]
k)

= ŷk

for

k = 1, . . . , ny,

= 1, . . . , n[L].

9

Softmax function

s(z)k =
ezk∑n
i=1 e

zi

∙
∑

k s(z)k = 1, and the softmax can be
interpreted as a probability

∙ Using the softmax as our final
activation, we can interpret the output
of our network as

f(x; θ)k = Pr(Y = k|X = x; θ) (1)

∙ X is a random vector modeling our
input

∙ Y is a categorical random variable
modeling the true output

∙ θ is the collection of parameters

θ = {w[l]
jk, b

[l]
k }

for 
j = 1, . . . , n[l−1]

k = 1, . . . , n[l]

l = 1, . . . , L

10

Choosing network parameters

∙ The neural network is set up, the next step is to determine the values of the
parameters

θ = {w[l]
jk, b

[l]
k : j ∈

{
1, . . . , n[l−1]}, k ∈ {1, . . . , n[l]}, l ∈ {1, . . . , L}

}
∙ This is done by defining a cost function which is to be minimized by some
optimization method.

∙ In the most common case, we minimize the cross entropy cost function using a
stochastic gradient descent optimizer

11

Cross entropy cost function

∙ We can derive the cross entropy cost function from maximum likelihood
∙ The maximum likelihood estimator (MLE) θ̂ of θ is the parameter

θ̂ = arg max
θ

ℓ(θ;x) (2)

∙ The likelihood ℓ(θ;x) is our network pY (y|X = x; θ), when x is a fixed realization of
X , and θ is a variable.

∙ We then showed in the lecture that the maximum likelihood estimator is found by
minimizing

J(θ,Ωtrain) = −
1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k . (3)

∙ ŷ is the network output vector, ỹ is the one-hot encoded reference. m is the number
of training examples, and ny is the number of classes.

∙ In practice, we approximate this by minimizing over a mini-batch Ωmb
train ⊂ Ωtrain

12

Gradient descent

θ ← θ − λ∇θJ(θ) (4)

∙ The gradient of J w.r.t. a set of variables
θ = [θ1, . . . , θm]

∇θJ =

[
∂J

∂θ1
, . . . ,

∂J

∂θm

]
∙ ∇θJ(θk) gives the direction of steepest
ascent at the point θk

∙ λ determines how long to move in that
direction

13

Backpropagation

∙ We need to compute the values of

∂J

∂w
[l]
jk

and ∂J

∂b
[l]
k

.

for all nodes and edges in the network.
∙ This is doen by the so-called backprop algorithm
∙ It works by successive use of the chain rule, from
the last layer backward to the first

14

Backprop summary

∂J

∂w
[l]
jk

=
∂J

∂z
[l]
k

a
[l−1]
j , l = 1, . . . , L. (5a)

∂J

∂b
[l]
k

=
∂J

∂z
[l]
k

, l = 1, . . . , L. (5b)

∂J

∂z
[l]
k

= g′(z
[l]
k)

n[l+1]∑
j=1

∂J

∂z
[l+1]
j

w
[l+1]
kj , l = 1, . . . , L− 1 (5c)

∂J

∂z
[L]
k

= ŷk − ỹk. (5d)

Note that
∙ Eqs. (5a)— (5c) are generally applicable
∙ Eq. (5d) assumes that J is the cross-entropy loss, and that a[L] = s(z[L]) with s as the
softmax function.

∙ We also have vectorized versions of these equations
15

cnn architectures

VGG16

∙ A well-performing image classification network
from 2014

∙ Simple and elegant design
∙ alternating 2× 2 maxpool
∙ multiple 3× 3 convolution layers

∙ Expencive, both in terms of memory and
computation

∙ Very many parameters
∙ Many layers (at the time)
∙ “Unsophisticated” architecture

17

ResNet’s motivational problem

∙ Deeper models seems to be better
∙ However, very deep models perform worse
∙ Not due to overtraining
∙ Degradation problem

18

Deep models should be at least as good as shallow

∙ A deeper model should not have higher training error
∙ “Proof” by construction

∙ Take a shallow model
∙ Insert extra layers as identity mappings
∙ This deeper mode should have at least as good training error

∙ How to solve this is the key

19

Residual learning

∙ Stack a couple of layers
∙ Input x
∙ Let H(x) be the desired mapping to be
learned

∙ Explicitly compose the output as
H(x) = F (x) + x, by adding the input x

∙ This means that what has been learnt is
the residual F (x) = H(x)− x

∙ This should make identities H(x) = x

easier to learn
∙ Easier to train very deep networks

20

Residual blocks

Figure 2: Left: a regular residual block. Right: a “bottleneck” residual block

21

Base architecture

22

object detection and image segmentation

Image classification and object localization

∙ Classify an image with a single object
∙ Draw a bounding box around the object

Figure 3: Seagull. Image source: https://www.pixabay.com

24

https://www.pixabay.com

Target vector

∙ Add object/no object indicator c0
∙ Interpret c0 as
c0 = Pr(there is an object in this box)

∙ c0 is often referred to as the objectness,
but can also be thought of as a
“catch-all” background class indicator

∙ Standard category probabilities from
classification (c1, c2, . . . , cNc

)
∙ Interpret ci as ci = Pr(classi|c0 = 1),
i = 1, . . . , Nc

∙ Add bounding box location specifiers
∙ br : Center row coordinate
∙ bc: Center column coordinate
∙ bh: Box height
∙ bw : Box width

ŷ =



c0
c1
c2
...

cNc

br
bc
bh
bw


Figure 4: Seagull. Image source: https://www.pixabay.com

25

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

ŷ =



c0
c1
c2
c3
br
bc
bh
bw


Figure 5: Tiger. Image source: https://www.pixabay.com

26

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

ŷ =



c0
c1
c2
c3
br
bc
bh
bw


Figure 6: Lion. Image source: https://www.pixabay.com

27

https://www.pixabay.com

Example: Big cats

∙ c1: Tiger
∙ c2: Leopard
∙ c3: Lion

ŷ =



c0
c1
c2
c3
br
bc
bh
bw


Note that c0 = 0, so we do
not care about the rest,
symbolized by Ø.

Figure 7: Savannah. Image source: https://www.pixabay.com

28

https://www.pixabay.com

Multi-task loss function

∙ Partition y into y = [c, b], with
∙ c = [c0, c1, . . . , cNc]

∙ b = [br, bc, bh, bw]

∙ L2 loss for object bounding box location b

Lb(b̂, b) =
∑

i∈{x,y,h,w}

(b̂i − bi)
2

∙ Cross entropy loss for object categories c

Lc(ĉ, c) = −
n∑

i=1

ci log ĉi

∙ The total loss can be written as

L(ŷ, y) = Lc + [c0 > 0]Lb

∙ Only compare bounding box if there is an object in the image
29

Sensitivity

∙ Proportion of positive reference instances labeled as
positive by the proposed method

tpr =
|BR ∩BP |
|BR|

∙ Also known as
∙ true positive rate (tpr)
∙ recall

∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 8: Top: reference (green), proposal (blue).
Middle: True positive (red). Bottom: Reference
positive (red). Image source:
https://www.pixabay.com 30

https://www.pixabay.com

Specificity

∙ Proportion of negative reference instances labeled as
negative by the proposed method

tnr =
|(BR ∪BP)

c|
|Bc

R|

∙ Also known as true negative rate (tnr)

Figure 9: Top: reference (green), proposal (blue).
Middle: True negative (red). Bottom: Reference
negative (red). Image source:
https://www.pixabay.com 31

https://www.pixabay.com

Precision

∙ Proportion of proposed positive instances that are also
labeled positive by the reference

ppv =
|BR ∩BP |
|BP |

∙ Also known as positive predictive value (ppv)
∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 10: Top: reference (green), proposal (blue).
Middle: True positive (red). Bottom: Proposed
positive (red). Image source:
https://www.pixabay.com 32

https://www.pixabay.com

Jaccard index

∙ The proportion of all instances classified as positive by
the reference and/or the proposal method, that are
classified as positive by both the reference and the
proposal method

iou =
|BR ∩BP |
|BR ∪BP |

∙ Also known as
∙ Intersection over Union (IoU)
∙ Tanimoto index

∙ Example on the right is pixel classification, but it also
applies to object instances

Figure 11: Top: reference (green), proposal (blue).
Middle: Intersection (red). Bottom: Union (red).
Image source: https://www.pixabay.com

33

https://www.pixabay.com

Fast R-CNN

∙ Get region proposals (as in R-CNN)

34

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image

35

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

36

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer

37

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction

38

Fast R-CNN

∙ Get region proposals (as in R-CNN)
∙ Run a CNN on the entire image
∙ Project region proposals (ROIs) onto output CNN feature
map

∙ ROI pooling layer
∙ Feed the fixed-sized pooled region to fully connected
layers

∙ One softmax output for class prediction
∙ One regression output for the bounding box prediction
∙ Multi-task loss

39

Semantic segmentation

40

Instance segmentation

41

CNN multiple pixel classification

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Very expensive on computation and memory

Figure 12: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com

42

https://www.pexels.com

Downsampling and upsampling

∙ Segment image all at once
∙ Input image shape: H ×W × C

∙ Output layer shape: H ×W ×Nc, where Nc: number of
classes

∙ Spatial downsampling followed by upsampling (encoding,
decoding)

∙ Pixel-wise cross entropy loss
∙ Softmax over channels at a pixel location
∙ Repeat, and average over all pixels

∙ Different upsampling techniques

Figure 13: Top: Original. Bottom: Segmented. Image
source: https://www.pexels.com

43

https://www.pexels.com

Max unpooling

Remember max locations from max pool downsampling. Reverse this on the “opposite”
layer

44

Interpolation upsampling

45

Transposed convolution

∙ Can view convolution as a matrix-matrix
multiplication

∙ Transposed convolution gets its name
by transposing this operation

∙ Also called
∙ fractionally strided convolution
∙ econvolution (this is a misnomer)

46

Dilated convolution

∙ Insert spacing between convolution
kernel cells (dilation rate)

∙ Also called
∙ convolution with holes
∙ A-trous convolution (a trous is french
for with holes)

47

unsupervised learning

t-distributed Stochastic Neighbour Embedding (t-SNE)

∙ Transforms high-dimensional (hd) data points to low-dimensional (ld) data ponts
∙ Aims to preserve neighbourhood identity between data points
∙ Similar (close) hd points should also be similar (close) in the ld representation
∙ For each point i, we define two distributions:

∙ pi(xi, xj): The probability that xi and xj are “neighbours”,
∙ qi(yi, yj): The probability that yi and yj are “neighbours”,

∙ pi are distributions over all hd neighbours x
∙ qi are distributions over all ld neighbours y
∙ For p, we use symmetric gaussian distributions
∙ For q, we use symmetric student-t distributions
∙ We make q similar to p by minimizing the KL-divergence between the two
∙ The KL-divergence is minimized by determining the ld points y with gradient descent

49

Autoencoders

∙ An autoencoder f consist of an encoder g and an decoder h
∙ The encoder maps the input x to some representation z

g(x) = z

∙ We often call this representation z for the code or the latent vector
∙ The decoder maps this representation z to some output x̂

g(z) = x̂

∙ We want to train the encoder and decoder such that

f(x) = h(g(x)) = x̂ ≈ x

∙ Commonly used for compression, feature extraction and
de-noising

50

Compression autoencoder — MNIST example

(a) Original (b) Reconstructed

51

De-noising autoencoder — MNIST example

(a) Original (b) Reconstructed

52

Variational autoencoders

∙ A variational autoencoder is designed to have a
continuous latent space

∙ This makes them ideal for random sampling and
interpolation

∙ It achieve this by forcing the encoder g to generate
Gaussian representations, z ∼ N (µ, σ2)

∙ More precisely, for one input, the encoder generates a
mean µ and a variance σ2

∙ We sample then sample a zero-mean, unit-variance
Gaussian z̃ ∼ N (0, 1)

∙ Construct the input z to the decoder from this

z = µ+ z̃σ2

∙ With this, z is sampled from q = N (µ, σ2)
53

Intuition

∙ This is a stochastic sampling
∙ That is, we can sample different z from the same set of
(µ, σ2)

∙ The intuition is that the decoder “learns” that for a given
input x:

∙ the point z is important for reconstruction
∙ but also a neighbourhood of z

∙ In this way, we have smoothed the latent space, at least
locally

∙ In the previous lecture, we learnt ways to achieve this

54

Guiding the generative distribution

∙ We can guide the solutions by restricting the generative distribution q

∙ We do this by making it approximate some distribution p

∙ In that way, the latent vectors, even for different categories, will be relatively close
∙ The desired distribution used in variational autoencoders is the standard normal
p = N (0, 1)

∙ We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

∙ With this, the total loss for an example xi is something like

J(xi) = ||x(i) − f(x(i))||+DKL(p||qµi,σi
)

∙ That is, the sum what we call the reconstruction loss and the latent loss
∙ The latent loss for a single variable xi can be shown to be equal to

DKL(p||qµi,σi) =
1

2
(µ2

i + σ2
i − logσ2

i − 1)

55

VAE example: reconstruction

(a) Original (b) Reconstructed

56

VAE example: generation of new signals

∙ Sample a random latent vector z from N (0, 1)

∙ Decode z

57

VAE example: interpolation between samples

∙ We generate a signal c that is an interpolation between two signals a and b

∙ We can do this by a linear interpolation between the means

µck = (1− wk)µa + wkµb

where the different interpolation weights can be

wk =
k

n+ 1
, k = 1, . . . , n

58

VAE example: interpolation between samples

59

generative adversarial networks

Components

∙ A generator function that tries to create real-looking examples
∙ A discriminator function that tries to distinguish real from fake examples
∙ Functions are updated in a feedback loop, making each better at its task

61

Components

∙ The discriminator is a function

D : x 7→ D(x; θD)

mapping input x to D(x; θD) with parameters θD
∙ The generator is a function

G : z 7→ G(z; θG)

mapping input z to G(z; θG) with parameters θG
∙ The discriminator has an associated loss JD(θD, θG), depending on both θD and θG,
but can only control θD

∙ The generator has an associated loss JG(θD, θG), depending on both θD and θG, but
can only control θG

∙ The optimal solution (θ∗D, θ∗G) is a Nash equilibrium where
∙ θ∗D is a local minimum of JD w.r.t. θD
∙ θ∗G is a local minimum of JG w.r.t. θG

62

The generator

∙ The generator is a differentiable function
∙ The input z is a random vector sampled from some simple prior distribution pg

∙ The output x = G(z) is then sampled from pm

∙ The most common form of G is some kind of generative neural network
∙ If we have GAN trained on data from pd, we can use the generator to sample from pm

∙ pm ≈ pd

∙ With this, samples from the generator will look like the training data

63

The discriminator

∙ The discriminator is a standard classification network
∙ Trained to differentiate between real and fake (generated) images
∙ Outputs a single number in [0, 1]

∙ D(x) = 0 → D believes x is fake
∙ D(x) = 1 → D believes x is real

64

The training process

∙ At each update step, one mini-batch x of real images, and one mini-batch z of latent
vectors are drawn

∙ z is fed through G, producing G(z)

∙ D(x) is compared with D(G(z))

∙ θG is updated using gradients from JG

∙ θD is updated using gradients from JD

∙ The discriminator and generator are updated in tandem using some regular
optimization routine (SGD, Adam, etc.)

∙ Some flexibility with regards to updating one more often than the other

65

The discriminator cost function

∙ The generator, G, and discriminator, D, are two distinct networks with distinct cost
functions

∙ The cost functions are optimized separately
∙ The discriminator cost function is given by

JD(θD, θG) = −Ex∼pd
[logD(x; θD)]− Ez∼pg

[log(1−D(G(z; θG); θD))]

= −Ex∼pd
[logD(x; θD)]− Ex∼pm [log(1−D(x; θD))]

∙ With discrete samples, over one mini-batch {xi} and {zi}, this becomes

JD(θD, θG) = −
1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

∙ Binary classification with sigmoid cross entropy where
∙ Real images are given label 0
∙ Generated (fake) images are given label 1

66

The generator cost function

∙ For the generator cost, we propose the following

JG(θD, θG) = −Ez∼pg logD(G(z; θG); θD)

= − 1

m

m∑
i=1

logD(G(zi; θG); θD)

∙ With this, the generator maximizes the log-probability of the discriminator being
mistaken (assigning label 1 to the generated examples)

∙ Contrast this with the previous minimax game where we the generator minimizes the
log-probability of the discriminator being correct (assigning label 0 to the generated
examples)

∙ Both the generator and the discriminator now have strong gradients when they are
“losing the game”

67

Cost functions overview

∙ Minimizing the discriminative cost

JD(θD, θG) = −
1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

“pushes” D(x) to 1 (real class) and D(G(z)) to 0 (fake class)
∙ Minimizing the generative cost

JG(θD, θG) = −
1

m

m∑
i=1

log(D(G(zi; θG); θD))

“pushes” D(G(z)) to 1 (real class) Figure 17: Graph of f(x) = − log x

68

Questions?

69

	Dense neural networks
	CNN architectures
	Object detection and image segmentation
	Unsupervised learning
	Generative adversarial networks

