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MESSAGES

- Mandatory exercise 3 is hopefully out next week.
- No lecture next week.
- But there will be group sessions.



OUTLINE

- Introduction and motivation
- Repetition / background
- K nearest neighbours, k-means clustering

- Principal component analysis
- Independent component analysis

- t-SNE
- Autoencoders, variational autoencoders



INTRODUCTION AND MOTIVATION




SUPERVISED LEARNING

- Given a training set with pairs of inputs = and corresponding desired outputs y
Qirain = {(x(l),y(l)), s (x(m)7y(m))}
- Create a function f that “approximates” this mapping
f@)~y, Y(z,9) € Quain
- Hope that this generalises well to unseen examples, such that
f@)=9=y, Y(z,y)€ Qpest

where Qs 1S @ set of relevant unseen examples.

- Hope that this is also true for all unseen relevant examples.



UNSUPERVISED LEARNING

- In contrast with supervised learning, we have no labeled data points in unsupervised
learning.
- Since there is no “ground truth”, there is no accuracy evaluation in the supervised
sense.
- Applications
- Data clustering
- Anomaly detection

- Signal generation
- Signal compression



SEMI-SUPERVISED LEARNING

- We have some labeled data
- Usually a majority of unlabeled data

- Can be thought of as supervised learning extended to utilise unlabeled data
- Will not be covered today



METHODS

What we will cover today What we will not cover today
- K-means clustering (background) - Independent component analysis (ICA)
- Principal component analysis (PCA) - Matrix factorization and decomposition
(background) - Expectation-maximization (EM)
- t-SNE algorithm
- Autoencoders - Generative-adverserial networks (GAN)
- Variational autoencoders (next lecture)




CLUSTERING




DATA CLUSTERING

- Grouping together data based on some similarity metric

- Data points within the same group (cluster) will be more similar to each other than
to data points outside the group

- Many different versions of clustering



CONNECTIVITY-BASED CLUSTERING

- Also called hierarchical clustering

- See figures for example with the Ly Lvl0
distance metric

- Different level thresholds yields Lvl1
different clusters

Lvl 2

‘ . Lvl 3

Lvl 4

. ‘ Lvl5 @@@

Figure 2: Bottom up (agglomerative) hierarchy of clusters

Figure 1: Raw data




GRAPH CLUSTERING — CLIQUES

- Aclique is a set of nodes

- Anode in a clique shares an edge with
all other nodes in the clique

- Can have cliques of different sizes

- Useful in applications such as random O
fields

@)

Figure 4: Top: Cliques with 2 members. Bottom: Cliques with 3 members. Nodes with
Figure 3: Undirected graph multiple colors belong to more than one clique.




CENTROID-BASED CLUSTERING

- Clusters are represented by a central vector
- Example: K-means clustering



K-MEANS CLUSTERING

- Conseptually simple clustering algorithm
- We want to partition a set of data {z™"),z® ... (™} into k clusters.
2 eRi=1,...,m

- With some distance norm || - || the procedure is
1. Initialize at random k cluster centroids (or means) pu; € R™,j =1,...,k
2. Repeat until convergence
21 For every example (¥, i =1,...,m, let

¢® = argmin [z — pj]].
J

2.2 Forevery centroid uj,j =1,...,k, set
. S I = g]a®
! ity I[c(®) = 4]
where the Iverson bracket is defined as

1 b 1, if a=b,
a=0>bl= .
0, if a#b

)



K-MEANS CLUSTERING — PROPERTIES

- Minimizes the objective function
m .
T(e,m) =Y (e = o |
1=1

- Not guaranteed to find a global minimum

- Common to run the algorighm several times with different initializations, and then
pick the run with the smallest value of J

- The k-means clustering algorithm partitions the feature space into Voronoi cells



K-MEANS CLUSTERING — EXAMPLE




PCA




PRINCIPAL COMPONENT ANALYSIS (PCA)

- Reducing the dimensionality of a dataset of correlated variables
- Retaining as much as possible of the variance present in the dataset

Figure 6: Representing 2D data as 1D



PCA — DERIVATION OUTLINE

- Let X € R™ be a random vector

- We are looking for a set of uncorrelated variables Y, which we will call the principal
components of X

- The first component, Y7, will account for most of the variance in X

- The second component, Y, will account for most of the variance in X, conditionied
on being uncorrelated with Y3

- The third component, Y3, will account for most of the variance in X, conditioned on
being uncorrelated with both Y; and Y5

- We continue untill we have n, << nq principal components that account for most of
the variance in X



PCA — FIRST PRINCIPAL COMPONENT

- Let Y7 € R be some linear combination of the elements in X

E (437 7,—0'1

- This random variable has variance
Var[Y1] = Varla] X] = a]Xa;.
- Here, 3 is the covariance matrix of X with elements
Yij = Cov(X;, X;)

- We want to maximize the variance of ¥;
- In order to achieve finite solutions, we constrain the optimization on

ala; =1

- Itturns out that, for k = 1,...,n,, ai well be an eigenvector of ¥ corresponding to
the kth largest eigenvalue g



PCA — ESTIMATING THE COVARIANCE MATRIX

- For a dataset with ngs samples {z;1,...,z;,, } for all featuresi = 1,...,ng, the
elements in the covariance matrix can be estimated as
R 1 &

Xij = Z(xiq — i) (xjq = 15),

ng —1
S q:1

- Here ji; is the sample mean of the ith feature
1 &
i = e Zwiq
S q:1
- Arranginging the feature samples and sample means into vectors of size ng4
Tg = [T1gs- s Tnyg)"

ﬂ = [ﬂlv o aﬂnd]T
- With this, the estimate of the covariance matrix can be written as

qg=1 20



PCA — OPTIMIZING THE VARIANCE

- We use the technique of Lagrangian multipliers to incorporate the unit length
constraint

- This means that we are going to maximize the expression
J(a1) = a]¥ar — Naa; —1).
- Computing the gradient of J w.rt. a;, and setting it equal to zero, yields
Ya; — Aa; =0,

or
(S — A)ay =0,

where I is the ng x ng identity matrix.

21



PCA — OPTIMIZING THE VARIANCE

- From our last expression
(2 = M)ay =0,
we see that A is an eigenvalue of 3, and a; is the corresponding eigenvector.
- Furthermore, X is the largest eigenvalue
- This is because maximizing the variance subject to the constraint of unit length
coefficients is equivalent to choosing the largest eigenvalue
al¥a, = a] A\aq
= Xalay
=\
- In general, the kth principal component of X is
af X

where ay, is the eigenvector of the covariance matrix ¥ of X, corresponding to the
kth largest eigenvalue Ay

22



PCA — APPLICATIONS

- Dimensionality reduction
- Preprocessing in supervised learning: acts as a regularizer
- Noise reduction

23



PROBLEMS WITH IMAGE DATA

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)

24
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of the variance. Not very suited.

Explains about 26%
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T-SNE




STOCHASTIC NEIGHBOUR EMBEDDING (SNE)

- Introduced by Geoffrey Hinton and Sam Roweis in 2003

- PDF: http:
//papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

- A stochastic dimensionality reduction method

- Transforms high-dimensional (h — d) data points to low-dimensional (I — d) data
ponts

- Aims to preserve neighbourhood identity between data points

- Similar (close) h — d points should also be similar (close) in the I — d representation


http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf
http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

- The high-dimensional points have some dimension h

- The low-dimensional points have some dimension I << h, which is determined
manually
- For each point ¢, we are going to define two distributions:
© px;|x; (zilz;): The probability that z; and z; are “neighbours”, given the location of z;
* qv;|y; (yily;): The probability that y; and y; are “neighbours”, given the location of y;
- We will use the following shorthand
- pijj = pi(Ti) = px; x, (w6lzy)
© @iy = 45(Ys) = Py, (Vilys)
- We are then going to define a similarity measure between these distributions

- The low-dimensional representations will be altered such as to minimize this
distribution similarity

28



SNE — HIGH-DIMENSION NEIGHBOUR PROBABILITY

- let X = {x1,...,2,} be a set of points with A dimensions, z; € R*,i =1,....n
- These are the data points which we want to represent in a lower dimensional space
- We model the data point distribution as a asymmetric Gaussian

2
exp{ — @i —z;|
7;

Zk;éj exp {_M}

o*
J

Py =

- The scaling parameter ¢; can be set manually
- More often adjusted with a perplexity parameter

- Often found by a binary search such that the entropy of the distribution over its
neighbours is equal to log k

-k is a perplexity parameter that is set by hand

- Seeeg https://distill.pub/2016/misread-tsne/ how to interpret t-SNE
results

29


https://distill.pub/2016/misread-tsne/

SNE — PERPLEXITY

- We want a larger o in sparse areas
- We want a smaller ¢ in dense areas

- o is often found by a binary search such that the entropy of the distribution over its
neighbours is equal to log k

H(pj) = - sz‘\j 10gpz‘|j

-k is a perplexity parameter that is set by hand

- Perplexity can be interpreted as a measure of how many neighbours we want to
influence a point

30



SNE — LOW-DIMENSION NEIGHBOUR PROBABILITY

- LetY = {y1,...,yn} be aset of points with I dimensions, z; e RY,i =1,...,n
- These are the lower-dimensional data points correspondingto X, so u >> v
- We choose a Gaussian neighbourhood with fixed variance 0% = 1/2

exp{—|ly: — y;|*}
Dy P{=llyr — 5117}

qi|; =

3



REPETITION: KULLBACK-LEIBLER DIVERGENCE

- The Kullback-Liebler divergence over a discrete random variable X

x(7)
qx(x)

- Measures the distance between two probability distributions px and gy over the
same set of events, modeled with the random variable X.

Drcr(pxllgx) ZPX )log ¥

- Expectation of logarithmic difference between p and ¢ when expectation is taken
w.rt. p.

- Measures the amount of information that is lost when using ¢ to approximate p.
- Itis non-negative
- Zeroforp=gq

- Increasing for “increasing difference” between p and q.

32



SNE — DISTRIBUTION SIMILARITY MEASURE

- We want to measure the similarity between p; and g;

- This is done by summing the KL-divergence between the original (p;) and the
induced (g;) distributions over neighbours of each data point

Dij
0= 3 Sy s
i 4i\j
= Drr(pjlley)
J

- Large cost of confusing a small distance in the high-dimensional space with a large
distance in the low-dimensional space (small p;; and large g;;)

- Larger cost of confusing a large distance in the high-dimensional space with a small
distance in the low-dimensional space (large p;; and small g; ;)

33



- The cost can be minimized with stochastic gradient descent
- Emphazis of local objects

- Keeps nearby points in h —d nearby inl —d
- Also keeps distant points in h — d relatively far apartin i —d
- Drawback: Can be difficult to optimize

- Drawback: Tendency to crowd [ — d representations at the center of the map

34



T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)

- A variant of the SNE method

- Introduced by Laurens van der Maaten and Geoffrey Hinton
- PDF:
https://lvdmaaten.github.io/publications/papers/JIMLR_2008.pdf
- An improvemet over SNE
- Much easier to optimize
- Significantly better visualization
- Two major differences between t-SNE and SNE

- Symmetric Gaussian point similarity distribution for the h — d data points
- Student-t point similarity distribution for the I — d map points

35


https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

T-SNE — CROWDING PROBLEM

- Standard SNE (and other similar methods) suffer from what is known as the
crowding problem

- Too many map points are placed near the center of the map

- Intuition of why:
- In h dimensions, the volume of a sphere centered at « scales as r", where r is the
“radius” of the sphere
- In [ << h dimensions, the volume of a corresponding sphere will be much smaller
- Less room to place points while preserving natural cluster structure
- This causes a crowding of points that should have been modeled with a larger distance

- This can be leviated by forcing moderately distant data points to be placed far apart

36



T-SNE — SYMMETRIC COST

- Standard SNE used the asymmetric KL-divergence
Pi|j
0= Y onlog 22
i 4i);

= ZDKL(ijqj)

J
- This is assymmetric because p;; # pj;i and q;; # ;i

- Because of this, different types of errors in the pairwise distances in the map are
weighted differently

- In particular

- The cost of representing distant data points as close map points is smaller than
- The cost of representing close data points as distant map points

- A symmetric cost could ease optimization, and leviate the crowding problem



SYMMETRIC DISTRIBUTION IN THE LOW-DIMENSIONAL SPACE

- In a symmetric SNE, we use a joint Gaussian to model the similarity between map
points y; and y;
_ exp{—|ly: — y;lI*}
Zk;él exp{—Ilyx — wl|?}
- Compare this with the conditional Gaussian we used in SNE

qij

exp{—|lyi —y;II*}
> kg exp{=llye — y;l1?}

qi|j; =

- The difference is quite subtle and is present in the sum in the denominator

- In the asymmetric version, we sum over the difference between all points yx, k # j
and the reference point y;

- In the symmetric version, we sum over the difference between all unequal points y
and y;

- Note that this is not what is used in t-SNE, we will come back to that in two slides
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T-SNE — SYMMETRIC DISTRIBUTION IN THE HIGH-DIMENSIONAL SPACE

- We could have used the same distribution for the data points z;

_exp{—las — |}
Zk;él exp{—||zx — x|[*}

Dij

- The problem is that for an outlier z;, ||z; — z;|| will be very large (and p;; very small)
for all points

- The placement of the corresponding map point y; will have very little effect on the
cost

- We can fix this by simply choosing

Dijj + Djli

Py = |J2n Jl
where n is the number of data points

- With this, we ensure that 3, p;; < 1/2n for all data points z;

- Hence, all points x; are guaranteed to make significant contributions to the cost

39



T-SNE — LOW-DIMENSIONAL SPACE PAIRWISE DISTRIBUTION

- To mitigate the crowding problem, we want to give more weight to representing
moderately distant data points as close map points

- The Student-t distribution with one degree of freedom is used

-1
(L + llyi — ;%)
1
2okt L+ 1lye — will?)

- Notice that it is symmetric ¢;; = gj:

qij =

- The Student-t distribution has a much heavier tail than the Gaussian distribution

40



AUTOENCODERS




AUTOENCODERS — INTRODUCTION

- An autoencoder is a neural network which purpose is to discover interesting
representations of data

- The idea is to create identity mappings, that is, functions f such that f(z) ~ « for
some input =

- It is able to discover interesting representations by enforcing constraints on the
network

- The method requires no labeled data, and is therefore unsupervised

42



AUTOENCODERS — INTRODUCTION

- An autoencoder consist of an encoder g and an decoder h
- The encoder maps the input = to some representation z

g(a) = = Input

- We often call this representation z for the code
- The decoder maps this representation z to some output &

g(z) =2
- We want to train the encoder and decoder such that

f(z) = h(g(x)) Decoder

Output

such thatz =~z

43
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AUTOENCODERS — VARIANTS

- Different network constraints leads to different representations z
- Reducing the dimensionality of the representation z

- If x has d, dimensions and z has d. dimensions, and d, > d.
- Most common way of constraining the network

- Sparse autoencoder

- z can actually have a greater dimension than z
- Only allowing a subset of the hidden units to fire at the same time

- Denoising autoencoder

- Distorting the input = with some random noise
- Leads to robust representations, resiliant to corrupted input

"



COMPRESSION AUTOENCODER — MNIST EXAMPLE

- Encoder:

- Input -> first hidden layer: fully connected 784 -> 128, relu
- 1. hidden -> 2. hidden: fully connected, 128 -> 32, relu

- Decoder:

- 2.hidden -> 3. hidden: fully connected 32 -> 128, relu
- 3. hidden -> output: fully connected, 128 -> 784, sigmoid

- Binary cross entropy
- Adam optimizer

45
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Same setup as for the compression autoencoder. Zero mean gaussian noise with
standard deviation 0.1 is added to the input. The input values are clipped to lay in [0, 1].

47



SPARSE AUTOENCODER

- We want to constrain the number of active nodes in the coding layer
- We can think of a node being active (or firing) if is

- close to 1 for the sigmoid tanh activation functions
- We can think of a node being inactive

- close to 0 for the sigmoid activation function
- close to -1 for the tanh activation function

- We would like to constrain the nodes to be inactive most of the time

48



SPARSE AUTOENCODER

- Let ag-c](m(i)) be the activation in node j in the coding layer [¢] given an input 2 to
the network
- Then, activation for this node averaged over all m input examples is

m
_ 1 Z ] (3
m J
- We would like to limit this average activation by enforcing the constraint

p=pr

for some predetermined sparsity parameter p
- Choosing a small p (e.g. 01) forces the activations to be small

49



SPARSE AUTOENCODER

- The way we enforce this constraint is to regularize the loss function

L= Ereconstruction + /Bﬁsparsity

with some regularization strength g € R.
- We are going to use the KL-divergence between the distributions p and ¢ as our
sparsity loss

nlel
['sparsity = ZDKL(Z’HQJ‘)
Jj=1
where nl9 is the number of nodes in layer [¢]
- p will be a Bernoulli distribution with mean p for a node j
- g; will be a Bernoulli distribution with mean p; for a node j
- Remember that the Bernoulli distribution models the probability of an event with
two outcomes (e.g. coin toss)
- In our case p will represent a node being active with probability p, and ¢; a node
being active with probability p;

50



SPARSE AUTOENCODER

In this case, the KL divergence is

Dkr(plla:) = /p(af) log% dz

— [ ) logpla)de ~ [ pla)logg(a) do
In our case, the support of the distributions is only two outcomes « € {0, 1}, and the pmf
is
1—p), z=0
p(z) = {( )

P =1
and conversely for ¢(z). With this, our KL divergence is simply
Dir(plla;) = plogp+ (1 — p)log(l — p) — [plog p + (1 — p) log(1 — p;)]

(1-p)
(1—pi)

= plog§ + (1 —p)log

51



SPARSE AUTOENCODER

- With this, we get our final loss

nlel

1—
L = Lreconstruction + B Z plog Aﬁ +(1—p)log ( Ap)
= Pi (1= pi)

- Note that we need to average over all examples to compute p
- This means that we have to encode all said examples

- In practice, with batch optimization, we average over all examples in a batch
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VARIATIONAL AUTOENCODERS




INTRODUCTION

- Popular method for signal generation (images, sound, language, etc.)
- Creating completely new signals
- Or altering existing data

- Especially powerful when you want to alter your data in a specific way, not just
randomly
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PROBLEMS WITH AUTOENCODERS FOR SIGNAL GENERATION

- An autoencoder works great if you want to reconstruct a T AN v &,
replica of the input A AR I
.. o-...:. &L o 0
- Not well suited for generating new signal M '-'.'..-.:' YRR
Ce gmeets JVegiias
- The reason for this is an “unintuitive” latent variable AR SACLI .‘,;",_:.‘:3
® o T 88, .::
space .7 o X
- The latent space might be discontinuous : R X
- Random sampling from an “unseen” region of the latent o
space produces undesired results ol
- No reasonable way to interpolate between categories in L
the latent space W @m o
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VARIATIONAL AUTOENCODERS

- Avariational autoencoder is designed to have a
continuous latent space

- This makes them ideal for random sampling and
interpolation

- It achieve this by forcing the encoder g to generate
Gaussian representations, z ~ N (p, 0?)

- More precisely, for one input, the encoder generates a
mean p and a variance o2

- We sample then sample a zero-mean, unit-variance
Gaussian z ~ N(0,1)
- Construct the input z to the decoder from this

2=p+32- 0>

- With this, z is sampled from ¢ = N (i, 0?)

Decoder

Output

57



INTUITION

- This is a stochastic sampling

- That is, we can sample different z from the same set of
(1,07)

- The intuition is that the decoder “learns” that for a given
input a:

- the point z is important for reconstruction
- but also a neighbourhood of z

- In this way, we have smoothed the latent space, at least
locally

58



PROBLEM

- No restriction on p or o2
- Realisticly, clusters of different classes can be placed far apart
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GUIDING THE GENERATIVE DISTRIBUTION

- We can guide the solutions by restricting the generative distribution ¢

- We do this by making it approximate some distribution p

- In that way, the latent vectors, even for different categories, will be relatively close

- The desired distribution used in variational autoencoders is the standard normal
p=N(0,1)

- We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

- With this, the total loss for an example z; is something like

L(x;) = 2@ — f@)| + Drr (0l du; 0.)

- That is, the sum what we call the reconstruction loss and the latent loss
- The latent loss for a single variable z; can be shown to be equal to

1
Dicr(pllgu,o) = 5 (i + 0f —logo? = 1)
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KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

For reference, | will spend some slide deriving the KL Divergence between two Gaussian
distributions p = N (up,02) and g = N (ug, 02).

We are going to derive it for the continuous case, where the KL-Divergence can be
expressed as

= z)lo M x
Dicslolle) = [ plo)tos 23 a g
= / p(x)log p(x) da — / p(z)logq(z) dx ()

We will derive the two terms in the last line seperately
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KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

First, for the first term

/ p(z)logp(x) = / p()log [(%GZ)‘% exp {—%H dz

P

= —% log(27r0]2)) /p(ac) dz — %/p(m)(x_a—gp) dz

P

1
=3 log(27ro'f,) - /p(gc)(gc2 — 2z, + ,uf,) dx.

Similarly, for the second term

1 1
[ po)oga(o) = - 5 log(znd) — 5 [ pla)(w? ~ 20y + i)
q
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KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Remeber that for a random variable X with pdf f, the expectation is given by

EX] = / F@)z da.
Also, we have

BIX?] = / F@)a? do
= Var[X] + E[X]?

For the integral in eq. (62), we then get

1

1
20%

[ pla)e = 2oy 4 1) do = 55 [ pla)liof + ) — 202 + ) o

2
1
2

S]]
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KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

The integral in eq. (62) is similar,

1

1
3.2 /p(x)(x2 —2apg + pg)dz = s— [ p(@)[(o) + p3) — pppg + pg) dx
q

o
2
012; + (1p — 11q)

2
20q
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KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Finishing up, using eq. (62) and eq. (62) via eq. (63) and eq. (64), we finally get

Dkr(pllg) = / p(z) log%dx

= /p(g:) logp(x) da — /p(w) log g(z) dz

2
‘712; + (1o — 1)

202

1 1 1
=3 log(2may) — 2t 3 log(2moz) + 2

2
1 lgﬂg U;%"'(Np_luq)
2

Zay Cp Tl T el
2 2
Ip 94

When, as in our case p = N (u,0) and ¢ = N(0, 1), we get

1
Dk r(pllg) = B [u2 + 0% —logo? — 1] .
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GENERATE NEW SIGNALS — INTERPOLATION

- Say you want to generate a signal ¢ that Lveli el ntepobica
is an interpolation between two signals /
aand b

Label 9 Label 4 Interpolated

- You can do this by first computing the
average of the two mean vectors

Label 8 Label 9 Interpolated

Mczl(uaJrub) n

2 Label 9 Label 9 Interpolated

- Then, sample a latent variable with this

mean
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GENERATE NEW SIGNALS — ADDING FEATURES

- Say you want to add a feature of a signal a to the signal b

- You can do this by finding a signal ¢ that is equal to a, except for the specific feature
you want

- You can then subtract the latent variable of ¢ from the latent variable of a, and add it
to the latent variable of b

- Then you simply decode the new latent variable
- Example: “Face with glasses = face + (face with glasses — face)”

- See examples on the next slides
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(a) Interpolation between genders (b) Add or remove facial features

Figure 11: Source: Deep Feature Consistent Variational Autoencoder. https://houxianxu.github.io/assets/project/dfcvae

68


https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 12: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae


https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE



https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(b) Add or remove facial features

.github.io/assets/project/dfcvae


https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE



https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE



https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE



https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 18: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae
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VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 19: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae


https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 20: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae
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VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 22: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae
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VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 23: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae
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VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 25: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae
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VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE
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(a) Interpolation between genders (b) Add or remove facial features

Figure 29: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae
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https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — FINAL NOTES

- Autoencoders are popular for generating signals such as images and sound
- We have now an idea of how variational autoencoders work
- There is a lot more detail that we skipped, especially in the derivation
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QUESTIONS?
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