
architectures for convolutional neural networks
INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede
14.03.2018

University of Oslo



outline

∙ Introduction and motivation
∙ LeNet
∙ AlexNet
∙ VGG
∙ Inception / GoogLeNet
∙ ResNet
∙ Recent examples

1



introduction and motivation



why is this important

∙ Important to know the history for reference
∙ The chosen architectures are amongst the most cited works in machine learning
∙ Many works refer to these architectures
∙ They have served, and still serve as a basis for other classification network, and also
segmentation, localization e.t.c.

∙ Interesting to see how others has been creative in this field
∙ We can learn from previous mistakes, and successes

3



learning outcome

∙ Recognise different network architectures
∙ For each architecture:

∙ How does it work?
∙ What ideas are introduced?
∙ Why is it successful?
∙ What can we learn from it?

∙ How to apply the ideas

4



lenet



short introduction

Paper Gradient Based Learning Applied to Document Recognition
Authors Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

Year 1998
Citations 11 135
Link to pdf

6

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


initial notes

∙ Very influential, and successful in its time
∙ First “modern” cnn
∙ We start to see tendencies of the familiar cnn composition, but it is not the first cnn
∙ The paper discusses a lot of central aspects
∙ Also uses a lot of deprecated techniques:

∙ Originally uses a stochastic diagonal Levenberg-Marquardt optimization routine
∙ Originally uses distance from an “ideal” set of ASCII characters as loss
∙ The “idea” of the method holds with SGD and softmax
∙ Originally a complicated scheme of which filters to apply on which feature maps
∙ Also uses non-linearity after pooling

7



activation functions

∙ Convolution nodes uses a scaled tanh non-linearity

g(z) = A tanh(Sz) (1)

∙ Sets A = 1.7259, and S = 2/3

∙ This makes g(−1) = −1 and g(1) = 1, which is chosen for convenience

8



lenet — input

∙ 32× 32× 1

∙ Used for character recognition
∙ Normalized to zero mean and unit
variance

9



lenet — first convolutional layer

∙ Input shape: 32× 32× 1

∙ 6 convolutions with kernel shape
5× 5× 1, no padding

∙ 5 · 5 · 6+1 · 6 = 156 trainable parameters
∙ Output shape: 28× 28× 6

10



lenet — first subsample (pooling) layer

∙ Input shape: 28× 28× 6

∙ Window shape: 2× 2 with stride 2

∙ Output shape: 14× 14× 6

∙ Activation for a unit:
a = g

(
x1+x2+x3+x4

w + b
)

∙ w and b is shared by all units in a
feature map

∙ w and b are trainable, resulting in
6 · (1 + 1) = 12 parameters

∙ Very similar to an average pool layer

11



lenet — second convolutional layer

∙ Input shape: 14× 14× 6

∙ 16 convolutions with shape 5× 5× 6, no
padding

∙ Output shape: 10× 10× 16

∙ In total
25 · (6 · 3 + 6 · 4 + 3 · 4 + 6) + 16 = 1516

trainable parameters

12



lenet — second subsample (pooling) layer

∙ Input shape: 10× 10× 16

∙ Window shape: 2× 2 with stride 2

∙ Output shape: 5× 5× 16

∙ Activation for a unit:
a = g

(
x1+x2+x3+x4

w + b
)

∙ w and b is shared by all units in a
feature map

∙ w and b are trainable, resulting in
16 · (1 + 1) = 32 parameters

13



lenet — third convolutional layer

∙ Input shape: 5× 5× 16

∙ 120 convolutions with shape 5× 5× 16,
no padding

∙ Output shape: 1× 1× 120

∙ In total 5 · 5 · 16 · 120 + 1 · 120 = 48120

trainable parameters

14



lenet — fully connected layer

∙ Input nodes: 120
∙ Output nodes: 84
∙ In total 120 · 84+ 84 = 10164 parameters

15



lenet — fully connected output layer

∙ Input nodes: 84
∙ Output nodes: 10 (number of classes in
MNIST)

∙ In total 84 · 10 + 10 = 850 parameters

16



architecture — summary

∙ Alternates between convolution and pooling layers, finishing with dense layers
∙ Propagating through the network:

∙ Number of channels (feature maps) increase
∙ Feature map dimensions reduce

∙ Number of trainable parameters: 60 850

17



alexnet



short introduction

Paper ImageNet Classification with Deep Convolutional Neural Networks
Authors Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton

Year 2012
Citations 20 340
Link to pdf

19

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


initial notes

∙ At the time superior performance on the ImageNet challenge
∙ Kick-started the machine-learning renaissance
∙ Hinted at the importance of depth
∙ Successful use of dropout and ReLU
∙ Very efficient convolution implementation
∙ Distributed the network over 2 GPU’s

20



response normalization

∙ For a volume of feature maps, with shape H ×W × C

∙ Activation aijk at location (i, j) in feature map k is being normalized
∙ Normalizes w.r.t. neighbouring activations across depth, not w.r.t. spatial neighbours
∙ Let bijk be the result, then local response normalization is

bijk = aijk

κ+ α

min{N−1,k+n/2}∑
l=max{0,k−n/2}

a2ijl

−β

∙ N : Number of feature maps in the layer
∙ n: Number of neighbouring nodes to include
∙ κ, α, β, hyperparameters

21



architecture — first convolution

∙ Input shape: 227× 227× 3

∙ On each gpu: 48 11× 11× 3

convolutions with stride 4

∙ Response normalization
∙ 3× 3 max pool with stride 2

∙ Output shape: 27× 27× 48 on each gpu

22



architecture — second convolution

∙ Input shape: 27× 27× 48

∙ On each gpu: 128 5× 5× 256

convolutions
∙ Notice the communication between
gpus

∙ Response normalization
∙ 3× 3 max pool with stride 2

∙ Output shape: 13× 13× 128 on each
gpu

23



architecture — last convolution layers

∙ On each gpu:
∙ Input shape: 13× 13× 128

∙ Conv3: 192 3× 3× 128 convolutions
∙ Conv4: 192 3× 3× 192 convolutions
∙ Conv5: 128 3× 3× 192 convolutions

∙ 3× 3 max pool with stride 2

∙ Output shape: 6× 6× 128 on each gpu

24



architecture — dense output layers

∙ On each gpu:
∙ Input shape: 6× 6× 128

∙ Dense1: 9216(= 2 · 6 · 6 · 128) → 4096

∙ Dense2: 2048 → 4096

∙ Dense3: 2048 → 1000

∙ Notice communication between gpus
∙ Final output (1000) is the number of
classes

25



summary

∙ Alternating convolution and pooling, finalizing with dense layers
∙ Reducing spatial dimension, and increasing number of feature maps
∙ Uses ReLU
∙ Uses data augmentation, weight decay, and dropout
∙ Very many parameters compared to LeNet, about 60 million

26



vgg



short introduction

Paper Very Deep Convolutional Networks for Large-Scale Image Recognition
Authors Karen Simonyan, and Andrew Zisserman

Year 2014
Citations 9428
Link to pdf

28

https://arxiv.org/pdf/1409.1556.pdf


initial notes

∙ Simple and elegant design
∙ Further investigates the importance of deep nets
∙ Very good performance on ImageNet
∙ Very large

29



vgg16 — first convolution

30



vgg16 — first downsampling

31



vgg16 — second downsampling

32



vgg16 — third downsampling

33



vgg16 — fourth downsampling

34



vgg16 — output layers

35



summary

36



inception / googlenet



short introduction

Paper Going deeper with convolutions
Authors Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich

Year 2014
Citations 6282
Link to pdf

38

https://arxiv.org/pdf/1409.4842.pdf


initial notes

∙ Impressive ImageNet result
∙ Complex structure with few parameters (anti-thesis of VGG networks)
∙ 12 times fewer parameters than AlexNet

39



inception module — motivation and idea

∙ Deeper models seem to be key
∙ Deeper models means more parameters

∙ More prone to overfitting
∙ Computationally more expensive

∙ If weights are close to zero, this is wasted
∙ Tries to create a sparse structure using dense
components

∙ Utilize local correlations on
multiple scales

∙ Common operations
∙ 1× 1 Convolution
∙ 3× 3 Convolution
∙ 5× 5 Convolution
∙ Max pooling

∙ Use all of them

40



computational cost in convolutions

∙ 3× 3 and 5× 5 convolutions are
expensive on all input channels

∙ Solution: Do Cb
c 1× 1× Ci convolutions

first
∙ This creates a bottleneck layer with
shape H ×W × Cb

c

∙ Then take Co
c 5× 5× Cb

c convolutions,
where Cb

c < Ci
c

∙ Computational savings

nnaive
ops = (H ·W · Co

c ) · (5× 5× Ci)

nimproved
ops = (H·W ·Co

c )·(1×1×Ci)+(H·W ·Co
c )·(5×5×Cb

c)

nnaive
ops

nimproved
ops

=
Ci · Co

c · 5 · 5
Cb

c(C
i + 5 · 5 · Co

c )

∙ With Ci = 192, Cb
c = 16, Co

c = 32

nnaive
ops

nimproved
ops

= 9.68

41



inception module — maxpool detail

∙ Maxpool with window size 3× 3 and stride 1

∙ Yields as many output channels Ci as input channels
∙ Solve this by adding Co

m 1× 1× Ci convolutions

42



inception module — final version

43



googlenet — stacking inception modules

∙ The inception module controls the
number of feature maps

∙ Can stack multiple inception modules
∙ Put max-pool layers in between
occasionally

44



googlenet — input

45



googlenet — inception modules

46



googlenet — output

47



googlenet — vanishing gradients

∙ Backpropagation throught deep network
∙ Can suffer from “vanishing gradients”
∙ Potential solution:

∙ Intermediate layers can be used discriminatively
∙ Add classifiers to intermediate layers
∙ Total loss is then a combination of multiple losses

48



googlenet — intermediate classifiers

49



googlenet — final architecture

50



resnet



short introduction

Paper Deep Residual Learning for Image Recognition
Authors Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

Year 2015
Citations 6598
Link to pdf

52

https://arxiv.org/pdf/1512.03385.pdf


initial notes

∙ “Solved” ImageNet
∙ Elegant solution to a concrete problem

53



problem

∙ Deeper models seems to be better
∙ However, very deep models perform worse
∙ Not due to overtraining
∙ Degradation problem

54



deep models should be at least as good as shallow

∙ A deeper model should not have higher training error
∙ “Proof” by construction

∙ Take a shallow model
∙ Insert extra layers as identity mappings
∙ This deeper mode should have at least as good training error

∙ How to solve this is the key

55



residual learning

∙ Stack a couple of layers
∙ Input x
∙ Let H(x) be the desired mapping to be
learned

∙ Explicitly compose the output as
H(x) = F (x) + x, by adding the input x

∙ This means that what has been learnt is
the residual F (x) = H(x)− x

∙ This should make identities H(x) = x

easier to learn
∙ Easier to train very deep networks

56



residual blocks

Figure 1: Left: a regular residual block. Right: a “bottleneck” residual block

57



base architecture

58



architecture variants

59



why are residual networks effective? — identity mappings

∙ Traditional model
∙ Layer 3 would benefit from a result in layer 1
∙ Layer 2 overrides/destroy this result
∙ Layer 3 cannot make use of it, does not adapt to do it either
∙ Layer 2 do not adapt so that layer 3 gets to use it, since it does not know that layer 3
needs it

∙ In resnets, layers compute the identity mapping easily
∙ Information can “skip” layers
∙ Layers “only” contribute when they are beneficial

60



why are residual networks effective? — unrolled iterative estimation

Paper: Highway and Residual Networks learn Unrolled Iterative Estimation

∙ Traditional view:
∙ Hierarchical data
∙ Models generate increasingly abstract representations
∙ Deep models are successful because of their deep representations

∙ Studies challenges this in resnets:
∙ Removing blocks has surprisingly little effect
∙ Shuffling blocks has surprisingly little effect

∙ Instead, blocks (with the same dimensionality “stage”) “collaborate” on refining
initial representations

61

https://arxiv.org/pdf/1612.07771.pdf


why are residual networks effective? — ensamble learning

Paper: Residual Networks Behave Like Ensembles of Relatively Shallow Networks

∙ Residual networks behave like ensambles of shallow networks
∙ Based on some of the same observations as the previous slide

62

https://arxiv.org/pdf/1605.06431.pdf


why are residual networks effective — additional ideas

∙ It is easier to reuse features in higher layers
∙ Deep Networks with Stochastic Depth
∙ Highway Networks

∙ Better gradients, easier optimization
∙ The Shattered Gradients Problem: If resnets are the answer, then what is the question?

63

https://arxiv.org/pdf/1603.09382.pdf
https://arxiv.org/pdf/1505.00387.pdf
https://arxiv.org/pdf/1702.08591.pdf


prelude



revolution of depth

Figure 2: Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A., Paszke, A., Culurciello, E., 2016

65



imagenet accuracy and size

Figure 3: Size and accuracy comparison. Blob size reflects the number of parameters. Source: An analysis of Deep Neural Network Models for Practical Applications. Canziani, A.,
Paszke, A., Culurciello, E., 2016

66



final thoughts

∙ As with everything: choose the tool best
suited for your problem

∙ ImageNet top accuracy is not
necessarily your ideal metric

∙ Some things (non-exhaustive) to take
into account, in addition to accuracy

∙ Training time
∙ Inference time
∙ Power consumption
∙ Memory consumption
∙ Processing power consumption
∙ Amount of training data

∙ Hard constraints on the above have
shaped current models

Figure 4: Source: An analysis of Deep Neural Network Models for Practical Applications.
Canziani, A., Paszke, A., Culurciello, E., 2016

67



Questions?

68


	Introduction and motivation
	LeNet
	AlexNet
	VGG
	Inception / GoogLeNet
	ResNet
	Prelude

