UNSUPERVISED LEARNING
INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede
18.04.2018

University of Oslo

MESSAGES

- Mandatory exercise 3 is hopefully out next week.
- No lecture next week.
- But there will be group sessions.

OUTLINE

- Introduction and motivation
- Repetition / background
- K nearest neighbours, k-means clustering

- Principal component analysis
- Independent component analysis

- t-SNE
- Autoencoders, variational autoencoders

INTRODUCTION AND MOTIVATION

SUPERVISED LEARNING

- Given a training set with pairs of inputs = and corresponding desired outputs y
Qirain = {(x(l),y(l)), s (x(m)7y(m))}
- Create a function f that “approximates” this mapping
f@)~y, Y(z,9) € Quain
- Hope that this generalises well to unseen examples, such that
f@)=9=y, Y(z,y)€ Qpest

where Qs 1S @ set of relevant unseen examples.

- Hope that this is also true for all unseen relevant examples.

UNSUPERVISED LEARNING

- In contrast with supervised learning, we have no labeled data points in unsupervised
learning.
- Since there is no “ground truth”, there is no accuracy evaluation in the supervised
sense.
- Applications
- Data clustering
- Anomaly detection

- Signal generation
- Signal compression

SEMI-SUPERVISED LEARNING

- We have some labeled data
- Usually a majority of unlabeled data

- Can be thought of as supervised learning extended to utilise unlabeled data
- Will not be covered today

METHODS

What we will cover today What we will not cover today
- K-means clustering (background) - Independent component analysis (ICA)
- Principal component analysis (PCA) - Matrix factorization and decomposition
(background) - Expectation-maximization (EM)
- t-SNE algorithm
- Autoencoders - Generative-adverserial networks (GAN)
- Variational autoencoders (next lecture)

CLUSTERING

DATA CLUSTERING

- Grouping together data based on some similarity metric

- Data points within the same group (cluster) will be more similar to each other than
to data points outside the group

- Many different versions of clustering

CONNECTIVITY-BASED CLUSTERING

- Also called hierarchical clustering

- See figures for example with the Ly Lvl0
distance metric

- Different level thresholds yields Lvl1
different clusters

Lvl 2

‘ . Lvl 3

Lvl 4

. ‘ Lvl5 @@@

Figure 2: Bottom up (agglomerative) hierarchy of clusters

Figure 1: Raw data

GRAPH CLUSTERING — CLIQUES

- Aclique is a set of nodes

- Anode in a clique shares an edge with
all other nodes in the clique

- Can have cliques of different sizes

- Useful in applications such as random O
fields

@)

Figure 4: Top: Cliques with 2 members. Bottom: Cliques with 3 members. Nodes with
Figure 3: Undirected graph multiple colors belong to more than one clique.

CENTROID-BASED CLUSTERING

- Clusters are represented by a central vector
- Example: K-means clustering

K-MEANS CLUSTERING

- Conseptually simple clustering algorithm
- We want to partition a set of data {z™"),z® ... (™} into k clusters.
2 eRi=1,...,m

- With some distance norm || - || the procedure is
1. Initialize at random k cluster centroids (or means) pu; € R™,j =1,...,k
2. Repeat until convergence
21 For every example (¥, i =1,...,m, let

¢® = argmin [z — pj]].
J

2.2 Forevery centroid uj,j =1,...,k, set
. S I = g]a®
! ity I[c(®) = 4]
where the Iverson bracket is defined as

1 b 1, if a=b,
a=0>bl= .
0, if a#b

)

K-MEANS CLUSTERING — PROPERTIES

- Minimizes the objective function
m .
T(e,m) =Y (e = o |
1=1

- Not guaranteed to find a global minimum

- Common to run the algorighm several times with different initializations, and then
pick the run with the smallest value of J

- The k-means clustering algorithm partitions the feature space into Voronoi cells

K-MEANS CLUSTERING — EXAMPLE

PCA

PRINCIPAL COMPONENT ANALYSIS (PCA)

- Reducing the dimensionality of a dataset of correlated variables
- Retaining as much as possible of the variance present in the dataset

Figure 6: Representing 2D data as 1D

PCA — DERIVATION OUTLINE

- Let X € R™ be a random vector

- We are looking for a set of uncorrelated variables Y, which we will call the principal
components of X

- The first component, Y7, will account for most of the variance in X

- The second component, Y, will account for most of the variance in X, conditionied
on being uncorrelated with Y3

- The third component, Y3, will account for most of the variance in X, conditioned on
being uncorrelated with both Y; and Y5

- We continue untill we have n, << nq principal components that account for most of
the variance in X

PCA — FIRST PRINCIPAL COMPONENT

- Let Y7 € R be some linear combination of the elements in X

E (437 7,—0'1

- This random variable has variance
Var[Y1] = Varla] X] = a]Xa;.
- Here, 3 is the covariance matrix of X with elements
Yij = Cov(X;, X;)

- We want to maximize the variance of ¥;
- In order to achieve finite solutions, we constrain the optimization on

ala; =1

- Itturns out that, for k = 1,...,n,, ai well be an eigenvector of ¥ corresponding to
the kth largest eigenvalue g

PCA — ESTIMATING THE COVARIANCE MATRIX

- For a dataset with ngs samples {z;1,...,z;,, } for all featuresi = 1,...,ng, the
elements in the covariance matrix can be estimated as
R 1 &

Xij = Z(xiq — i) (xjq = 15),

ng —1
S q:1

- Here ji; is the sample mean of the ith feature
1 &
i = e Zwiq
S q:1
- Arranginging the feature samples and sample means into vectors of size ng4
Tg = [T1gs- s Tnyg)"

ﬂ = [ﬂlv o aﬂnd]T
- With this, the estimate of the covariance matrix can be written as

qg=1 20

PCA — OPTIMIZING THE VARIANCE

- We use the technique of Lagrangian multipliers to incorporate the unit length
constraint

- This means that we are going to maximize the expression
J(a1) = a]¥ar — Naa; —1).
- Computing the gradient of J w.rt. a;, and setting it equal to zero, yields
Ya; — Aa; =0,

or
(S — A)ay =0,

where I is the ng x ng identity matrix.

21

PCA — OPTIMIZING THE VARIANCE

- From our last expression
(2 = M)ay =0,
we see that A is an eigenvalue of 3, and a; is the corresponding eigenvector.
- Furthermore, X is the largest eigenvalue
- This is because maximizing the variance subject to the constraint of unit length
coefficients is equivalent to choosing the largest eigenvalue
al¥a, = a] A\aq
= Xalay
=\
- In general, the kth principal component of X is
af X

where ay, is the eigenvector of the covariance matrix ¥ of X, corresponding to the
kth largest eigenvalue Ay

22

PCA — APPLICATIONS

- Dimensionality reduction
- Preprocessing in supervised learning: acts as a regularizer
- Noise reduction

23

PROBLEMS WITH IMAGE DATA

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)

24

25

of the variance. Not very suited.

Explains about 26%

<
O
a
T
E
=
O
=
2
L
T
0
>
|
O
T
2]
=2
=

T-SNE

STOCHASTIC NEIGHBOUR EMBEDDING (SNE)

- Introduced by Geoffrey Hinton and Sam Roweis in 2003

- PDF: http:
//papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

- A stochastic dimensionality reduction method

- Transforms high-dimensional (h — d) data points to low-dimensional (I — d) data
ponts

- Aims to preserve neighbourhood identity between data points

- Similar (close) h — d points should also be similar (close) in the I — d representation

http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf
http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf

- The high-dimensional points have some dimension h

- The low-dimensional points have some dimension I << h, which is determined
manually
- For each point ¢, we are going to define two distributions:
© px;|x; (zilz;): The probability that z; and z; are “neighbours”, given the location of z;
* qv;|y; (yily;): The probability that y; and y; are “neighbours”, given the location of y;
- We will use the following shorthand
- pijj = pi(Ti) = px; x, (w6lzy)
© @iy = 45(Ys) = Py, (Vilys)
- We are then going to define a similarity measure between these distributions

- The low-dimensional representations will be altered such as to minimize this
distribution similarity

28

SNE — HIGH-DIMENSION NEIGHBOUR PROBABILITY

- let X = {x1,...,2,} be a set of points with A dimensions, z; € R*,i =1,....n
- These are the data points which we want to represent in a lower dimensional space
- We model the data point distribution as a asymmetric Gaussian

2
exp{ — @i —z;|
7;

Zk;éj exp {_M}

o*
J

Py =

- The scaling parameter ¢; can be set manually
- More often adjusted with a perplexity parameter

- Often found by a binary search such that the entropy of the distribution over its
neighbours is equal to log k

-k is a perplexity parameter that is set by hand

- Seeeg https://distill.pub/2016/misread-tsne/ how to interpret t-SNE
results

29

https://distill.pub/2016/misread-tsne/

SNE — PERPLEXITY

- We want a larger o in sparse areas
- We want a smaller ¢ in dense areas

- o is often found by a binary search such that the entropy of the distribution over its
neighbours is equal to log k

H(pj) = - sz‘\j 10gpz‘|j

-k is a perplexity parameter that is set by hand

- Perplexity can be interpreted as a measure of how many neighbours we want to
influence a point

30

SNE — LOW-DIMENSION NEIGHBOUR PROBABILITY

- LetY = {y1,...,yn} be aset of points with I dimensions, z; e RY,i =1,...,n
- These are the lower-dimensional data points correspondingto X, so u >> v
- We choose a Gaussian neighbourhood with fixed variance 0% = 1/2

exp{—|ly: — y;|*}
Dy P{=llyr — 5117}

qi|; =

3

REPETITION: KULLBACK-LEIBLER DIVERGENCE

- The Kullback-Liebler divergence over a discrete random variable X

x(7)
qx(x)

- Measures the distance between two probability distributions px and gy over the
same set of events, modeled with the random variable X.

Drcr(pxllgx) ZPX)log ¥

- Expectation of logarithmic difference between p and ¢ when expectation is taken
w.rt. p.

- Measures the amount of information that is lost when using ¢ to approximate p.
- Itis non-negative
- Zeroforp=gq

- Increasing for “increasing difference” between p and q.

32

SNE — DISTRIBUTION SIMILARITY MEASURE

- We want to measure the similarity between p; and g;

- This is done by summing the KL-divergence between the original (p;) and the
induced (g;) distributions over neighbours of each data point

Dij
0= 3 Sy s
i 4i\j
= Drr(pjlley)
J

- Large cost of confusing a small distance in the high-dimensional space with a large
distance in the low-dimensional space (small p;; and large g;;)

- Larger cost of confusing a large distance in the high-dimensional space with a small
distance in the low-dimensional space (large p;; and small g; ;)

33

- The cost can be minimized with stochastic gradient descent
- Emphazis of local objects

- Keeps nearby points in h —d nearby inl —d
- Also keeps distant points in h — d relatively far apartin i —d
- Drawback: Can be difficult to optimize

- Drawback: Tendency to crowd [— d representations at the center of the map

34

T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)

- A variant of the SNE method

- Introduced by Laurens van der Maaten and Geoffrey Hinton
- PDF:
https://lvdmaaten.github.io/publications/papers/JIMLR_2008.pdf
- An improvemet over SNE
- Much easier to optimize
- Significantly better visualization
- Two major differences between t-SNE and SNE

- Symmetric Gaussian point similarity distribution for the h — d data points
- Student-t point similarity distribution for the I — d map points

35

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

T-SNE — CROWDING PROBLEM

- Standard SNE (and other similar methods) suffer from what is known as the
crowding problem

- Too many map points are placed near the center of the map

- Intuition of why:
- In h dimensions, the volume of a sphere centered at « scales as r", where r is the
“radius” of the sphere
- In [<< h dimensions, the volume of a corresponding sphere will be much smaller
- Less room to place points while preserving natural cluster structure
- This causes a crowding of points that should have been modeled with a larger distance

- This can be leviated by forcing moderately distant data points to be placed far apart

36

T-SNE — SYMMETRIC COST

- Standard SNE used the asymmetric KL-divergence
Pi|j
0= Y onlog 22
i 4i);

= ZDKL(ijqj)

J
- This is assymmetric because p;; # pj;i and q;; # ;i

- Because of this, different types of errors in the pairwise distances in the map are
weighted differently

- In particular

- The cost of representing distant data points as close map points is smaller than
- The cost of representing close data points as distant map points

- A symmetric cost could ease optimization, and leviate the crowding problem

SYMMETRIC DISTRIBUTION IN THE LOW-DIMENSIONAL SPACE

- In a symmetric SNE, we use a joint Gaussian to model the similarity between map
points y; and y;
_ exp{—|ly: — y;lI*}
Zk;él exp{—Ilyx — wl|?}
- Compare this with the conditional Gaussian we used in SNE

qij

exp{—|lyi —y;II*}
> kg exp{=llye — y;l1?}

qi|j; =

- The difference is quite subtle and is present in the sum in the denominator

- In the asymmetric version, we sum over the difference between all points yx, k # j
and the reference point y;

- In the symmetric version, we sum over the difference between all unequal points y
and y;

- Note that this is not what is used in t-SNE, we will come back to that in two slides

38

T-SNE — SYMMETRIC DISTRIBUTION IN THE HIGH-DIMENSIONAL SPACE

- We could have used the same distribution for the data points z;

_exp{—las — |}
Zk;él exp{—||zx — x|[*}

Dij

- The problem is that for an outlier z;, ||z; — z;|| will be very large (and p;; very small)
for all points

- The placement of the corresponding map point y; will have very little effect on the
cost

- We can fix this by simply choosing

Dijj + Djli

Py = |J2n Jl
where n is the number of data points

- With this, we ensure that 3, p;; < 1/2n for all data points z;

- Hence, all points x; are guaranteed to make significant contributions to the cost

39

T-SNE — LOW-DIMENSIONAL SPACE PAIRWISE DISTRIBUTION

- To mitigate the crowding problem, we want to give more weight to representing
moderately distant data points as close map points

- The Student-t distribution with one degree of freedom is used

-1
(L + llyi — ;%)
1
2okt L+ 1lye — will?)

- Notice that it is symmetric ¢;; = gj:

qij =

- The Student-t distribution has a much heavier tail than the Gaussian distribution

40

AUTOENCODERS

AUTOENCODERS — INTRODUCTION

- An autoencoder is a neural network which purpose is to discover interesting
representations of data

- The idea is to create identity mappings, that is, functions f such that f(z) ~ « for
some input =

- It is able to discover interesting representations by enforcing constraints on the
network

- The method requires no labeled data, and is therefore unsupervised

42

AUTOENCODERS — INTRODUCTION

- An autoencoder consist of an encoder g and an decoder h
- The encoder maps the input = to some representation z

g(a) = = Input

- We often call this representation z for the code
- The decoder maps this representation z to some output &

g(z) =2
- We want to train the encoder and decoder such that

f(z) = h(g(x)) Decoder

Output

such thatz =~z

43

. Tho |lncc ic rommonly oithoar 2 rraocc-antrany lAnce Ar 23 mean

AUTOENCODERS — VARIANTS

- Different network constraints leads to different representations z
- Reducing the dimensionality of the representation z

- If x has d, dimensions and z has d. dimensions, and d, > d.
- Most common way of constraining the network

- Sparse autoencoder

- z can actually have a greater dimension than z
- Only allowing a subset of the hidden units to fire at the same time

- Denoising autoencoder

- Distorting the input = with some random noise
- Leads to robust representations, resiliant to corrupted input

"

COMPRESSION AUTOENCODER — MNIST EXAMPLE

- Encoder:

- Input -> first hidden layer: fully connected 784 -> 128, relu
- 1. hidden -> 2. hidden: fully connected, 128 -> 32, relu

- Decoder:

- 2.hidden -> 3. hidden: fully connected 32 -> 128, relu
- 3. hidden -> output: fully connected, 128 -> 784, sigmoid

- Binary cross entropy
- Adam optimizer

45

EESR

NEEG
SOER
EEOR

Same setup as for the compression autoencoder. Zero mean gaussian noise with
standard deviation 0.1 is added to the input. The input values are clipped to lay in [0, 1].

47

SPARSE AUTOENCODER

- We want to constrain the number of active nodes in the coding layer
- We can think of a node being active (or firing) if is

- close to 1 for the sigmoid tanh activation functions
- We can think of a node being inactive

- close to 0 for the sigmoid activation function
- close to -1 for the tanh activation function

- We would like to constrain the nodes to be inactive most of the time

48

SPARSE AUTOENCODER

- Let ag-c](m(i)) be the activation in node j in the coding layer [¢] given an input 2 to
the network
- Then, activation for this node averaged over all m input examples is

m
_ 1 Z] (3
m J
- We would like to limit this average activation by enforcing the constraint

p=pr

for some predetermined sparsity parameter p
- Choosing a small p (e.g. 01) forces the activations to be small

49

SPARSE AUTOENCODER

- The way we enforce this constraint is to regularize the loss function

L= Ereconstruction + /Bﬁsparsity

with some regularization strength g € R.
- We are going to use the KL-divergence between the distributions p and ¢ as our
sparsity loss

nlel
['sparsity = ZDKL(Z’HQJ‘)
Jj=1
where nl9 is the number of nodes in layer [¢]
- p will be a Bernoulli distribution with mean p for a node j
- g; will be a Bernoulli distribution with mean p; for a node j
- Remember that the Bernoulli distribution models the probability of an event with
two outcomes (e.g. coin toss)
- In our case p will represent a node being active with probability p, and ¢; a node
being active with probability p;

50

SPARSE AUTOENCODER

In this case, the KL divergence is

Dkr(plla:) = /p(af) log% dz

— [) logpla)de ~ [pla)logg(a) do
In our case, the support of the distributions is only two outcomes « € {0, 1}, and the pmf
is
1—p), z=0
p(z) = {()

P =1
and conversely for ¢(z). With this, our KL divergence is simply
Dir(plla;) = plogp+ (1 — p)log(l — p) — [plog p + (1 — p) log(1 — p;)]

(1-p)
(1—pi)

= plog§ + (1 —p)log

51

SPARSE AUTOENCODER

- With this, we get our final loss

nlel

1—
L = Lreconstruction + B Z plog Aﬁ +(1—p)log (Ap)
= Pi (1= pi)

- Note that we need to average over all examples to compute p
- This means that we have to encode all said examples

- In practice, with batch optimization, we average over all examples in a batch

52

GE NN

VARIATIONAL AUTOENCODERS

INTRODUCTION

- Popular method for signal generation (images, sound, language, etc.)
- Creating completely new signals
- Or altering existing data

- Especially powerful when you want to alter your data in a specific way, not just
randomly

55

PROBLEMS WITH AUTOENCODERS FOR SIGNAL GENERATION

- An autoencoder works great if you want to reconstruct a T AN v &,
replica of the input A AR I
.. o-...:. &L o 0
- Not well suited for generating new signal M '-'.'..-.:' YRR
Ce gmeets JVegiias
- The reason for this is an “unintuitive” latent variable AR SACLI .‘,;",_:.‘:3
® o T 88, .::
space .7 o X
- The latent space might be discontinuous : R X
- Random sampling from an “unseen” region of the latent o
space produces undesired results ol
- No reasonable way to interpolate between categories in L
the latent space W @m o

56

VARIATIONAL AUTOENCODERS

- Avariational autoencoder is designed to have a
continuous latent space

- This makes them ideal for random sampling and
interpolation

- It achieve this by forcing the encoder g to generate
Gaussian representations, z ~ N (p, 0?)

- More precisely, for one input, the encoder generates a
mean p and a variance o2

- We sample then sample a zero-mean, unit-variance
Gaussian z ~ N(0,1)
- Construct the input z to the decoder from this

2=p+32- 0>

- With this, z is sampled from ¢ = N (i, 0?)

Decoder

Output

57

INTUITION

- This is a stochastic sampling

- That is, we can sample different z from the same set of
(1,07)

- The intuition is that the decoder “learns” that for a given
input a:

- the point z is important for reconstruction
- but also a neighbourhood of z

- In this way, we have smoothed the latent space, at least
locally

58

PROBLEM

- No restriction on p or o2
- Realisticly, clusters of different classes can be placed far apart

59

GUIDING THE GENERATIVE DISTRIBUTION

- We can guide the solutions by restricting the generative distribution ¢

- We do this by making it approximate some distribution p

- In that way, the latent vectors, even for different categories, will be relatively close

- The desired distribution used in variational autoencoders is the standard normal
p=N(0,1)

- We use the familiar KL-divergence between the desired and the generated
distribution as a regularizer in the loss function

- With this, the total loss for an example z; is something like

L(x;) = 2@ — f@)| + Drr (0l du; 0.)

- That is, the sum what we call the reconstruction loss and the latent loss
- The latent loss for a single variable z; can be shown to be equal to

1
Dicr(pllgu,o) = 5 (i + 0f —logo? = 1)

60

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

For reference, | will spend some slide deriving the KL Divergence between two Gaussian
distributions p = N (up,02) and g = N (ug, 02).

We are going to derive it for the continuous case, where the KL-Divergence can be
expressed as

= z)lo M x
Dicslolle) = [plo)tos 23 a g
= / p(x)log p(x) da — / p(z)logq(z) dx ()

We will derive the two terms in the last line seperately

61

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

First, for the first term

/ p(z)logp(x) = / p()log [(%GZ)‘% exp {—%H dz

P

= —% log(27r0]2)) /p(ac) dz — %/p(m)(x_a—gp) dz

P

1
=3 log(27ro'f,) - /p(gc)(gc2 — 2z, + ,uf,) dx.

Similarly, for the second term

1 1
[po)oga(o) = - 5 log(znd) — 5 [pla)(w? ~ 20y + i)
q

62

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Remeber that for a random variable X with pdf f, the expectation is given by

EX] = / F@)z da.
Also, we have

BIX?] = / F@)a? do
= Var[X] + E[X]?

For the integral in eq. (62), we then get

1

1
20%

[pla)e = 2oy 4 1) do = 55 [pla)liof +) — 202 +) o

2
1
2

S]]

63

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

The integral in eq. (62) is similar,

1

1
3.2 /p(x)(x2 —2apg + pg)dz = s— [p(@)[(o) + p3) — pppg + pg) dx
q

o
2
012; + (1p — 11q)

2
20q

64

KL DIVERGENCE BETWEEN GAUSSIAN DISTRIBUTIONS

Finishing up, using eq. (62) and eq. (62) via eq. (63) and eq. (64), we finally get

Dkr(pllg) = / p(z) log%dx

= /p(g:) logp(x) da — /p(w) log g(z) dz

2
‘712; + (1o — 1)

202

1 1 1
=3 log(2may) — 2t 3 log(2moz) + 2

2
1 lgﬂg U;%"'(Np_luq)
2

Zay Cp Tl T el
2 2
Ip 94

When, as in our case p = N (u,0) and ¢ = N(0, 1), we get

1
Dk r(pllg) = B [u2 + 0% —logo? — 1] .

65

GENERATE NEW SIGNALS — INTERPOLATION

- Say you want to generate a signal ¢ that Lveli el ntepobica
is an interpolation between two signals /
aand b

Label 9 Label 4 Interpolated

- You can do this by first computing the
average of the two mean vectors

Label 8 Label 9 Interpolated

Mczl(uaJrub) n

2 Label 9 Label 9 Interpolated

- Then, sample a latent variable with this

mean

66

GENERATE NEW SIGNALS — ADDING FEATURES

- Say you want to add a feature of a signal a to the signal b

- You can do this by finding a signal ¢ that is equal to a, except for the specific feature
you want

- You can then subtract the latent variable of ¢ from the latent variable of a, and add it
to the latent variable of b

- Then you simply decode the new latent variable
- Example: “Face with glasses = face + (face with glasses — face)”

- See examples on the next slides

67

(a) Interpolation between genders (b) Add or remove facial features

Figure 11: Source: Deep Feature Consistent Variational Autoencoder. https://houxianxu.github.io/assets/project/dfcvae

68

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 12: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(b) Add or remove facial features

.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 18: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 19: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 20: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 22: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 23: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

(a) Interpolation between genders (b) Add or remove facial features

Figure 25: Source: Deep Feature Consistent Variational Autoencoder, https://houxianxu.github.io/assets/project/dfcvae

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — INTERPOLATION AND COMBINATION EXAMPLE

https://houxianxu.github.io/assets/project/dfcvae

(a) Interpolation between genders (b) Add or remove facial features

Figure 29: Source: Deep Feature Consistent Variational Autoencoder https://houxianxu.github.io/assets/project/dfcvae

86

https://houxianxu.github.io/assets/project/dfcvae

VARIATIONAL AUTOENCODERS — FINAL NOTES

- Autoencoders are popular for generating signals such as images and sound
- We have now an idea of how variational autoencoders work
- There is a lot more detail that we skipped, especially in the derivation

87

QUESTIONS?

	Introduction and motivation
	Clustering
	PCA
	t-SNE
	Autoencoders
	Variational autoencoders

