UNSUPERVISED LEARNING

INF5860 - Machine Learning for Image Analysis

Ole-Johan Skrede
18.04.2018

University of Oslo

Messages

Mandatory exercise 3 is hopefully out next week.

- No lecture next week.
- But there will be group sessions.
- Introduction and motivation
- Repetition / background
- K nearest neighbours, k-means clustering
- Principal component analysis
- Independent component analysis
- t-SNE

Autoencoders, variational autoencoders

INTRODUCTION AND MOTIVATION

- Given a training set with pairs of inputs x and corresponding desired outputs y

$$
\Omega_{\text {train }}=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}
$$

- Create a function f that "approximates" this mapping

$$
f(x) \approx y, \quad \forall(x, y) \in \Omega_{\text {train }}
$$

Hope that this generalises well to unseen examples, such that

$$
f(x)=\hat{y} \approx y, \quad \forall(x, y) \in \Omega_{\mathrm{test}}
$$

where $\Omega_{\text {test }}$ is a set of relevant unseen examples.

- Hope that this is also true for all unseen relevant examples.
- In contrast with supervised learning, we have no labeled data points in unsupervised learning.
- Since there is no "ground truth", there is no accuracy evaluation in the supervised sense.
- Applications
- Data clustering
- Anomaly detection
- Signal generation
- Signal compression

SEMI-SUPERVISED LEARNING

- We have some labeled data
- Usually a majority of unlabeled data
- Can be thought of as supervised learning extended to utilise unlabeled data
- Will not be covered today

METHODS

What we will cover today

- K-means clustering (background)
- Principal component analysis (PCA) (background)
- t-SNE
- Autoencoders
- Variational autoencoders

What we will not cover today

- Independent component analysis (ICA)
- Matrix factorization and decomposition
- Expectation-maximization (EM) algorithm
- Generative-adverserial networks (GAN) (next lecture)

CLUSTERING CLUSTERING
—— \square
 G
 10

\square
--

 O T \square \square T
\square
\square

0 (\square
\qquad
\qquad
\qquad
\qquad
\qquad $>$ T =
\qquad ,
\square
\square
\square
 \square T

\qquad
\qquad

4anemen

DATA CLUSTERING

- Grouping together data based on some similarity metric
- Data points within the same group (cluster) will be more similar to each other than to data points outside the group
- Many different versions of clustering

CONNECTIVITY-BASED CLUSTERING

- Also called hierarchical clustering
- See figures for example with the L_{2} distance metric
- Different level thresholds yields different clusters

Figure 2: Bottom up (agglomerative) hierarchy of clusters

GRAPH CLUSTERING - CLIQUES

- A clique is a set of nodes

- A node in a clique shares an edge with all other nodes in the clique
- Can have cliques of different sizes
- Useful in applications such as random fields

Figure 3: Undirected graph

Figure 4: Top: Cliques with 2 members. Bottom: Cliques with 3 members. Nodes with multiple colors belong to more than one clique.

Centroid-based clustering

Clusters are represented by a central vector
Example: K-means clustering

K-MEANS CLUSTERING

- Conseptually simple clustering algorithm
- We want to partition a set of data $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ into k clusters.
- $x^{(i)} \in \mathbb{R}^{n}, i=1, \ldots, m$
- With some distance norm $\|\cdot\|$ the procedure is

1. Initialize at random k cluster centroids (or means) $\mu_{j} \in \mathbb{R}^{n}, j=1, \ldots, k$
2. Repeat until convergence
2.1 For every example $x^{(i)}, i=1, \ldots, m$, let

$$
c^{(i)}=\arg \min _{j}\left\|x^{(i)}-\mu_{j}\right\| .
$$

2.2 For every centroid $\mu_{j}, j=1, \ldots, k$, set

$$
\mu_{j}=\frac{\sum_{i=1}^{m} I\left[c^{(i)}=j\right] x^{(i)}}{\sum_{i=1}^{m} I\left[c^{(i)}=j\right]}
$$

where the Iverson bracket is defined as

$$
I[a=b]=\left\{\begin{array}{lll}
1, & \text { if } & a=b \\
0, & \text { if } & a \neq b
\end{array}\right.
$$

K-MEANS CLUSTERING - PROPERTIES

- Minimizes the objective function

$$
J(c, \mu)=\sum_{i=1}^{m}\left\|x^{(i)}-\mu_{c^{(i)}}\right\|
$$

- Not guaranteed to find a global minimum
- Common to run the algorighm several times with different initializations, and then pick the run with the smallest value of J
- The k-means clustering algorithm partitions the feature space into Voronoi cells

K-MEANS CLUSTERING — EXAMPLE

Figure 5: A: Initialize centroids. B: Assign points to clusters. C: Move centroids. D, E, F: Assign points to clusters and move centroids. No change after F (convergence).

PCA $\underbrace{P_{C A}}_{-}$

Principal Component Analysis (PCA)

Reducing the dimensionality of a dataset of correlated variables

- Retaining as much as possible of the variance present in the dataset

- Let $X \in \mathrm{R}^{n_{d}}$ be a random vector
- We are looking for a set of uncorrelated variables Y_{k} which we will call the principal components of X
- The first component, Y_{1}, will account for most of the variance in X
- The second component, Y_{2}, will account for most of the variance in X, conditionied on being uncorrelated with Y_{1}
- The third component, Y_{3}, will account for most of the variance in X, conditioned on being uncorrelated with both Y_{1} and Y_{2}
- We continue untill we have $n_{p} \ll n_{d}$ principal components that account for most of the variance in X
- Let $Y_{1} \in \mathbb{R}$ be some linear combination of the elements in X

$$
Y_{1}=\sum_{i=1}^{N_{d}} a_{1 i} X_{i}=a_{1}^{\top} X
$$

- This random variable has variance

$$
\operatorname{Var}\left[Y_{1}\right]=\operatorname{Var}\left[a_{1}^{\top} X\right]=a_{1}^{\top} \Sigma a_{1} .
$$

- Here, Σ is the covariance matrix of X with elements

$$
\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- We want to maximize the variance of Y_{1}
- In order to achieve finite solutions, we constrain the optimization on

$$
a_{1}^{\top} a_{1}=1
$$

- It turns out that, for $k=1, \ldots, n_{p}, a_{k}$ well be an eigenvector of Σ corresponding to the k th largest eigenvalue λ_{k}

For a dataset with n_{s} samples $\left\{x_{i 1}, \ldots, x_{i n_{s}}\right\}$ for all features $i=1, \ldots, n_{d}$, the elements in the covariance matrix can be estimated as

$$
\hat{\Sigma}_{i j}=\frac{1}{n_{s}-1} \sum_{q=1}^{n_{s}}\left(x_{i q}-\hat{\mu}_{i}\right)\left(x_{j q}-\hat{\mu}_{j}\right),
$$

Here $\hat{\mu}_{i}$ is the sample mean of the i th feature

$$
\hat{\mu}_{i}=\frac{1}{n_{s}} \sum_{q=1}^{n_{s}} x_{i q}
$$

- Arranginging the feature samples and sample means into vectors of size n_{d}

$$
\begin{aligned}
x_{q} & =\left[x_{1 q}, \ldots, x_{n_{d} q}\right]^{\top} \\
\hat{\mu} & =\left[\hat{\mu}_{1}, \ldots, \hat{\mu}_{n_{d}}\right]^{\top}
\end{aligned}
$$

- With this, the estimate of the covariance matrix can be written as

$$
\hat{\Sigma}=\frac{1}{n_{s}-1} \sum_{q=1}^{n_{s}}\left(x_{q}-\hat{\mu}\right)\left(x_{q}-\hat{\mu}\right)^{\top} .
$$

- We use the technique of Lagrangian multipliers to incorporate the unit length constraint
This means that we are going to maximize the expression

$$
J\left(a_{1}\right)=a_{1}^{\top} \Sigma a_{1}-\lambda\left(a_{1}^{\top} a_{1}-1\right) .
$$

Computing the gradient of J w.r.t. a_{1}, and setting it equal to zero, yields

$$
\Sigma a_{1}-\lambda a_{1}=0
$$

or

$$
(\Sigma-\lambda I) a_{1}=0,
$$

where I is the $n_{d} \times n_{d}$ identity matrix.

- From our last expression

$$
(\Sigma-\lambda I) a_{1}=0,
$$

we see that λ is an eigenvalue of Σ, and a_{1} is the corresponding eigenvector.

- Furthermore, λ is the largest eigenvalue

This is because maximizing the variance subject to the constraint of unit length coefficients is equivalent to choosing the largest eigenvalue

$$
\begin{aligned}
a_{1}^{\top} \Sigma a_{1} & =a_{1}^{\top} \lambda a_{1} \\
& =\lambda a_{1}^{\top} a_{1} \\
& =\lambda
\end{aligned}
$$

- In general, the k th principal component of X is

$$
a_{k}^{\top} X
$$

where a_{k} is the eigenvector of the covariance matrix Σ of X, corresponding to the k th largest eigenvalue λ_{k}

PCA - APPLICATIONS

- Dimensionality reduction
- Preprocessing in supervised learning: acts as a regularizer
- Noise reduction

(all 3 images have same L2 distance to the one on the left)

MNIST CLUSTERING WITH PCA

Explains about 26% of the variance. Not very suited.

T-SNE

Stochastic Neighbour Embedding (SNE)

- Introduced by Geoffrey Hinton and Sam Roweis in 2003
- PDF: http:
//papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf
A stochastic dimensionality reduction method
- Transforms high-dimensional $(h-d)$ data points to low-dimensional $(l-d)$ data ponts
- Aims to preserve neighbourhood identity between data points

Similar (close) $h-d$ points should also be similar (close) in the $l-d$ representation

- The high-dimensional points have some dimension h
- The low-dimensional points have some dimension $l \ll h$, which is determined manually
- For each point i, we are going to define two distributions:
- $p_{X_{i} \mid X_{j}}\left(x_{i} \mid x_{j}\right)$: The probability that x_{i} and x_{j} are "neighbours", given the location of x_{j}
- $q_{Y_{i} \mid Y_{j}}\left(y_{i} \mid y_{j}\right)$: The probability that y_{i} and y_{j} are "neighbours", given the location of y_{j}
- We will use the following shorthand

$$
\begin{aligned}
& \cdot p_{i \mid j}:=p_{j}\left(x_{i}\right):=p_{X_{i} \mid X_{j}}\left(x_{i} \mid x_{j}\right) \\
& \cdot q_{i \mid j}:=q_{j}\left(y_{i}\right):=p_{Y_{i} \mid Y_{j}}\left(y_{i} \mid y_{j}\right)
\end{aligned}
$$

- We are then going to define a similarity measure between these distributions
- The low-dimensional representations will be altered such as to minimize this distribution similarity

SNE - HIGH-DIMENSION NEIGHBOUR PROBABILITY

- Let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of points with h dimensions, $x_{i} \in \mathbb{R}^{h}, i=1, \ldots, n$
- These are the data points which we want to represent in a lower dimensional space
- We model the data point distribution as a asymmetric Gaussian

The scaling parameter σ_{j} can be set manually

- More often adjusted with a perplexity parameter
- Often found by a binary search such that the entropy of the distribution over its neighbours is equal to $\log k$
- k is a perplexity parameter that is set by hand
- See e.g. https://distill. pub/2016/misread-tsne/ how to interpret t-SNE results
- We want a larger σ in sparse areas
- We want a smaller σ in dense areas
- σ is often found by a binary search such that the entropy of the distribution over its neighbours is equal to $\log k$

$$
H\left(p_{j}\right)=-\sum_{i} p_{i \mid j} \log p_{i \mid j}
$$

- k is a perplexity parameter that is set by hand
- Perplexity can be interpreted as a measure of how many neighbours we want to influence a point
- Let $\mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ be a set of points with l dimensions, $x_{i} \in \mathbb{R}^{l}, i=1, \ldots, n$ - These are the lower-dimensional data points corresponding to X, so $u \gg v$
- We choose a Gaussian neighbourhood with fixed variance $\sigma^{2}=1 / 2$

$$
q_{i \mid j}=\frac{\exp \left\{-\left\|y_{i}-y_{j}\right\|^{2}\right\}}{\sum_{k \neq j} \exp \left\{-\left\|y_{k}-y_{j}\right\|^{2}\right\}}
$$

- The Kullback-Liebler divergence over a discrete random variable \mathcal{X}

$$
D_{K L}\left(p_{\mathcal{X}} \| q_{\mathcal{X}}\right)=\sum_{x} p_{\mathcal{X}}(x) \log \frac{p_{\mathcal{X}}(x)}{q_{\mathcal{X}}(x)}
$$

- Measures the distance between two probability distributions $p_{\mathcal{X}}$ and $q_{\mathcal{X}}$ over the same set of events, modeled with the random variable \mathcal{X}.
- Expectation of logarithmic difference between p and q when expectation is taken w.r.t. p.
- Measures the amount of information that is lost when using q to approximate p.
- It is non-negative
- Zero for $p=q$
- Increasing for "increasing difference" between p and q.

SNE - DISTRIBUTION SIMILARITY MEASURE

- We want to measure the similarity between p_{j} and q_{j}
- This is done by summing the KL-divergence between the original $\left(p_{j}\right)$ and the induced $\left(q_{j}\right)$ distributions over neighbours of each data point

$$
\begin{aligned}
C & =\sum_{j} \sum_{i} p_{i \mid j} \log \frac{p_{i \mid j}}{q_{i \mid j}} \\
& =\sum_{j} D_{K L}\left(p_{j} \| q_{j}\right)
\end{aligned}
$$

- Large cost of confusing a small distance in the high-dimensional space with a large distance in the low-dimensional space (small $p_{i \mid j}$ and large $q_{i \mid j}$)
- Larger cost of confusing a large distance in the high-dimensional space with a small distance in the low-dimensional space (large $p_{i \mid j}$ and small $q_{i \mid j}$)
- The cost can be minimized with stochastic gradient descent
- Emphazis of local objects
- Keeps nearby points in $h-d$ nearby in $l-d$
- Also keeps distant points in $h-d$ relatively far apart in $l-d$
- Drawback: Can be difficult to optimize
- Drawback: Tendency to crowd $l-d$ representations at the center of the map
- A variant of the SNE method
- Introduced by Laurens van der Maaten and Geoffrey Hinton
- PDF:
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
- An improvemet over SNE
- Much easier to optimize
- Significantly better visualization
- Two major differences between t-SNE and SNE
- Symmetric Gaussian point similarity distribution for the $h-d$ data points
- Student-t point similarity distribution for the $l-d$ map points
- Standard SNE (and other similar methods) suffer from what is known as the crowding problem
- Too many map points are placed near the center of the map
- Intuition of why:
- In h dimensions, the volume of a sphere centered at x scales as r^{h}, where r is the "radius" of the sphere
- In $l \ll h$ dimensions, the volume of a corresponding sphere will be much smaller
- Less room to place points while preserving natural cluster structure
- This causes a crowding of points that should have been modeled with a larger distance

This can be leviated by forcing moderately distant data points to be placed far apart

- Standard SNE used the asymmetric KL-divergence

$$
\begin{aligned}
C & =\sum_{j} \sum_{i} p_{i \mid j} \log \frac{p_{i \mid j}}{q_{i \mid j}} \\
& =\sum_{j} D_{K L}\left(p_{j} \| q_{j}\right)
\end{aligned}
$$

- This is assymmetric because $p_{i \mid j} \neq p_{j \mid i}$ and $q_{i \mid j} \neq q_{j \mid i}$
- Because of this, different types of errors in the pairwise distances in the map are weighted differently
- In particular
- The cost of representing distant data points as close map points is smaller than
- The cost of representing close data points as distant map points
- A symmetric cost could ease optimization, and leviate the crowding problem

SYMMETRIC DISTRIBUTION IN THE LOW-DIMENSIONAL SPACE

- In a symmetric SNE, we use a joint Gaussian to model the similarity between map points y_{i} and y_{j}

$$
q_{i j}=\frac{\exp \left\{-\left\|y_{i}-y_{j}\right\|^{2}\right\}}{\sum_{k \neq l} \exp \left\{-\left\|y_{k}-y_{l}\right\|^{2}\right\}}
$$

- Compare this with the conditional Gaussian we used in SNE

$$
q_{i \mid j}=\frac{\exp \left\{-\left\|y_{i}-y_{j}\right\|^{2}\right\}}{\sum_{k \neq j} \exp \left\{-\left\|y_{k}-y_{j}\right\|^{2}\right\}}
$$

- The difference is quite subtle and is present in the sum in the denominator
- In the asymmetric version, we sum over the difference between all points $y_{k}, k \neq j$ and the reference point y_{j}
- In the symmetric version, we sum over the difference between all unequal points y_{k} and y_{l}
- Note that this is not what is used in t-SNE, we will come back to that in two slides
- We could have used the same distribution for the data points x_{j}

$$
p_{i j}=\frac{\exp \left\{-\left\|x_{i}-x_{j}\right\|^{2}\right\}}{\sum_{k \neq l} \exp \left\{-\left\|x_{k}-x_{l}\right\|^{2}\right\}}
$$

- The problem is that for an outlier $x_{j},\left\|x_{i}-x_{j}\right\|$ will be very large (and $p_{i j}$ very small) for all points
- The placement of the corresponding map point y_{j} will have very little effect on the cost
- We can fix this by simply choosing

$$
p_{i j}=\frac{p_{i \mid j}+p_{j \mid i}}{2 n}
$$

where n is the number of data points

- With this, we ensure that $\sum_{j} p_{i j}<1 / 2 n$ for all data points x_{i}
- Hence, all points x_{i} are guaranteed to make significant contributions to the cost
- To mitigate the crowding problem, we want to give more weight to representing moderately distant data points as close map points
- The Student-t distribution with one degree of freedom is used

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

- Notice that it is symmetric $q_{i j}=q_{j i}$
- The Student-t distribution has a much heavier tail than the Gaussian distribution

AUTOENCODERS
?
-

(2

AUTOENCODERS - INTRODUCTION

- An autoencoder is a neural network which purpose is to discover interesting representations of data

The idea is to create identity mappings, that is, functions f such that $f(x) \approx x$ for some input x

- It is able to discover interesting representations by enforcing constraints on the network
- The method requires no labeled data, and is therefore unsupervised
- An autoencoder consist of an encoder g and an decoder h
- The encoder maps the input x to some representation z

$$
g(x)=z
$$

- We often call this representation z for the code

The decoder maps this representation z to some output \hat{x}

$$
g(x)=\hat{x}
$$

- We want to train the encoder and decoder such that

$$
\begin{aligned}
f(x) & =h(g(x)) \\
& =\hat{x}
\end{aligned}
$$

such that $\hat{x} \approx x$

AUTOENCODERS - VARIANTS

- Different network constraints leads to different representations z
- Reducing the dimensionality of the representation z
- If x has d_{x} dimensions and z has d_{z} dimensions, and $d_{x}>d_{z}$
- Most common way of constraining the network
- Sparse autoencoder
- z can actually have a greater dimension than x
- Only allowing a subset of the hidden units to fire at the same time
- Denoising autoencoder
- Distorting the input x with some random noise
- Leads to robust representations, resiliant to corrupted input

COMPRESSION AUTOENCODER — MNIST EXAMPLE

Encoder:

- Input -> first hidden layer: fully connected 784 -> 128, relu
- 1. hidden -> 2. hidden: fully connected, 128 -> 32, relu

Decoder:

- 2.hidden -> 3. hidden: fully connected 32 -> 128, relu
- 3. hidden -> output: fully connected, 128 -> 784, sigmoid
- Binary cross entropy
- Adam optimizer

Denoising autoencoder - MNIST example

Same setup as for the compression autoencoder. Zero mean gaussian noise with standard deviation 0.1 is added to the input. The input values are clipped to lay in $[0,1]$.

SPARSE AUTOENCODER

- We want to constrain the number of active nodes in the coding layer
- We can think of a node being active (or firing) if is
- close to 1 for the sigmoid tanh activation functions
- We can think of a node being inactive
- close to 0 for the sigmoid activation function
- close to -1 for the tanh activation function
- We would like to constrain the nodes to be inactive most of the time
- Let $a_{j}^{[c]}\left(x^{(i)}\right)$ be the activation in node j in the coding layer $[c]$ given an input $x^{(i)}$ to the network
- Then, activation for this node averaged over all m input examples is

$$
\hat{\rho}=\frac{1}{m} \sum_{i=1}^{m} a_{j}^{[c]}\left(x^{(i)}\right)
$$

- We would like to limit this average activation by enforcing the constraint

$$
\hat{\rho}=\rho
$$

for some predetermined sparsity parameter ρ

- Choosing a small ρ (e.g. 0.1) forces the activations to be small

SPARSE AUTOENCODER

- The way we enforce this constraint is to regularize the loss function

$$
\mathcal{L}=\mathcal{L}_{\text {reconstruction }}+\beta \mathcal{L}_{\text {sparsity }}
$$

with some regularization strength $\beta \in \mathbb{R}$.

- We are going to use the KL-divergence between the distributions p and q as our sparsity loss

$$
\mathcal{L}_{\text {sparsity }}=\sum_{j=1}^{n^{[c]}} D_{K L}\left(p \| q_{j}\right)
$$

where $n^{[c]}$ is the number of nodes in layer $[c]$ p will be a Bernoulli distribution with mean ρ for a node j
q_{i} will be a Bernoulli distribution with mean $\hat{\rho}_{j}$ for a node j

- Remember that the Bernoulli distribution models the probability of an event with two outcomes (e.g. coin toss)
In our case p will represent a node being active with probability ρ, and q_{i} a node being active with probability $\hat{\rho}_{i}$

SPARSE AUTOENCODER

In this case, the KL divergence is

$$
\begin{aligned}
D_{K L}\left(p \| q_{i}\right) & =\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x \\
& =\int p(x) \log p(x) \mathrm{d} x-\int p(x) \log q(x) \mathrm{d} x
\end{aligned}
$$

In our case, the support of the distributions is only two outcomes $x \in\{0,1\}$, and the pmf is

$$
p(x)= \begin{cases}(1-\rho), & x=0 \\ \rho, & x=1\end{cases}
$$

and conversely for $q(x)$. With this, our KL divergence is simply

$$
\begin{aligned}
D_{K L}\left(p \| q_{i}\right) & =\rho \log \rho+(1-\rho) \log (1-\rho)-\left[\rho \log \hat{\rho}+(1-\rho) \log \left(1-\hat{\rho}_{i}\right)\right] \\
& =\rho \log \frac{\rho}{\hat{\rho}_{i}}+(1-\rho) \log \frac{(1-\rho)}{\left(1-\hat{\rho}_{i}\right)} .
\end{aligned}
$$

- With this, we get our final loss

$$
\mathcal{L}=\mathcal{L}_{\text {reconstruction }}+\beta \sum_{j=1}^{n^{[c]}} \rho \log \frac{\rho}{\hat{\rho}_{i}}+(1-\rho) \log \frac{(1-\rho)}{\left(1-\hat{\rho}_{i}\right)}
$$

- Note that we need to average over all examples to compute $\hat{\rho}$
- This means that we have to encode all said examples
- In practice, with batch optimization, we average over all examples in a batch

VARIATIONAL AUTOENCODERS

INTRODUCTION

- Popular method for signal generation (images, sound, language, etc.)
- Creating completely new signals
- Or altering existing data
- Especially powerful when you want to alter your data in a specific way, not just randomly

An autoencoder works great if you want to reconstruct a replica of the input

- Not well suited for generating new signal
- The reason for this is an "unintuitive" latent variable space
- The latent space might be discontinuous
- Random sampling from an "unseen" region of the latent space produces undesired results
- No reasonable way to interpolate between categories in the latent space

VARIATIONAL AUTOENCODERS

A variational autoencoder is designed to have a continuous latent space
This makes them ideal for random sampling and interpolation

- It achieve this by forcing the encoder g to generate Gaussian representations, $z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- More precisely, for one input, the encoder generates a mean μ and a variance σ^{2}
- We sample then sample a zero-mean, unit-variance Gaussian $\tilde{z} \sim \mathcal{N}(0,1)$
- Construct the input z to the decoder from this

$$
z=\mu+\tilde{z} \cdot \sigma^{2}
$$

- With this, z is sampled from $q=\mathcal{N}\left(\mu, \sigma^{2}\right)$
- This is a stochastic sampling
- That is, we can sample different z from the same set of (μ, σ^{2})
- The intuition is that the decoder "learns" that for a given input x :
- the point z is important for reconstruction
- but also a neighbourhood of z
- In this way, we have smoothed the latent space, at least locally

Problem

- No restriction on μ or σ^{2}
- Realisticly, clusters of different classes can be placed far apart

GUIDING THE GENERATIVE DISTRIBUTION

- We can guide the solutions by restricting the generative distribution q
- We do this by making it approximate some distribution p
- In that way, the latent vectors, even for different categories, will be relatively close
- The desired distribution used in variational autoencoders is the standard normal

$$
p=\mathcal{N}(0,1)
$$

- We use the familiar KL-divergence between the desired and the generated distribution as a regularizer in the loss function
- With this, the total loss for an example x_{i} is something like

$$
\mathcal{L}\left(x_{i}\right)=\left|x^{(i)}-f\left(x^{(i)}\right)\right|+D_{K L}\left(p \| q_{\mu_{i}, \sigma_{i}}\right)
$$

- That is, the sum what we call the reconstruction loss and the latent loss
- The latent loss for a single variable x_{i} can be shown to be equal to

$$
D_{K L}\left(p \| q_{\mu_{i}, \sigma_{i}}\right)=\frac{1}{2}\left(\mu_{i}^{2}+\sigma_{i}^{2}-\log \sigma_{i}^{2}-1\right)
$$

For reference, I will spend some slide deriving the KL Divergence between two Gaussian distributions $p=\mathcal{N}\left(\mu_{p}, \sigma_{p}^{2}\right)$ and $q=\mathcal{N}\left(\mu_{q}, \sigma_{q}^{2}\right)$.
We are going to derive it for the continuous case, where the KL-Divergence can be expressed as

$$
\begin{align*}
D_{K L}(p \| q) & =\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x \tag{1}\\
& =\int p(x) \log p(x) \mathrm{d} x-\int p(x) \log q(x) \mathrm{d} x \tag{2}
\end{align*}
$$

We will derive the two terms in the last line seperately

KL Divergence between Gaussian distributions

First, for the first term

$$
\begin{aligned}
\int p(x) \log p(x) & =\int p(x) \log \left[\left(2 \pi \sigma_{p}^{2}\right)^{-\frac{1}{2}} \exp \left\{-\frac{\left(x-\mu_{p}\right)^{2}}{2 \sigma_{p}^{2}}\right\}\right] \mathrm{d} x \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{p}^{2}\right) \int p(x) \mathrm{d} x-\frac{1}{2} \int p(x) \frac{\left(x-\mu_{p}\right)^{2}}{\sigma_{p}^{2}} \mathrm{~d} x \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{p}^{2}\right)-\frac{1}{2 \sigma_{p}^{2}} \int p(x)\left(x^{2}-2 x \mu_{p}+\mu_{p}^{2}\right) \mathrm{d} x
\end{aligned}
$$

Similarly, for the second term

$$
\int p(x) \log q(x)=-\frac{1}{2} \log \left(2 \pi \sigma_{q}^{2}\right)-\frac{1}{2 \sigma_{q}^{2}} \int p(x)\left(x^{2}-2 x \mu_{q}+\mu_{q}^{2}\right) \mathrm{d} x .
$$

KL Divergence between Gaussian distributions

Remeber that for a random variable X with pdf f, the expectation is given by

$$
E[X]=\int f(x) x \mathrm{~d} x
$$

Also, we have

$$
\begin{aligned}
E\left[X^{2}\right] & =\int f(x) x^{2} \mathrm{~d} x \\
& =\operatorname{Var}[X]+E[X]^{2}
\end{aligned}
$$

For the integral in eq. (62), we then get

$$
\begin{aligned}
\frac{1}{2 \sigma_{p}^{2}} \int p(x)\left(x^{2}-2 x \mu_{p}+\mu_{p}^{2}\right) \mathrm{d} x & =\frac{1}{2 \sigma_{p}^{2}} \int p(x)\left[\left(\sigma_{p}^{2}+\mu_{p}^{2}\right)-2 \mu_{p}^{2}+\mu_{p}^{2}\right] \mathrm{d} x \\
& =\frac{1}{2}
\end{aligned}
$$

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

The integral in eq. (62) is similar,

$$
\begin{aligned}
\frac{1}{2 \sigma_{q}^{2}} \int p(x)\left(x^{2}-2 x \mu_{q}+\mu_{q}^{2}\right) \mathrm{d} x & =\frac{1}{2 \sigma_{q}^{2}} \int p(x)\left[\left(\sigma_{p}^{2}+\mu_{p}^{2}\right)-\mu_{p} \mu_{q}+\mu_{q}^{2}\right] \mathrm{d} x \\
& =\frac{\sigma_{p}^{2}+\left(\mu_{p}-\mu_{q}\right)^{2}}{2 \sigma_{q}^{2}}
\end{aligned}
$$

KL Divergence between Gaussian distributions

Finishing up, using eq. (62) and eq. (62) via eq. (63) and eq. (64), we finally get

$$
\begin{aligned}
D_{K L}(p \| q) & =\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x \\
& =\int p(x) \log p(x) \mathrm{d} x-\int p(x) \log q(x) \mathrm{d} x \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{p}^{2}\right)-\frac{1}{2}+\frac{1}{2} \log \left(2 \pi \sigma_{q}^{2}\right)+\frac{\sigma_{p}^{2}+\left(\mu_{p}-\mu_{q}\right)^{2}}{2 \sigma_{q}^{2}} \\
& =\frac{1}{2}\left[\log \frac{\sigma_{q}^{2}}{\sigma_{p}^{2}}+\frac{\sigma_{p}^{2}+\left(\mu_{p}-\mu_{q}\right)^{2}}{\sigma_{q}^{2}}-1\right]
\end{aligned}
$$

When, as in our case $p=\mathcal{N}(\mu, \sigma)$ and $q=\mathcal{N}(0,1)$, we get

$$
D_{K L}(p \| q)=\frac{1}{2}\left[\mu^{2}+\sigma^{2}-\log \sigma^{2}-1\right] .
$$

Generate new signals - INTERPOLATION

- Say you want to generate a signal c that is an interpolation between two signals a and b
- You can do this by first computing the average of the two mean vectors

$$
\mu_{c}=\frac{1}{2}\left(\mu_{a}+\mu_{b}\right)
$$

- Then, sample a latent variable with this

Say you want to add a feature of a signal a to the signal b

- You can do this by finding a signal c that is equal to a, except for the specific feature you want
- You can then subtract the latent variable of c from the latent variable of a, and add it to the latent variable of b
- Then you simply decode the new latent variable
- Example: "Face with glasses = face + (face with glasses - face)"
- See examples on the next slides

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders

(b) Add or remove facial features

VARIATIONAL AUTOENCODERS - FINAL NOTES

- Autoencoders are popular for generating signals such as images and sound
- We have now an idea of how variational autoencoders work
- There is a lot more detail that we skipped, especially in the derivation

Questions?

