ARCHITECTURES FOR CONVOLUTIONAL NEURAL NETWORKS

INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede 14.03.2018

University of Oslo

- · Introduction and motivation
- \cdot LeNet
- \cdot AlexNet
- · VGG
- Inception / GoogLeNet
- \cdot ResNet
- · Recent examples

INTRODUCTION AND MOTIVATION

- · Important to know the history for reference
- · The chosen architectures are amongst the most cited works in machine learning
- · Many works refer to these architectures
- They have served, and still serve as a basis for other classification network, and also segmentation, localization e.t.c.
- \cdot Interesting to see how others has been creative in this field
- $\cdot\,$ We can learn from previous mistakes, and successes

- · Recognise different network architectures
- · For each architecture:
 - · How does it work?
 - · What ideas are introduced?
 - Why is it successful?
 - · What can we learn from it?
- $\cdot\,$ How to apply the ideas

Paper Gradient Based Learning Applied to Document Recognition
Authors Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner
Year 1998
Citations 11135
Link to pdf

- $\cdot\,$ Very influential, and successful in its time
- · First "modern" cnn
- \cdot We start to see tendencies of the familiar cnn composition, but it is not the first cnn
- $\cdot\,$ The paper discusses a lot of central aspects
- · Also uses a lot of deprecated techniques:
 - · Originally uses a *stochastic diagonal Levenberg-Marquardt* optimization routine
 - $\cdot\,$ Originally uses distance from an "ideal" set of ASCII characters as loss
 - $\cdot\,$ The "idea" of the method holds with SGD and softmax
 - $\cdot\,$ Originally a complicated scheme of which filters to apply on which feature maps
 - $\cdot\,$ Also uses non-linearity after pooling

 \cdot Convolution nodes uses a scaled anh non-linearity

$$g(z) = A \tanh(Sz) \tag{1}$$

- \cdot Sets A=1.7259, and S=2/3
- · This makes g(-1) = -1 and g(1) = 1, which is chosen for convenience

- $\cdot \ 32 \times 32 \times 1$
- \cdot Used for character recognition
- Normalized to zero mean and unit variance

- $\cdot \,$ Input shape: $32 \times 32 \times 1$
- $\cdot \,\, 6$ convolutions with kernel shape $5 \times 5 \times 1,$ no padding
- $\cdot 5 \cdot 5 \cdot 6 + 1 \cdot 6 = 156$ trainable parameters
- $\cdot \,$ Output shape: $28 \times 28 \times 6$

LENET — FIRST SUBSAMPLE (POOLING) LAYER

- $\cdot \,$ Input shape: $28 \times 28 \times 6$
- $\cdot \,$ Window shape: 2×2 with stride 2
- $\cdot \;$ Output shape: $14 \times 14 \times 6$
- \cdot Activation for a unit:

 $a = g\left(\frac{x_1 + x_2 + x_3 + x_4}{w} + b\right)$

- $\cdot w$ and b is shared by all units in a feature map
- $\cdot w$ and b are trainable, resulting in $6 \cdot (1+1) = 12$ parameters
- $\cdot\,$ Very similar to an average pool layer

LENET — SECOND CONVOLUTIONAL LAYER

- \cdot Input shape: $14\times14\times6$
- $\cdot \,$ 16 convolutions with shape $5 \times 5 \times 6$, no padding
- $\cdot \,$ Output shape: $10 \times 10 \times 16$
- \cdot In total

 $25 \cdot (6 \cdot 3 + 6 \cdot 4 + 3 \cdot 4 + 6) + 16 = 1516$ trainable parameters

LENET — SECOND SUBSAMPLE (POOLING) LAYER

- $\cdot\,$ Input shape: $10\times10\times16$
- $\cdot\,$ Window shape: 2×2 with stride 2
- $\cdot \,$ Output shape: $5 \times 5 \times 16$
- Activation for a unit: $a = g\left(\frac{x_1 + x_2 + x_3 + x_4}{w} + b\right)$
- $\cdot w$ and b is shared by all units in a feature map
- $\cdot w$ and b are trainable, resulting in $16 \cdot (1+1) = 32$ parameters

LENET — THIRD CONVOLUTIONAL LAYER

- $\cdot \,$ Input shape: $5 \times 5 \times 16$
- $\cdot \,$ 120 convolutions with shape 5 \times 5 \times 16, no padding
- $\cdot \,$ Output shape: $1 \times 1 \times 120$
- \cdot In total $5 \cdot 5 \cdot 16 \cdot 120 + 1 \cdot 120 = 48120$ trainable parameters

LENET — FULLY CONNECTED LAYER

- $\cdot\,$ Input nodes: 120
- · Output nodes: 84
- \cdot In total $120 \cdot 84 + 84 = 10164$ parameters

LENET — FULLY CONNECTED OUTPUT LAYER

- · Input nodes: 84
- Output nodes: 10 (number of classes in MNIST)
- \cdot In total $84 \cdot 10 + 10 = 850$ parameters

- \cdot Alternates between convolution and pooling layers, finishing with dense layers
- · Propagating through the network:
 - · Number of channels (feature maps) increase
 - \cdot Feature map dimensions reduce
- Number of trainable parameters: 60 850

Paper ImageNet Classification with Deep Convolutional Neural Networks
Authors Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton
Year 2012
Citations 20 340
Link to pdf

- \cdot At the time superior performance on the ImageNet challenge
- · Kick-started the machine-learning renaissance
- $\cdot\,$ Hinted at the importance of depth
- · Successful use of dropout and ReLU
- $\cdot\,$ Very efficient convolution implementation
- · Distributed the network over 2 GPU's

- $\cdot~$ For a volume of feature maps, with shape $H\times W\times C$
- · Activation a_{ijk} at location (i, j) in feature map k is being normalized
- · Normalizes w.r.t. neighbouring activations across depth, not w.r.t. spatial neighbours
- \cdot Let b_{ijk} be the result, then local response normalization is

$$b_{ijk} = a_{ijk} \left(\kappa + \alpha \sum_{l=\max\{0,k-n/2\}}^{\min\{N-1,k+n/2\}} a_{ijl}^2 \right)^{-\beta}$$

- \cdot N: Number of feature maps in the layer
- \cdot *n*: Number of neighbouring nodes to include
- $\cdot \ \kappa, \alpha, \beta$, hyperparameters

- \cdot Input shape: $227\times227\times3$
- $\cdot \,$ On each gpu: $48 \; 11 \times 11 \times 3$ convolutions with stride 4
- · Response normalization
- $\cdot \ 3 imes 3$ max pool with stride 2
- $\cdot \,$ Output shape: $27 \times 27 \times 48$ on each gpu

ARCHITECTURE — SECOND CONVOLUTION

- $\cdot\,$ Input shape: $27\times27\times48$
- \cdot On each gpu: 128 5 \times 5 \times 256 convolutions
- Notice the communication between gpus
- · Response normalization
- $\cdot \ 3 \times 3$ max pool with stride 2
- $\cdot \,$ Output shape: $13 \times 13 \times 128$ on each gpu

ARCHITECTURE - LAST CONVOLUTION LAYERS

- \cdot On each gpu:
 - $\cdot~$ Input shape: $13\times13\times128$
 - · Conv3: 192 3 \times 3 \times 128 convolutions
 - · Conv4: 192 3 \times 3 \times 192 convolutions
 - · Conv5: 128 3 imes 3 imes 192 convolutions
- \cdot 3 imes 3 max pool with stride 2
- $\cdot \,$ Output shape: $6 \times 6 \times 128$ on each gpu

- \cdot On each gpu:
 - \cdot Input shape: $6\times6\times128$
 - · Dense1: $9216(=2 \cdot 6 \cdot 6 \cdot 128) \rightarrow 4096$
 - \cdot Dense2: $2048 \rightarrow 4096$
 - \cdot Dense3: 2048 $\rightarrow 1000$
- $\cdot\,$ Notice communication between gpus
- Final output (1000) is the number of classes

- $\cdot\,$ Alternating convolution and pooling, finalizing with dense layers
- $\cdot\,$ Reducing spatial dimension, and increasing number of feature maps
- Uses ReLU
- $\cdot\,$ Uses data augmentation, weight decay, and dropout
- \cdot Very many parameters compared to LeNet, about 60 million

Paper Very Deep Convolutional Networks for Large-Scale Image Recognition
Authors Karen Simonyan, and Andrew Zisserman
Year 2014
Citations 9428
Link to pdf

- $\cdot\,$ Simple and elegant design
- $\cdot\,$ Further investigates the importance of deep nets
- $\cdot\,$ Very good performance on ImageNet
- · Very large

VGG16 — SECOND DOWNSAMPLING

VGG16 — THIRD DOWNSAMPLING

VGG16 — FOURTH DOWNSAMPLING

VGG16 — OUTPUT LAYERS

SUMMARY

ConvNet Configuration								
A	A-LRN	В	С	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
	maxpool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
	maxpool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max	pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	maxpool							
FC-4096								
FC-4096								
	FC-1000							
soft-max								

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

INCEPTION / GOOGLENET

Paper Going deeper with convolutions

Authors Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich

Year 2014

Citations 6282

Link to pdf

- · Impressive ImageNet result
- · Complex structure with few parameters (anti-thesis of VGG networks)
- · 12 times fewer parameters than AlexNet

INCEPTION MODULE - MOTIVATION AND IDEA

- \cdot Deeper models seem to be key
- · Deeper models means more parameters
 - · More prone to overfitting
 - · Computationally more expensive
- · If weights are close to zero, this is wasted
- Tries to create a sparse structure using dense components

- Utilize local correlations on multiple scales
- Common operations
 - $\cdot \ 1 \times 1$ Convolution
 - $\cdot \ 3 imes 3$ Convolution
 - $\cdot \ 5 \times 5$ Convolution
 - Max pooling
- $\cdot\,$ Use all of them

COMPUTATIONAL COST IN CONVOLUTIONS

- $\cdot 3 \times 3$ and 5×5 convolutions are expensive on all input channels
- $\cdot \,$ Solution: Do $C^b_c \, 1 \times 1 \times C^i$ convolutions first
- $\cdot \,$ This creates a bottleneck layer with shape $H \times W \times C^b_c$
- $\cdot \;$ Then take $C_c^o \; 5 \times 5 \times C_c^b$ convolutions, where $C_c^b < C_c^i$

· Computational savings

$$n_{ops}^{naive} = (H \cdot W \cdot C_c^o) \cdot (5 \times 5 \times C^i)$$

$$\begin{split} n_{ops}^{improved} &= (H \cdot W \cdot C_c^o) \cdot (1 \times 1 \times C^i) + (H \cdot W \cdot C_c^o) \\ \frac{n_{ops}^{naive}}{n_{ops}^{improved}} &= \frac{C^i \cdot C_c^o \cdot 5 \cdot 5}{C_c^b (C^i + 5 \cdot 5 \cdot C_c^o)} \end{split}$$

· With
$$C^i = 192$$
, $C^b_c = 16$, $C^o_c = 32$

$$\frac{n_{ops}^{naive}}{n_{ops}^{improved}} = 9.68$$

- $\cdot\,$ Maxpool with window size 3×3 and stride 1
- \cdot Yields as many output channels C^i as input channels
- $\cdot\,$ Solve this by adding $C^o_m\; 1\times 1\times C^i$ convolutions

INCEPTION MODULE — FINAL VERSION

- The inception module controls the number of feature maps
- $\cdot\,$ Can stack multiple inception modules
- Put max-pool layers in between occasionally

GOOGLENET — INCEPTION MODULES

46

GOOGLENET — OUTPUT

- · Backpropagation throught deep network
- · Can suffer from "vanishing gradients"
- · Potential solution:
 - · Intermediate layers can be used discriminatively
 - · Add classifiers to intermediate layers
 - $\cdot\,$ Total loss is then a combination of multiple losses

GOOGLENET — INTERMEDIATE CLASSIFIERS

GOOGLENET — FINAL ARCHITECTURE

Paper Deep Residual Learning for Image Recognition
Authors Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Year 2015
Citations 6598
Link to pdf

- · "Solved" ImageNet
- · Elegant solution to a concrete problem

PROBLEM

- · Deeper models seems to be better
- · However, very deep models perform worse
- · Not due to overtraining
- · Degradation problem

- \cdot A deeper model should not have higher training error
- \cdot "Proof" by construction
 - $\cdot\,$ Take a shallow model
 - · Insert extra layers as identity mappings
 - $\cdot\,$ This deeper mode should have at least as good training error
- $\cdot\,$ How to solve this is the key

- · Stack a couple of layers
- \cdot Input x
- $\cdot \, \operatorname{Let} H(x)$ be the desired mapping to be learned

- $\cdot \,$ Explicitly compose the output as H(x) = F(x) + x , by adding the input x
- $\cdot\,$ This means that what has been learnt is the residual F(x)=H(x)-x
- · This should make identities H(x) = xeasier to learn
- · Easier to train very deep networks

Figure 1: Left: a regular residual block. Right: a "bottleneck" residual block

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\left[\begin{array}{c} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{array}\right] \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}			

- · Traditional model
 - $\cdot\,$ Layer 3 would benefit from a result in layer 1
 - · Layer 2 overrides/destroy this result
 - $\cdot\,$ Layer 3 cannot make use of it, does not adapt to do it either
 - Layer 2 do not adapt so that layer 3 gets to use it, since it does not know that layer 3 needs it
- \cdot In resnets, layers compute the identity mapping easily
- · Information can "skip" layers
- $\cdot\,$ Layers "only" contribute when they are beneficial

Paper: Highway and Residual Networks learn Unrolled Iterative Estimation

- · Traditional view:
 - · Hierarchical data
 - $\cdot\,$ Models generate increasingly abstract representations
 - $\cdot\,$ Deep models are successful because of their deep representations
- · Studies challenges this in resnets:
 - $\cdot\,$ Removing blocks has surprisingly little effect
 - $\cdot\,$ Shuffling blocks has surprisingly little effect
- Instead, blocks (with the same dimensionality "stage") "collaborate" on refining initial representations

Paper: Residual Networks Behave Like Ensembles of Relatively Shallow Networks

- \cdot Residual networks behave like ensambles of shallow networks
- \cdot Based on some of the same observations as the previous slide

- \cdot It is easier to reuse features in higher layers
 - Deep Networks with Stochastic Depth
 - Highway Networks
- · Better gradients, easier optimization
 - \cdot The Shattered Gradients Problem: If resnets are the answer, then what is the question?

PRELUDE

Figure 2: Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A., Paszke, A., Culurciello, E., 2016

IMAGENET ACCURACY AND SIZE

Figure 3: Size and accuracy comparison. Blob size reflects the number of parameters. Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A., Paszke, A., Culurciello, E., 2016

FINAL THOUGHTS

- As with everything: choose the tool best suited for your problem
- ImageNet top accuracy is not necessarily your ideal metric
- Some things (non-exhaustive) to take into account, in addition to accuracy
 - \cdot Training time
 - \cdot Inference time
 - \cdot Power consumption
 - · Memory consumption
 - · Processing power consumption
 - $\cdot\,$ Amount of training data
- Hard constraints on the above have shaped current models

Figure 4: Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A., Paszke, A., Culurciello, E., 2016

QUESTIONS?