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repetition



Autoencoders

∙ An autoencoder f consist of an encoder g and an decoder h
∙ The encoder maps the input x to some representation z

g(x) = z

∙ We often call this representation z for the code or the latent vector
∙ The decoder maps this representation z to some output x̂

g(z) = x̂

∙ We want to train the encoder and decoder such that

f(x) = h(g(x)) = x̂ ≈ x

∙ Commonly used for compression, feature extraction and
de-noising
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Compression autoencoder — MNIST example

(a) Original (b) Reconstructed
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De-noising autoencoder — MNIST example

(a) Original (b) Reconstructed
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Variational autoencoders

∙ A variational autoencoder is designed to have a
continuous latent space

∙ This makes them ideal for random sampling and
interpolation

∙ It achieve this by forcing the encoder g to generate
Gaussian representations, z ∼ N (µ, σ2)

∙ More precisely, for one input, the encoder generates a
mean µ and a variance σ2

∙ We sample then sample a zero-mean, unit-variance
Gaussian z̃ ∼ N (0, 1)

∙ Construct the input z to the decoder from this

z = µ+ z̃σ2

∙ With this, z is sampled from q = N (µ, σ2)
6



Intuition

∙ This is a stochastic sampling
∙ That is, we can sample different z from the same set of
(µ, σ2)

∙ The intuition is that the decoder “learns” that for a given
input x:

∙ the point z is important for reconstruction
∙ but also a neighbourhood of z

∙ In this way, we have smoothed the latent space, at least
locally

∙ In the previous lecture, we learnt ways to achieve this
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VAE example: reconstruction

(a) Original (b) Reconstructed
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VAE example: generation of new signals

∙ Sample a random latent vector z from N (0, 1)

∙ Decode z
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VAE example: interpolation between samples

∙ We generate a signal c that is an interpolation between two signals a and b

∙ We can do this by a linear interpolation between the means

µck = (1− wk)µa + wkµb

where the different interpolation weights can be

wk =
k

n+ 1
, k = 1, . . . , n
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VAE example: interpolation between samples
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generative modelling



Introduction

∙ We have training samples from an unknown distribution pdata

∙ We want a model that can draw samples from some distribution pmodel

∙ pmodel should be an estimate of pdata

∙ A model that can sample from this pmodel is termed a generative model
∙ For brevity, we will refer to the distributions as pd = pdata, and pm = pmodel.
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Overview of generative models

∙ Some models explicitly estimates pm
∙ Some models implicitly estimates pm by only drawing samples from it
∙ Some models is able to do both
∙ VAE explicitly approximates pm
∙ GAN only samples from pm

1

1There are GAN variants that are able to do both
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Different approaches to generate samples from a distribution

∙ In the maximum likelihood case, we often have an explicit distribution pθ(x), and for
some fixed, observed data {xi}mi=1, we find the parameters θ∗ that maximizes the
likelihood

θ∗ = arg max
θ

m∏
i=1

pθ(xi) (1)

∙ In the implicit case, we have a data distribution pd and some generator distribution
pg

∙ The random variable Z ∼ pg are transformed via some function to X ∼ pm

∙ This parametric function f(x; θ) can be a neural network, and the parameters θ are
adjusted such that the model distribution is close to the data distribution pm ≈ pd.
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Motivation: why study generative modelling

∙ Analyse our ability to represent and manipulate high-dimensional distributions (e.g.
images)

∙ Can be used as a tool in reinforcement learning
∙ Can be used in semi-supervised learning where labelled data is scarce
∙ Sampling of realistic examples from some high-dimensional distribution can have
many applications
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Application — Predicting the next frame

∙ A model is trained to predict the next frame in a video sequence
∙ There exists many possible modes (high probability events)
∙ A standard mean-square error model tends to predict some average of the possible
futures

∙ A GAN model is able to select one of the possible futures, which results in a more
sharp prediction

Figure 4: Source: [Goodfellow, 2016]

17



Application — Image super resolution

∙ Generating high-resolution images from low-resolution inputs
∙ GANs tend to produce perceptually pleasing and sharp results

Figure 5: Source: [Goodfellow, 2016]
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Application — Image inpainting

Figure 6: Source: [Demir and Unal, 2018]
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Application — Create art

Figure 7: Source: [Elgammal et al., 2017]
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Application — Image to image translation

Figure 8: Source: [Goodfellow, 2016]
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generative adversarial networks



Outline

∙ General introduction
∙ Cost functions
∙ Challenges
∙ Tips and tricks

Figure 9: Source: https://deephunt.in/the-gan-zoo-79597dc8c347
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General introduction

∙ Introduced by Ian Goodfellow et al. in 2014 [Goodfellow et al., 2014]
∙ General idea from game theory
∙ Analogy

∙ Counterfeiter creating fake money
∙ Police trying to distinguish fake money from real money
∙ The better the counterfeiter gets, the better the police gets
∙ The better the police gets, the better the counterfeiter gets

∙ Yann LeCun dubbed adversarial training the most interesting idea in ML the last 10
years
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Components

∙ A generator function that tries to create real-looking examples
∙ A discriminator function that tries to distinguish real from fake examples
∙ Functions are updated in a feedback loop, making each better at its task
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Components

∙ The discriminator is a function

D : x 7→ D(x; θD)

mapping input x to D(x; θD) with parameters θD
∙ The generator is a function

G : z 7→ G(z; θG)

mapping input z to G(z; θG) with parameters θG
∙ The discriminator has an associated loss JD(θD, θG), depending on both θD and θG,
but can only control θD

∙ The generator has an associated loss JG(θD, θG), depending on both θD and θG, but
can only control θG

∙ The optimal solution (θ∗D, θ∗G) is a Nash equilibrium where
∙ θ∗D is a local minimum of JD w.r.t. θD
∙ θ∗G is a local minimum of JG w.r.t. θG
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The generator

∙ The generator is a differentiable function
∙ The input z is a random vector sampled from some simple prior distribution pg

∙ The output x = G(z) is then sampled from pm

∙ The most common form of G is some kind of generative neural network
∙ If we have GAN trained on data from pd, we can use the generator to sample from pm

∙ pm ≈ pd

∙ With this, samples from the generator will look like the training data
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The discriminator

∙ The discriminator is a standard classification network
∙ Trained to differentiate between real and fake (generated) images
∙ Outputs a single number in [0, 1]

∙ D(x) = 0 → D believes x is fake
∙ D(x) = 1 → D believes x is real
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The training process

∙ At each update step, one mini-batch x of real images, and one mini-batch z of latent
vectors are drawn

∙ z is fed through G, producing G(z)

∙ D(x) is compared with D(G(z))

∙ θG is updated using gradients from JG
∙ θD is updated using gradients from JD
∙ The discriminator and generator are updated in tandem using some regular
optimization routine (SGD, Adam, etc.)

∙ Some flexibility with regards to updating one more often than the other

Figure 10: Source: [Goodfellow et al., 2014]
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The training process

Figure 11: Source: [Goodfellow et al., 2014]

∙ Black arrows illustrate the mapping z 7→ G(z)

∙ Black probability density is the data distribution pd
∙ Blue probability density is the discriminator distribution
∙ Green probability density is the generative distribution pm
∙ The generative distribution distinguishes between real and generated data
∙ From (a) to (d): The generative distribution (green) is guided towards high probable
areas of the discriminative distribution (blue)

∙ The process terminates when the discriminative distribution becomes constant (is
no longer able to distinguish real from fake)
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The discriminator cost function

∙ The generator, G, and discriminator, D, are two distinct networks with distinct cost
functions

∙ The cost functions are optimized separately
∙ The discriminator cost function is given by

JD(θD, θG) = −Ex∼pd
[logD(x; θD)]− Ez∼pg

[log(1−D(G(z; θG); θD))]

= −Ex∼pd
[logD(x; θD)]− Ex∼pm [log(1−D(x; θD))]

∙ With discrete samples, over one mini-batch {xi} and {zi}, this becomes

JD(θD, θG) = − 1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

∙ Binary classification with sigmoid cross entropy where
∙ Real images are given label 0
∙ Generated (fake) images are given label 1
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The generator cost function

∙ Could in principle use the negative discriminator cost

JG(θD, θG) = −JD(θD, θG)

∙ The generator is not dependent on pd, so the loss becomes

JG(θD, θG) =
1

m

m∑
i=1

log(1−D(G(zi; θG); θD))

∙ The generator is trained to minimize the probability that the discriminator classifies
its generated examples as fake

∙ Could then summarize the entire training process as a zero-sum game

(θ∗D, θ∗G) = arg min
θG

max
θD

V (θD, θG)

with the value function V (D,G) = −JD(θD, θG)

∙ Rephrasing of the discriminator cost: Find a discriminator that maximizes the
probability of assigning the correct label to real and fake examples
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Theoretical insights

∙ This is generator objective formulation has some problems that we will come back to
later

∙ It is a view that has convenient theoretical properties
∙ Before we return to a more useful generator loss, we are going to analyse this result
∙ Outline:

∙ KL-divergence vs. JS-divergence
∙ A closer look at the discriminator cost function
∙ Consequences
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Comparison of distributions — KL divergence

∙ We are comparing the distributions pX and qX over some
discrete random variable X

∙ The Kullbach-Leibler (KL) divergence is given by

DKL(pX ||qX) =
∑
x

pX(x) log pX(x)

qX(x)

∙ This is an asymmetric distance metric, meaning that, in
general

pX ̸= qX → DKL(pX ||qX) ̸= DKL(qX ||pX)

(a) Two unequal distributions as a function of x

(b) KL-divergence kernel as a function of x 34



Comparison of distributions — JS divergence

∙ Let pX and qX be as above, and let their mixture be

gX =
1

2
(pX + qX)

∙ The Jensen-Shannon (JS) divergence is then given by

DJS(pX ||qX) =
1

2
DKL(pX ||gX) +

1

2
DKL(qX ||gX)

∙ This is a symmetrized and smoothed version of the KL
divergence

(a) Two unequal distributions as a function of x

(b) JS-divergence kernel as a function of x 35



Comparison of distributions

∙ In these figure, the KL-divergences and JS-divergences are computed for a range of
distribution comparisons

∙ The reference distribution is p = N (0.0, 1.0)

∙ The comparison distributions is q = N (µ, σ2) with, simultaneously
∙ µ ranging from −1.0 to 1.0

∙ σ2 ranging from 0.5 to 1.5

(a) Range of normal distributions (b) KL-divergence of range (c) JS-divergence of range
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Optimal discriminator loss

∙ What value of D(x) is maximizing the value function?

V (D,G) = −JD(θD, θG)

=

∫
x

pd(x) log(D(x, θD)) + pm(x) log(1−D(x, θD))dx

=

∫
x

Ṽ (D,G)(x)dx

where Ṽ (D,G)(x) is the integrand.
∙ From variational calculus, we have that (the functional derivative is)

dV (D,G)

dD(x)
=

dṼ (D,G)

dD(x)

=

[
pd(x)

1

ln 10

1

D(x)
− pm(x)

1

ln 10

1

1−D(x)

]
=

1

ln 10

[
pd(x)

D(x)
− pm(x)

1−D(x)

]
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Optimal discriminator loss

∙ Equating the derivative with zero yields the optimal discriminator value

0 =
dV (D,G)

dD(x)

=
1

ln 10

[
pd(x)

D∗(x)
− pm(x)

1−D∗(x)

]
D∗(x) =

pd(x)

pd(x) + pm(x)

∙ Moreover, when the generator is working optimally pm = pd, and therefore

D∗(x) =
1

2
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Optimal discriminator loss

∙ Inserting the optimal generator G∗(x), and discriminator D∗(x) = 1
2 , back into the

value function, we get

V (D∗, G∗) =

∫
x

pd(x) log 1

2
+ pm(x) log 1

2
dx

= log 1

2

[∫
x

pd(x) + pm(x)dx
]

= 2 log 1

2

= −2 log 2

∙ To be clear: this is the value of the discriminator loss when using the discriminator
that minimizes the loss, and the generator that samples from the (approximate) data
distribution
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Optimal discriminator loss and relation to Jensen Shannon divergence

∙ If we analyze the JS divergence

DJS(pX ||qX) =
1

2
DKL(pX ||1

2
(pX + qX)) +

1

2
DKL(qX ||1

2
(pX + qX))

=
1

2

(∫
x

pd(x) log(2 pd
pd + pm

)dx+

∫
x

pm(x) log(2 pm
pd + pm

)dx
)

=
1

2

(
log 2 +

∫
x

pd(x) log pd
pd + pm

dx+ log 2 +
∫
x

pm(x) log pm
pd + pm

dx
)

=
1

2

(
2 log 2 +

∫
x

pd(x) logD∗(x)dx+

∫
x

pm(x) log(1−D∗(x))dx
)

=
1

2
(2 log 2 + V (D∗, G))
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Optimal discriminator loss and relation to Jensen Shannon divergence

∙ From the result on the previous slide, we get an expression for the discriminator loss
with an optimal discriminator

V (D∗, G) = 2DJS(pd||pm)− 2 log 2

∙ From this we see that minimizing the value function given an optimal discriminator
is equivalent to optimizing the JS-divergence

∙ Also note that the optimal generator gives pd = pm, and therefore V (D∗, G∗)
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The generator cost function

∙ In the discriminator, we are minimizing the cross-entropy between the target
distribution and the generated distribution

∙ It has strong gradients when the classifier is wrong
∙ The gradients saturates when the classifier is right, but this is not as important
∙ For the generator objective, we have found a candidate with convenient theoretical
interpretations

∙ Unfit in practice: When the discriminator successfully rejects generated examples
with high confidence, the gradients of the generator loss vanishes

∙ We must find a generator loss that does not saturate at unwanted places
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The generator cost function

∙ For the generator cost, we propose the following

JG(θD, θG) = −Ez∼pg logD(G(z; θG); θD)

= − 1

m

m∑
i=1

logD(G(zi; θG); θD)

∙ With this, the generator maximizes the log-probability of the discriminator being
mistaken (assigning label 1 to the generated examples)

∙ Contrast this with the previous minimax game where we the generator minimizes the
log-probability of the discriminator being correct (assigning label 0 to the generated
examples)

∙ Both the generator and the discriminator now have strong gradients when they are
“losing the game”
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The generator cost function

Figure 15: Graph of the gradient cost w.r.t. discriminator classification. Source: [Goodfellow, 2016]
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Cost functions overview

∙ Minimizing the discriminative cost

JD(θD, θG) = − 1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

“pushes” D(x) to 1 (real class) and D(G(z)) to 0 (fake
class)

∙ Minimizing the generative cost

JG(θD, θG) = − 1

m

m∑
i=1

log(D(G(zi; θG)θD))

“pushes” D(G(z)) to 1 (real class)
Figure 16: Graph of f(x) = − log x
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GAN advantages

∙ Tend to produce sharper examples than other generative models
∙ The reason was thought to be the relationship to the JS-divergence
∙ This view is not supported now
∙ It is not entirely clear why GANs tend to produce sharper images
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GAN challenges

∙ Convergence
∙ Performance evaluation
∙ Discrete output
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Non-convergence of GAN

∙ Achieving convergence is in general difficult
∙ The solutions tends to oscillate
∙ This is connected to that one try to achieve an equilibrium in stead of a plain
optimization

∙ The major problem is connected to what is called mode collapse
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Mode-collapse

∙ A peak in the probability density is called a mode
∙ Real-world data tends to be multi-model
∙ This means that similar examples are clustered in separate locations
∙ The data probability distribution will have peaks (modes) at these locations
∙ Mode-collapse is the phenomenon where the generator tends to generate very
similar examples

∙ These similar examples originates from roughly the same location in the model
distribution

∙ This location has high probability in the data distribution.

49



Mode-collapse — example

∙ Suppose we have a dataset with two modes, around A and B

∙ You want the GAN to generate examples estimating the training data, from both A

and B

∙ Mode collapse can be described as follows
1. The generator produces examples close to A which “fools” the discriminator
2. The discriminator classifies x from B as real with high probability, x from A are classified

50/50 as real or fake
3. The generator is then driven to produce examples from B

4. The discriminator counters, and classifies examples x from A as real and examples from
B real or fake with 50% probability

5. This cycle then repeats from 1.

Figure 17: Bi-modal data distribution
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Mode-collapse — example

∙ Some rationale can be that when the generator should be the solution to

min
θG

max
θD

V (D,G)

there seems to be difficult to guarantee that it is not the solution to

max
θD

min
θG

V (D,G)

which would explain the mode collapse
∙ Partial mode collapse is more common than complete mode collapse
∙ Generated images then tend to have the same colors, or some of the same features
∙ See the figure below for another example

Figure 18: Mode collapse on data of a mixture of gaussians. Source: [Metz et al., 2016]
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Performance evaluation

∙ Results from generative models can be hard to quantify and evaluate
∙ Often, in terms of images, perceptual similarity is important
∙ Other generative models may have an explicit objective function
∙ GANs lack this, which makes it even harder
∙ [Salimans et al., 2016] discusses this:
∙ Human evaluation using Amazon Mechanical Turk

∙ Subjective
∙ Work intensive
∙ Overly pessimistic when thought

∙ Automatic evaluation using a classifier to produce conditional distributions p(y|x)
∙ Examples with a clear class should have p(y|x) with low entropy
∙ A generative model should produce varied results:

∫
p(y|x = g(z))dz should have high

entropy
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GAN tricks and advice

∙ We will present some useful tricks for GAN
∙ Some are related to preventing the mode collapse problem
∙ See [Salimans et al., 2016] and [Goodfellow, 2016] for a more thorough discussion
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Minibatch discrimination

∙ The discriminator in a standard GAN compares single examples
∙ The idea is to aid this comparison with information from the whole mini-batch of
real and generated examples

∙ The rationale is that the discriminator can detect if one example is unusually similar
to other generated examples

∙ This technique is shown to work quite well
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Feature matching

∙ This is related to the minibatch discrimination
∙ Also attempts addressing the mode-collapse problem by increasing diversity
∙ Extends (or replaces) the discriminator loss with a comparison of intermediate
features from both the real and generated data

∙ In stead of explicitly discriminating on the output, we also discriminate on hidden
layers
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Train with labels

∙ If you have a labeled training set, use the labels
∙ If you have K classes, add the fake data as class K + 1

∙ The discriminator now tries to classify examples as one of K + 1 classes
∙ This improves the perceptual quality of generated examples
∙ This technique can be used in semi-supervised learning
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One-sided label smoothing

∙ Neural network classifiers tend to classify with too high confidence
∙ We can encourage the discriminator to produce more soft predictions
∙ Set the true label for the real samples to be 0.9 in stead of 1
∙ This penalizes models producing too large logits on real samples
∙ Important to not smooth the generated sample label
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Batch norm

∙ Batch normalization in GAN is, in general, very useful
∙ Batch normalization is not ideal for small batch sizes as the mean and variance
varies too much between batches

∙ This is problematic for GANs as these fluctuations can dominate over the latent
variable z in the generator (see figure below)

∙ Reference batch norm and virtual batch norm can aid this [Goodfellow, 2016]

Figure 19: GAN on ImageNet. Source: [Goodfellow, 2016]
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Decent looking examples

Figure 20: GAN on ImageNet. Source: [Goodfellow, 2016] 59



Problems with counting

Figure 21: GAN on ImageNet. Source: [Goodfellow, 2016] 60



Problems with 3D (one of these are real)

Figure 22: GAN on ImageNet. Source: [Goodfellow, 2016] 61



Problems with anatomy and structure

Figure 23: GAN on ImageNet. Source: [Goodfellow, 2016] 62
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DCGAN

∙ GANs have gained a lot of interest
∙ For an impression of the amount of models, take a look at this post:
https://deephunt.in/the-gan-zoo-79597dc8c347

∙ We are only going to look briefly at two architectures:
∙ DCGAN
∙ WGAN

∙ Both have been selected because of their generality and popularity
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DCGAN

∙ Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks [Radford et al., 2016]

∙ Wants to learn good intermediate image representations from unlabeled data
∙ VAEs and standard GANs produces generates blurry images
∙ GANs are difficult to train and can generate non-sensical results
∙ DCGAN enables the coupling of CNNs with GANs
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DCGAN — introduced changes

∙ Uses techniques from the (then) resent lessons learned
∙ Replaces deterministic spatial pooling operations (such as maxpool) with learned
spatial up- and down-sampling

∙ strided convolutions for the discriminator
∙ fractionally strided convolutions (transposed convolutions) for the generator

∙ Elimination of dense layers on top of the convolutional layers at the end of the
networks

∙ Use batch-normalization between layers in both the generator and discriminator
∙ Use ReLU activation in the generator (except in the output layer, which uses tanh)
∙ Use leaky ReLU activation in the discriminator
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DCGAN — architecture

Figure 24: DCGAN generator architecture. Source: [Radford et al., 2016]
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DCGAN — training details

∙ Image values are scaled to [−1, 1]

∙ Adam optimizer with momentum 0.5
∙ Learning rate of 2× 10−4

∙ Mini-batch size of 128
∙ Initialize weights from a zero-mean normal distribution with standard deviation 0.02
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DCGAN — Results

Figure 25: Bedroom interpolation
69



DCGAN — Results

Figure 26: Faces looking left to faces looking right 70



WGAN — Wasserstein Generative Adversarial Network

∙ Introduced in 2017, [Arjovsky et al., 2017]
∙ Claims to solve, or reduce many of the problems with training GANs
∙ Is based on the Wasserstein distribution similarity metric
∙ Has become quite popular with > 500 citations and > 1700 github stars in little over
a year

∙ It is quite technical, so we will only look at the wasserstein distance
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Wasserstein distance

∙ Also known as Earth Mover Distance
∙ Intuitively easy to grasp
∙ Quite complicated to derive, compute, and fully understand
∙ We will only concern ourself with the intuition
∙ For more details, I refer to https://vincentherrmann.github.io/blog/wasserstein/,
∙ The figures for this section are from the above resource
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Wasserstein distance

∙ It measures the smallest amount of “work” that needs to be done in order to
transform one distribution to the other.

∙ Let our distributions be Pr and Pθ
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Wasserstein distance

∙ Let γ(x, y) be the difference between
Pr(x) and Pθ(y)

∙ The Wasserstein distance is then

W (Pr, Pθ) = inf
γ∈Γ

∑
x,y

||x− y||γ(x, y)

∙ Here Γ contains all “valid” γ (details are
not important here)

∙ inf means infimum and can be thought
of as the greatest lower bound

74



WGAN — motivating example

Figure 28: Two point distributions

Figure 29: Wasserstein distance (left) and JS-divergence (right) when the above two distributions come closer, overlap, and then move away from each other again. Source:
[Arjovsky et al., 2017]
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adversarial domain adaptation



Introduction

∙ Generalization of results on training to the real world is crucial for a useful method
∙ This can be hard enough when training and test comes from the same distribution
∙ Even worse when the train and test data comes from different distributions, known
as domain shift or dataset bias

∙ Domain adaptation methods addresses this problem
∙ Adversarial domain adaptation methods uses principles from GANs
∙ In essence, they try to train models that are invariant to the dataset domain by
trying to fool a discriminator that tries to classify domains
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Case study: Adversarial discriminative domain adaption

∙ There are several approaches to this problem
∙ Notable works are e.g.

∙ Gradient reversal [Ganin et al., 2016]
∙ Domain confusion [Tzeng et al., 2015]
∙ CoGAN [Liu and Tuzel, 2016]

∙ The adversarial discriminative domain adaption (ADDA) is illustrated because of its
simplicity and performance
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ADDA: overview

∙ We have labeled data (xs, ys) for the source domain
∙ The target domain data, yt is unlabeled
∙ We are going to learn a source mapping Ms : xs 7→ ys

∙ We are also going to learn a target mapping Mt : xt 7→ yt

∙ The target mapping should be invariant to the domain difference between the
source and the target

∙ We are going to use a discriminator with an associated loss to learn this domain
invariance
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ADDA: Example mappings

∙ For the source mapping Ms, we can use a standard classification network with
cross-entropy loss

∙ The target mapping Mt is equal to Ms, except for the classifier part, but with
separate and independent parameters

∙ The parameters of Mt are initialized with the parameters of a trained Ms

∙ Ms is fixed when Mt is trained
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ADDA: Discriminator

∙ The discriminator D should classify outputs of these networks as either originating
from the source or the target domain

∙ This is a similar situation as with regular GANs, and the loss is

JD(Ms,Mt) = −Es [logD(Ms(xs))]− Et [log(1−D(Mt(xt)))]

∙ The discriminator wants to maximize the probability that it predicts the correct
domain

∙ The target mapping should produce examples that maximizes the probability of
being classified as coming from the source

∙ We therefore chose the generator loss from GANs

JM (Ms,Mt) = −Et [logD(Mt(xt))]

∙ Ed is the expectation over examples in d ∈ {source, target}
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ADDA: Discriminator
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ADDA: Testing

∙ We now have a classifier that can classify examples from features
∙ We also have a base mapping Mt that should generate domain-invariant features
∙ We reuse those parts in the testing
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