
generative adversarial networks
INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede
02.05.2018

University of Oslo

Outline

∙ Repetition
∙ Generative Adversarial Networks
∙ Other adversarial methods

1

repetition

Autoencoders

∙ An autoencoder f consist of an encoder g and an decoder h
∙ The encoder maps the input x to some representation z

g(x) = z

∙ We often call this representation z for the code or the latent vector
∙ The decoder maps this representation z to some output x̂

g(z) = x̂

∙ We want to train the encoder and decoder such that

f(x) = h(g(x)) = x̂ ≈ x

∙ Commonly used for compression, feature extraction and
de-noising

3

Compression autoencoder — MNIST example

(a) Original (b) Reconstructed

4

De-noising autoencoder — MNIST example

(a) Original (b) Reconstructed

5

Variational autoencoders

∙ A variational autoencoder is designed to have a
continuous latent space

∙ This makes them ideal for random sampling and
interpolation

∙ It achieve this by forcing the encoder g to generate
Gaussian representations, z ∼ N (µ, σ2)

∙ More precisely, for one input, the encoder generates a
mean µ and a variance σ2

∙ We sample then sample a zero-mean, unit-variance
Gaussian z̃ ∼ N (0, 1)

∙ Construct the input z to the decoder from this

z = µ+ z̃σ2

∙ With this, z is sampled from q = N (µ, σ2)
6

Intuition

∙ This is a stochastic sampling
∙ That is, we can sample different z from the same set of
(µ, σ2)

∙ The intuition is that the decoder “learns” that for a given
input x:

∙ the point z is important for reconstruction
∙ but also a neighbourhood of z

∙ In this way, we have smoothed the latent space, at least
locally

∙ In the previous lecture, we learnt ways to achieve this

7

VAE example: reconstruction

(a) Original (b) Reconstructed

8

VAE example: generation of new signals

∙ Sample a random latent vector z from N (0, 1)

∙ Decode z

9

VAE example: interpolation between samples

∙ We generate a signal c that is an interpolation between two signals a and b

∙ We can do this by a linear interpolation between the means

µck = (1− wk)µa + wkµb

where the different interpolation weights can be

wk =
k

n+ 1
, k = 1, . . . , n

10

VAE example: interpolation between samples

11

generative modelling

Introduction

∙ We have training samples from an unknown distribution pdata

∙ We want a model that can draw samples from some distribution pmodel

∙ pmodel should be an estimate of pdata

∙ A model that can sample from this pmodel is termed a generative model
∙ For brevity, we will refer to the distributions as pd = pdata, and pm = pmodel.

13

Overview of generative models

∙ Some models explicitly estimates pm
∙ Some models implicitly estimates pm by only drawing samples from it
∙ Some models is able to do both
∙ VAE explicitly approximates pm
∙ GAN only samples from pm

1

1There are GAN variants that are able to do both
14

Different approaches to generate samples from a distribution

∙ In the maximum likelihood case, we often have an explicit distribution pθ(x), and for
some fixed, observed data {xi}mi=1, we find the parameters θ∗ that maximizes the
likelihood

θ∗ = arg max
θ

m∏
i=1

pθ(xi) (1)

∙ In the implicit case, we have a data distribution pd and some generator distribution
pg

∙ The random variable Z ∼ pg are transformed via some function to X ∼ pm

∙ This parametric function f(x; θ) can be a neural network, and the parameters θ are
adjusted such that the model distribution is close to the data distribution pm ≈ pd.

15

Motivation: why study generative modelling

∙ Analyse our ability to represent and manipulate high-dimensional distributions (e.g.
images)

∙ Can be used as a tool in reinforcement learning
∙ Can be used in semi-supervised learning where labelled data is scarce
∙ Sampling of realistic examples from some high-dimensional distribution can have
many applications

16

Application — Predicting the next frame

∙ A model is trained to predict the next frame in a video sequence
∙ There exists many possible modes (high probability events)
∙ A standard mean-square error model tends to predict some average of the possible
futures

∙ A GAN model is able to select one of the possible futures, which results in a more
sharp prediction

Figure 4: Source: [Goodfellow, 2016]

17

Application — Image super resolution

∙ Generating high-resolution images from low-resolution inputs
∙ GANs tend to produce perceptually pleasing and sharp results

Figure 5: Source: [Goodfellow, 2016]

18

Application — Image inpainting

Figure 6: Source: [Demir and Unal, 2018]

19

Application — Create art

Figure 7: Source: [Elgammal et al., 2017]

20

Application — Image to image translation

Figure 8: Source: [Goodfellow, 2016]

21

generative adversarial networks

Outline

∙ General introduction
∙ Cost functions
∙ Challenges
∙ Tips and tricks

Figure 9: Source: https://deephunt.in/the-gan-zoo-79597dc8c347

23

https://deephunt.in/the-gan-zoo-79597dc8c347

General introduction

∙ Introduced by Ian Goodfellow et al. in 2014 [Goodfellow et al., 2014]
∙ General idea from game theory
∙ Analogy

∙ Counterfeiter creating fake money
∙ Police trying to distinguish fake money from real money
∙ The better the counterfeiter gets, the better the police gets
∙ The better the police gets, the better the counterfeiter gets

∙ Yann LeCun dubbed adversarial training the most interesting idea in ML the last 10
years

24

Components

∙ A generator function that tries to create real-looking examples
∙ A discriminator function that tries to distinguish real from fake examples
∙ Functions are updated in a feedback loop, making each better at its task

25

Components

∙ The discriminator is a function

D : x 7→ D(x; θD)

mapping input x to D(x; θD) with parameters θD
∙ The generator is a function

G : z 7→ G(z; θG)

mapping input z to G(z; θG) with parameters θG
∙ The discriminator has an associated loss JD(θD, θG), depending on both θD and θG,
but can only control θD

∙ The generator has an associated loss JG(θD, θG), depending on both θD and θG, but
can only control θG

∙ The optimal solution (θ∗D, θ∗G) is a Nash equilibrium where
∙ θ∗D is a local minimum of JD w.r.t. θD
∙ θ∗G is a local minimum of JG w.r.t. θG

26

The generator

∙ The generator is a differentiable function
∙ The input z is a random vector sampled from some simple prior distribution pg

∙ The output x = G(z) is then sampled from pm

∙ The most common form of G is some kind of generative neural network
∙ If we have GAN trained on data from pd, we can use the generator to sample from pm

∙ pm ≈ pd

∙ With this, samples from the generator will look like the training data

27

The discriminator

∙ The discriminator is a standard classification network
∙ Trained to differentiate between real and fake (generated) images
∙ Outputs a single number in [0, 1]

∙ D(x) = 0 → D believes x is fake
∙ D(x) = 1 → D believes x is real

28

The training process

∙ At each update step, one mini-batch x of real images, and one mini-batch z of latent
vectors are drawn

∙ z is fed through G, producing G(z)

∙ D(x) is compared with D(G(z))

∙ θG is updated using gradients from JG
∙ θD is updated using gradients from JD
∙ The discriminator and generator are updated in tandem using some regular
optimization routine (SGD, Adam, etc.)

∙ Some flexibility with regards to updating one more often than the other

Figure 10: Source: [Goodfellow et al., 2014]

29

The training process

Figure 11: Source: [Goodfellow et al., 2014]

∙ Black arrows illustrate the mapping z 7→ G(z)

∙ Black probability density is the data distribution pd
∙ Blue probability density is the discriminator distribution
∙ Green probability density is the generative distribution pm
∙ The generative distribution distinguishes between real and generated data
∙ From (a) to (d): The generative distribution (green) is guided towards high probable
areas of the discriminative distribution (blue)

∙ The process terminates when the discriminative distribution becomes constant (is
no longer able to distinguish real from fake)

30

The discriminator cost function

∙ The generator, G, and discriminator, D, are two distinct networks with distinct cost
functions

∙ The cost functions are optimized separately
∙ The discriminator cost function is given by

JD(θD, θG) = −Ex∼pd
[logD(x; θD)]− Ez∼pg

[log(1−D(G(z; θG); θD))]

= −Ex∼pd
[logD(x; θD)]− Ex∼pm [log(1−D(x; θD))]

∙ With discrete samples, over one mini-batch {xi} and {zi}, this becomes

JD(θD, θG) = − 1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

∙ Binary classification with sigmoid cross entropy where
∙ Real images are given label 0
∙ Generated (fake) images are given label 1

31

The generator cost function

∙ Could in principle use the negative discriminator cost

JG(θD, θG) = −JD(θD, θG)

∙ The generator is not dependent on pd, so the loss becomes

JG(θD, θG) =
1

m

m∑
i=1

log(1−D(G(zi; θG); θD))

∙ The generator is trained to minimize the probability that the discriminator classifies
its generated examples as fake

∙ Could then summarize the entire training process as a zero-sum game

(θ∗D, θ∗G) = arg min
θG

max
θD

V (θD, θG)

with the value function V (D,G) = −JD(θD, θG)

∙ Rephrasing of the discriminator cost: Find a discriminator that maximizes the
probability of assigning the correct label to real and fake examples

32

Theoretical insights

∙ This is generator objective formulation has some problems that we will come back to
later

∙ It is a view that has convenient theoretical properties
∙ Before we return to a more useful generator loss, we are going to analyse this result
∙ Outline:

∙ KL-divergence vs. JS-divergence
∙ A closer look at the discriminator cost function
∙ Consequences

33

Comparison of distributions — KL divergence

∙ We are comparing the distributions pX and qX over some
discrete random variable X

∙ The Kullbach-Leibler (KL) divergence is given by

DKL(pX ||qX) =
∑
x

pX(x) log pX(x)

qX(x)

∙ This is an asymmetric distance metric, meaning that, in
general

pX ̸= qX → DKL(pX ||qX) ̸= DKL(qX ||pX)

(a) Two unequal distributions as a function of x

(b) KL-divergence kernel as a function of x 34

Comparison of distributions — JS divergence

∙ Let pX and qX be as above, and let their mixture be

gX =
1

2
(pX + qX)

∙ The Jensen-Shannon (JS) divergence is then given by

DJS(pX ||qX) =
1

2
DKL(pX ||gX) +

1

2
DKL(qX ||gX)

∙ This is a symmetrized and smoothed version of the KL
divergence

(a) Two unequal distributions as a function of x

(b) JS-divergence kernel as a function of x 35

Comparison of distributions

∙ In these figure, the KL-divergences and JS-divergences are computed for a range of
distribution comparisons

∙ The reference distribution is p = N (0.0, 1.0)

∙ The comparison distributions is q = N (µ, σ2) with, simultaneously
∙ µ ranging from −1.0 to 1.0

∙ σ2 ranging from 0.5 to 1.5

(a) Range of normal distributions (b) KL-divergence of range (c) JS-divergence of range

36

Optimal discriminator loss

∙ What value of D(x) is maximizing the value function?

V (D,G) = −JD(θD, θG)

=

∫
x

pd(x) log(D(x, θD)) + pm(x) log(1−D(x, θD))dx

=

∫
x

Ṽ (D,G)(x)dx

where Ṽ (D,G)(x) is the integrand.
∙ From variational calculus, we have that (the functional derivative is)

dV (D,G)

dD(x)
=

dṼ (D,G)

dD(x)

=

[
pd(x)

1

ln 10

1

D(x)
− pm(x)

1

ln 10

1

1−D(x)

]
=

1

ln 10

[
pd(x)

D(x)
− pm(x)

1−D(x)

]
37

Optimal discriminator loss

∙ Equating the derivative with zero yields the optimal discriminator value

0 =
dV (D,G)

dD(x)

=
1

ln 10

[
pd(x)

D∗(x)
− pm(x)

1−D∗(x)

]
D∗(x) =

pd(x)

pd(x) + pm(x)

∙ Moreover, when the generator is working optimally pm = pd, and therefore

D∗(x) =
1

2

38

Optimal discriminator loss

∙ Inserting the optimal generator G∗(x), and discriminator D∗(x) = 1
2 , back into the

value function, we get

V (D∗, G∗) =

∫
x

pd(x) log 1

2
+ pm(x) log 1

2
dx

= log 1

2

[∫
x

pd(x) + pm(x)dx
]

= 2 log 1

2

= −2 log 2

∙ To be clear: this is the value of the discriminator loss when using the discriminator
that minimizes the loss, and the generator that samples from the (approximate) data
distribution

39

Optimal discriminator loss and relation to Jensen Shannon divergence

∙ If we analyze the JS divergence

DJS(pX ||qX) =
1

2
DKL(pX ||1

2
(pX + qX)) +

1

2
DKL(qX ||1

2
(pX + qX))

=
1

2

(∫
x

pd(x) log(2 pd
pd + pm

)dx+

∫
x

pm(x) log(2 pm
pd + pm

)dx
)

=
1

2

(
log 2 +

∫
x

pd(x) log pd
pd + pm

dx+ log 2 +
∫
x

pm(x) log pm
pd + pm

dx
)

=
1

2

(
2 log 2 +

∫
x

pd(x) logD∗(x)dx+

∫
x

pm(x) log(1−D∗(x))dx
)

=
1

2
(2 log 2 + V (D∗, G))

40

Optimal discriminator loss and relation to Jensen Shannon divergence

∙ From the result on the previous slide, we get an expression for the discriminator loss
with an optimal discriminator

V (D∗, G) = 2DJS(pd||pm)− 2 log 2

∙ From this we see that minimizing the value function given an optimal discriminator
is equivalent to optimizing the JS-divergence

∙ Also note that the optimal generator gives pd = pm, and therefore V (D∗, G∗)

41

The generator cost function

∙ In the discriminator, we are minimizing the cross-entropy between the target
distribution and the generated distribution

∙ It has strong gradients when the classifier is wrong
∙ The gradients saturates when the classifier is right, but this is not as important
∙ For the generator objective, we have found a candidate with convenient theoretical
interpretations

∙ Unfit in practice: When the discriminator successfully rejects generated examples
with high confidence, the gradients of the generator loss vanishes

∙ We must find a generator loss that does not saturate at unwanted places

42

The generator cost function

∙ For the generator cost, we propose the following

JG(θD, θG) = −Ez∼pg logD(G(z; θG); θD)

= − 1

m

m∑
i=1

logD(G(zi; θG); θD)

∙ With this, the generator maximizes the log-probability of the discriminator being
mistaken (assigning label 1 to the generated examples)

∙ Contrast this with the previous minimax game where we the generator minimizes the
log-probability of the discriminator being correct (assigning label 0 to the generated
examples)

∙ Both the generator and the discriminator now have strong gradients when they are
“losing the game”

43

The generator cost function

Figure 15: Graph of the gradient cost w.r.t. discriminator classification. Source: [Goodfellow, 2016]

44

Cost functions overview

∙ Minimizing the discriminative cost

JD(θD, θG) = − 1

m

m∑
i=1

[log(D(xi; θD)) + log(1−D(G(zi; θG); θD))]

“pushes” D(x) to 1 (real class) and D(G(z)) to 0 (fake
class)

∙ Minimizing the generative cost

JG(θD, θG) = − 1

m

m∑
i=1

log(D(G(zi; θG)θD))

“pushes” D(G(z)) to 1 (real class)
Figure 16: Graph of f(x) = − log x

45

GAN advantages

∙ Tend to produce sharper examples than other generative models
∙ The reason was thought to be the relationship to the JS-divergence
∙ This view is not supported now
∙ It is not entirely clear why GANs tend to produce sharper images

46

GAN challenges

∙ Convergence
∙ Performance evaluation
∙ Discrete output

47

Non-convergence of GAN

∙ Achieving convergence is in general difficult
∙ The solutions tends to oscillate
∙ This is connected to that one try to achieve an equilibrium in stead of a plain
optimization

∙ The major problem is connected to what is called mode collapse

48

Mode-collapse

∙ A peak in the probability density is called a mode
∙ Real-world data tends to be multi-model
∙ This means that similar examples are clustered in separate locations
∙ The data probability distribution will have peaks (modes) at these locations
∙ Mode-collapse is the phenomenon where the generator tends to generate very
similar examples

∙ These similar examples originates from roughly the same location in the model
distribution

∙ This location has high probability in the data distribution.

49

Mode-collapse — example

∙ Suppose we have a dataset with two modes, around A and B

∙ You want the GAN to generate examples estimating the training data, from both A

and B

∙ Mode collapse can be described as follows
1. The generator produces examples close to A which “fools” the discriminator
2. The discriminator classifies x from B as real with high probability, x from A are classified

50/50 as real or fake
3. The generator is then driven to produce examples from B

4. The discriminator counters, and classifies examples x from A as real and examples from
B real or fake with 50% probability

5. This cycle then repeats from 1.

Figure 17: Bi-modal data distribution
50

Mode-collapse — example

∙ Some rationale can be that when the generator should be the solution to

min
θG

max
θD

V (D,G)

there seems to be difficult to guarantee that it is not the solution to

max
θD

min
θG

V (D,G)

which would explain the mode collapse
∙ Partial mode collapse is more common than complete mode collapse
∙ Generated images then tend to have the same colors, or some of the same features
∙ See the figure below for another example

Figure 18: Mode collapse on data of a mixture of gaussians. Source: [Metz et al., 2016]
51

Performance evaluation

∙ Results from generative models can be hard to quantify and evaluate
∙ Often, in terms of images, perceptual similarity is important
∙ Other generative models may have an explicit objective function
∙ GANs lack this, which makes it even harder
∙ [Salimans et al., 2016] discusses this:
∙ Human evaluation using Amazon Mechanical Turk

∙ Subjective
∙ Work intensive
∙ Overly pessimistic when thought

∙ Automatic evaluation using a classifier to produce conditional distributions p(y|x)
∙ Examples with a clear class should have p(y|x) with low entropy
∙ A generative model should produce varied results:

∫
p(y|x = g(z))dz should have high

entropy

52

GAN tricks and advice

∙ We will present some useful tricks for GAN
∙ Some are related to preventing the mode collapse problem
∙ See [Salimans et al., 2016] and [Goodfellow, 2016] for a more thorough discussion

53

Minibatch discrimination

∙ The discriminator in a standard GAN compares single examples
∙ The idea is to aid this comparison with information from the whole mini-batch of
real and generated examples

∙ The rationale is that the discriminator can detect if one example is unusually similar
to other generated examples

∙ This technique is shown to work quite well

54

Feature matching

∙ This is related to the minibatch discrimination
∙ Also attempts addressing the mode-collapse problem by increasing diversity
∙ Extends (or replaces) the discriminator loss with a comparison of intermediate
features from both the real and generated data

∙ In stead of explicitly discriminating on the output, we also discriminate on hidden
layers

55

Train with labels

∙ If you have a labeled training set, use the labels
∙ If you have K classes, add the fake data as class K + 1

∙ The discriminator now tries to classify examples as one of K + 1 classes
∙ This improves the perceptual quality of generated examples
∙ This technique can be used in semi-supervised learning

56

One-sided label smoothing

∙ Neural network classifiers tend to classify with too high confidence
∙ We can encourage the discriminator to produce more soft predictions
∙ Set the true label for the real samples to be 0.9 in stead of 1
∙ This penalizes models producing too large logits on real samples
∙ Important to not smooth the generated sample label

57

Batch norm

∙ Batch normalization in GAN is, in general, very useful
∙ Batch normalization is not ideal for small batch sizes as the mean and variance
varies too much between batches

∙ This is problematic for GANs as these fluctuations can dominate over the latent
variable z in the generator (see figure below)

∙ Reference batch norm and virtual batch norm can aid this [Goodfellow, 2016]

Figure 19: GAN on ImageNet. Source: [Goodfellow, 2016]
58

Decent looking examples

Figure 20: GAN on ImageNet. Source: [Goodfellow, 2016] 59

Problems with counting

Figure 21: GAN on ImageNet. Source: [Goodfellow, 2016] 60

Problems with 3D (one of these are real)

Figure 22: GAN on ImageNet. Source: [Goodfellow, 2016] 61

Problems with anatomy and structure

Figure 23: GAN on ImageNet. Source: [Goodfellow, 2016] 62

notable gan variants

DCGAN

∙ GANs have gained a lot of interest
∙ For an impression of the amount of models, take a look at this post:
https://deephunt.in/the-gan-zoo-79597dc8c347

∙ We are only going to look briefly at two architectures:
∙ DCGAN
∙ WGAN

∙ Both have been selected because of their generality and popularity

64

https://deephunt.in/the-gan-zoo-79597dc8c347

DCGAN

∙ Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks [Radford et al., 2016]

∙ Wants to learn good intermediate image representations from unlabeled data
∙ VAEs and standard GANs produces generates blurry images
∙ GANs are difficult to train and can generate non-sensical results
∙ DCGAN enables the coupling of CNNs with GANs

65

DCGAN — introduced changes

∙ Uses techniques from the (then) resent lessons learned
∙ Replaces deterministic spatial pooling operations (such as maxpool) with learned
spatial up- and down-sampling

∙ strided convolutions for the discriminator
∙ fractionally strided convolutions (transposed convolutions) for the generator

∙ Elimination of dense layers on top of the convolutional layers at the end of the
networks

∙ Use batch-normalization between layers in both the generator and discriminator
∙ Use ReLU activation in the generator (except in the output layer, which uses tanh)
∙ Use leaky ReLU activation in the discriminator

66

DCGAN — architecture

Figure 24: DCGAN generator architecture. Source: [Radford et al., 2016]

67

DCGAN — training details

∙ Image values are scaled to [−1, 1]

∙ Adam optimizer with momentum 0.5
∙ Learning rate of 2× 10−4

∙ Mini-batch size of 128
∙ Initialize weights from a zero-mean normal distribution with standard deviation 0.02

68

DCGAN — Results

Figure 25: Bedroom interpolation
69

DCGAN — Results

Figure 26: Faces looking left to faces looking right 70

WGAN — Wasserstein Generative Adversarial Network

∙ Introduced in 2017, [Arjovsky et al., 2017]
∙ Claims to solve, or reduce many of the problems with training GANs
∙ Is based on the Wasserstein distribution similarity metric
∙ Has become quite popular with > 500 citations and > 1700 github stars in little over
a year

∙ It is quite technical, so we will only look at the wasserstein distance

71

Wasserstein distance

∙ Also known as Earth Mover Distance
∙ Intuitively easy to grasp
∙ Quite complicated to derive, compute, and fully understand
∙ We will only concern ourself with the intuition
∙ For more details, I refer to https://vincentherrmann.github.io/blog/wasserstein/,
∙ The figures for this section are from the above resource

72

https://vincentherrmann.github.io/blog/wasserstein/

Wasserstein distance

∙ It measures the smallest amount of “work” that needs to be done in order to
transform one distribution to the other.

∙ Let our distributions be Pr and Pθ

73

Wasserstein distance

∙ Let γ(x, y) be the difference between
Pr(x) and Pθ(y)

∙ The Wasserstein distance is then

W (Pr, Pθ) = inf
γ∈Γ

∑
x,y

||x− y||γ(x, y)

∙ Here Γ contains all “valid” γ (details are
not important here)

∙ inf means infimum and can be thought
of as the greatest lower bound

74

WGAN — motivating example

Figure 28: Two point distributions

Figure 29: Wasserstein distance (left) and JS-divergence (right) when the above two distributions come closer, overlap, and then move away from each other again. Source:
[Arjovsky et al., 2017]

75

adversarial domain adaptation

Introduction

∙ Generalization of results on training to the real world is crucial for a useful method
∙ This can be hard enough when training and test comes from the same distribution
∙ Even worse when the train and test data comes from different distributions, known
as domain shift or dataset bias

∙ Domain adaptation methods addresses this problem
∙ Adversarial domain adaptation methods uses principles from GANs
∙ In essence, they try to train models that are invariant to the dataset domain by
trying to fool a discriminator that tries to classify domains

77

Case study: Adversarial discriminative domain adaption

∙ There are several approaches to this problem
∙ Notable works are e.g.

∙ Gradient reversal [Ganin et al., 2016]
∙ Domain confusion [Tzeng et al., 2015]
∙ CoGAN [Liu and Tuzel, 2016]

∙ The adversarial discriminative domain adaption (ADDA) is illustrated because of its
simplicity and performance

78

ADDA: overview

∙ We have labeled data (xs, ys) for the source domain
∙ The target domain data, yt is unlabeled
∙ We are going to learn a source mapping Ms : xs 7→ ys

∙ We are also going to learn a target mapping Mt : xt 7→ yt

∙ The target mapping should be invariant to the domain difference between the
source and the target

∙ We are going to use a discriminator with an associated loss to learn this domain
invariance

79

ADDA: Example mappings

∙ For the source mapping Ms, we can use a standard classification network with
cross-entropy loss

∙ The target mapping Mt is equal to Ms, except for the classifier part, but with
separate and independent parameters

∙ The parameters of Mt are initialized with the parameters of a trained Ms

∙ Ms is fixed when Mt is trained

80

ADDA: Discriminator

∙ The discriminator D should classify outputs of these networks as either originating
from the source or the target domain

∙ This is a similar situation as with regular GANs, and the loss is

JD(Ms,Mt) = −Es [logD(Ms(xs))]− Et [log(1−D(Mt(xt)))]

∙ The discriminator wants to maximize the probability that it predicts the correct
domain

∙ The target mapping should produce examples that maximizes the probability of
being classified as coming from the source

∙ We therefore chose the generator loss from GANs

JM (Ms,Mt) = −Et [logD(Mt(xt))]

∙ Ed is the expectation over examples in d ∈ {source, target}

81

ADDA: Discriminator

82

ADDA: Testing

∙ We now have a classifier that can classify examples from features
∙ We also have a base mapping Mt that should generate domain-invariant features
∙ We reuse those parts in the testing

83

References I

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial
Networks. arXiv preprint, 2017. URL https://arxiv.org/pdf/1701.07875.pdf.

Ugur Demir and Gozde Unal. Patch-Based Image Inpainting with Generative Adversarial
Networks. arXiv preprint, 2018. URL http://arxiv.org/abs/1803.07422.

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. CAN: Creative
Adversarial Networks, Generating ”Art” by Learning About Styles and Deviating from
Style Norms. arXiv preprint, (Iccc):1–22, 2017. doi: 10.1089/cyber.2017.29084.csi. URL
http://arxiv.org/abs/1706.07068.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
Francois Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training
of neural networks. Journal of Machine Learning Research, 2016.

84

https://arxiv.org/pdf/1701.07875.pdf
http://arxiv.org/abs/1803.07422
http://arxiv.org/abs/1706.07068

References II

Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv preprint, 2016.
ISSN 0253-0465. doi: 10.1001/jamainternmed.2016.8245. URL
http://arxiv.org/abs/1701.00160.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv
preprint, pages 1–9, 2014. ISSN 10495258. doi: 10.1001/jamainternmed.2016.8245. URL
http://arxiv.org/abs/1406.2661.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. CoRR, 2016.
Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled Generative
Adversarial Networks. arXiv preprint, 2016. URL
https://arxiv.org/pdf/1611.02163.pdf.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. In ICLR 2016, pages 1–16,
2016. URL http://arxiv.org/abs/1511.06434.

85

http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1406.2661
https://arxiv.org/pdf/1611.02163.pdf
http://arxiv.org/abs/1511.06434

References III

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved Techniques for Training GANs. arXiv preprint, 2016. doi:
arXiv:1504.01391. URL https://arxiv.org/pdf/1606.03498.pdf.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer
across domains and tasks. International Conference in Computer Vision (ICCV), 2015.

86

https://arxiv.org/pdf/1606.03498.pdf

Questions?

87

	Repetition
	Generative modeling
	Generative adversarial networks
	Notable GAN variants
	Adversarial Domain Adaptation
	References

