GENERATIVE ADVERSARIAL NETWORKS

INF5860 — Machine Learning for Image Analysis

Ole-Johan Skrede 02.05.2018

University of Oslo

- \cdot Repetition
- · Generative Adversarial Networks
- · Other adversarial methods

REPETITION

AUTOENCODERS

- $\cdot\,$ An autoencoder f consist of an encoder g and an decoder h
- \cdot The encoder maps the input x to some representation z

$$g(x) = z$$

- \cdot We often call this representation z for the code or the latent vector
- \cdot The decoder maps this representation z to some output \hat{x}

$$g(z) = \hat{x}$$

 $\cdot\,$ We want to train the encoder and decoder such that

 $f(x) = h(g(x)) = \hat{x} \approx x$

• Commonly used for compression, feature extraction and de-noising

COMPRESSION AUTOENCODER - MNIST EXAMPLE

DE-NOISING AUTOENCODER – MNIST EXAMPLE

VARIATIONAL AUTOENCODERS

- A variational autoencoder is designed to have a continuous latent space
- This makes them ideal for random sampling and interpolation
- It achieve this by forcing the encoder g to generate Gaussian representations, $z\sim \mathcal{N}(\mu,\sigma^2)$
- $\cdot\,$ More precisely, for one input, the encoder generates a mean μ and a variance σ^2
- \cdot We sample then sample a zero-mean, unit-variance Gaussian $\tilde{z}\sim\mathcal{N}(0,1)$
- $\cdot\,$ Construct the input z to the decoder from this

$$z = \mu + \tilde{z}\sigma^2$$

 \cdot With this, z is sampled from $q = \mathcal{N}(\mu, \sigma^2)$

INTUITION

- $\cdot\,$ This is a stochastic sampling
- $\cdot \,$ That is, we can sample different z from the same set of (μ,σ^2)
- The intuition is that the decoder "learns" that for a given input x:
 - \cdot the point z is important for reconstruction
 - $\cdot\,$ but also a neighbourhood of z
- In this way, we have smoothed the latent space, at least locally
- $\cdot\,$ In the previous lecture, we learnt ways to achieve this

A B C

VAE EXAMPLE: RECONSTRUCTION

VAE EXAMPLE: GENERATION OF NEW SIGNALS

- \cdot Sample a random latent vector z from $\mathcal{N}(0,1)$
- \cdot Decode z

- \cdot We generate a signal c that is an interpolation between two signals a and b
- \cdot We can do this by a linear interpolation between the means

$$\mu_{c_k} = (1 - w_k)\mu_a + w_k\mu_b$$

where the different interpolation weights can be

$$w_k = \frac{k}{n+1}, \quad k = 1, \dots, n$$

GENERATIVE MODELLING

- \cdot We have training samples from an unknown distribution $p_{
 m data}$
- \cdot We want a model that can draw samples from some distribution $p_{
 m model}$
- $\cdot \,\, p_{
 m model}$ should be an estimate of $p_{
 m data}$
- \cdot A model that can sample from this $p_{
 m model}$ is termed a *generative model*
- \cdot For brevity, we will refer to the distributions as $p_d = p_{\text{data}}$, and $p_m = p_{\text{model}}$.

- \cdot Some models explicitly estimates p_m
- \cdot Some models implicitly estimates p_m by only drawing samples from it
- $\cdot\,$ Some models is able to do both
- $\cdot\,$ VAE explicitly approximates p_m
- \cdot GAN only samples from p_m ¹

¹There are GAN variants that are able to do both

• In the maximum likelihood case, we often have an explicit distribution $p_{\theta}(x)$, and for some fixed, observed data $\{x_i\}_{i=1}^m$, we find the parameters θ^* that maximizes the likelihood

$$\theta^* = \arg\max_{\theta} \prod_{i=1}^m p_{\theta}(x_i) \tag{1}$$

- \cdot In the implicit case, we have a data distribution p_d and some generator distribution p_g
- $\cdot\,$ The random variable $Z\sim p_g$ are transformed via some function to $X\sim p_m$
- This parametric function $f(x; \theta)$ can be a neural network, and the parameters θ are adjusted such that the model distribution is close to the data distribution $p_m \approx p_d$.

- Analyse our ability to represent and manipulate high-dimensional distributions (e.g. images)
- $\cdot\,$ Can be used as a tool in reinforcement learning
- \cdot Can be used in semi-supervised learning where labelled data is scarce
- Sampling of realistic examples from some high-dimensional distribution can have many applications

Application — Predicting the next frame

- $\cdot\,$ A model is trained to predict the next frame in a video sequence
- \cdot There exists many possible modes (high probability events)
- · A standard mean-square error model tends to predict some average of the possible futures
- A GAN model is able to select one of the possible futures, which results in a more sharp prediction

Figure 4: Source: [Goodfellow, 2016]

APPLICATION - IMAGE SUPER RESOLUTION

- · Generating high-resolution images from low-resolution inputs
- \cdot GANs tend to produce perceptually pleasing and sharp results

Figure 5: Source: [Goodfellow, 2016]

APPLICATION — IMAGE INPAINTING

Figure 6: Source: [Demir and Unal, 2018]

Application — Create art

Figure 7: Source: [Elgammal et al., 2017]

APPLICATION — IMAGE TO IMAGE TRANSLATION

GENERATIVE ADVERSARIAL NETWORKS

- \cdot General introduction
- $\cdot\,$ Cost functions
- · Challenges
- $\cdot\,$ Tips and tricks

Figure 9: Source: https://deephunt.in/the-gan-zoo-79597dc8c347

- · Introduced by Ian Goodfellow et al. in 2014 [Goodfellow et al., 2014]
- · General idea from game theory
- · Analogy
 - · Counterfeiter creating fake money
 - $\cdot\,$ Police trying to distinguish fake money from real money
 - $\cdot\,$ The better the counterfeiter gets, the better the police gets
 - $\cdot\,$ The better the police gets, the better the counterfeiter gets
- Yann LeCun dubbed adversarial training the most interesting idea in ML the last 10 years

COMPONENTS

- $\cdot\,$ A generator function that tries to create real-looking examples
- · A discriminator function that tries to distinguish real from fake examples
- · Functions are updated in a feedback loop, making each better at its task

 \cdot The discriminator is a function

 $D: x \mapsto D(x; \theta_D)$

mapping input x to $D(x; \theta_D)$ with parameters θ_D

 \cdot The generator is a function

 $G: z \mapsto G(z; \theta_G)$

mapping input z to $G(z; \theta_G)$ with parameters θ_G

- · The discriminator has an associated loss $J_D(\theta_D, \theta_G)$, depending on both θ_D and θ_G , but can only control θ_D
- · The generator has an associated loss $J_G(\theta_D, \theta_G)$, depending on both θ_D and θ_G , but can only control θ_G
- \cdot The optimal solution $(heta_D^*, heta_G^*)$ is a Nash equilibrium where
 - \cdot θ_D^* is a local minimum of J_D w.r.t. $heta_D$
 - $\cdot \hspace{0.1 cm} heta_{G}^{*}$ is a local minimum of J_{G} w.r.t. $heta_{G}$

The generator

- $\cdot\,$ The generator is a differentiable function
- $\cdot\,$ The input z is a random vector sampled from some simple prior distribution p_g
- \cdot The output x = G(z) is then sampled from p_m
- $\cdot\,$ The most common form of G is some kind of generative neural network
- \cdot If we have GAN trained on data from p_d , we can use the generator to sample from p_m
- $\cdot p_m \approx p_d$
- \cdot With this, samples from the generator will look like the training data

THE DISCRIMINATOR

- \cdot The discriminator is a standard classification network
- \cdot Trained to differentiate between real and fake (generated) images
- \cdot Outputs a single number in [0,1]
 - $\cdot D(x) = 0 \rightarrow D$ believes x is fake
 - $\cdot D(x) = 1 \rightarrow D$ believes x is real

- $\cdot\,$ At each update step, one mini-batch x of real images, and one mini-batch z of latent vectors are drawn
- $\cdot \, z$ is fed through G, producing G(z)
- $\cdot D(x)$ is compared with D(G(z))
- $\cdot \,\, heta_G$ is updated using gradients from J_G
- $\cdot \,\, heta_D$ is updated using gradients from J_D
- The discriminator and generator are updated in tandem using some regular optimization routine (SGD, Adam, etc.)
- \cdot Some flexibility with regards to updating one more often than the other

Figure 10: Source: [Goodfellow et al., 2014]

THE TRAINING PROCESS

Figure 11: Source: [Goodfellow et al., 2014]

- · Black arrows illustrate the mapping $z \mapsto G(z)$
- $\cdot\,$ Black probability density is the data distribution p_d
- $\cdot\,$ Blue probability density is the discriminator distribution
- \cdot Green probability density is the generative distribution p_m
- \cdot The generative distribution distinguishes between real and generated data
- From (a) to (d): The generative distribution (green) is guided towards high probable areas of the discriminative distribution (blue)
- The process terminates when the discriminative distribution becomes constant (is no longer able to distinguish real from fake)

THE DISCRIMINATOR COST FUNCTION

- The generator, *G*, and discriminator, *D*, are two distinct networks with distinct cost functions
- \cdot The cost functions are optimized separately
- · The discriminator cost function is given by

$$J_D(\theta_D, \theta_G) = -E_{x \sim p_d} [\log D(x; \theta_D)] - E_{z \sim p_g} [\log(1 - D(G(z; \theta_G); \theta_D))]$$
$$= -E_{x \sim p_d} [\log D(x; \theta_D)] - E_{x \sim p_m} [\log(1 - D(x; \theta_D))]$$

 \cdot With discrete samples, over one mini-batch $\{x_i\}$ and $\{z_i\}$, this becomes

$$J_D(\theta_D, \theta_G) = -\frac{1}{m} \sum_{i=1}^{m} \left[\log(D(x_i; \theta_D)) + \log(1 - D(G(z_i; \theta_G); \theta_D)) \right]$$

- \cdot Binary classification with sigmoid cross entropy where
 - · Real images are given label 0
 - \cdot Generated (fake) images are given label 1

 \cdot Could in principle use the negative discriminator cost

$$J_G(\theta_D, \theta_G) = -J_D(\theta_D, \theta_G)$$

 \cdot The generator is not dependent on p_d , so the loss becomes

$$J_G(\theta_D, \theta_G) = \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(z_i; \theta_G); \theta_D))$$

- The generator is trained to minimize the probability that the discriminator classifies its generated examples as fake
- \cdot Could then summarize the entire training process as a zero-sum game

$$(\theta_D^*, \theta_G^*) = \arg\min_{\theta_G} \max_{\theta_D} V(\theta_D, \theta_G)$$

with the value function $V(D,G) = -J_D(\theta_D,\theta_G)$

• Rephrasing of the discriminator cost: Find a discriminator that maximizes the probability of assigning the correct label to real and fake examples

- This is generator objective formulation has some problems that we will come back to later
- $\cdot\,$ It is a view that has convenient theoretical properties
- · Before we return to a more useful generator loss, we are going to analyse this result
- · Outline:
 - · KL-divergence vs. JS-divergence
 - $\cdot\,$ A closer look at the discriminator cost function
 - · Consequences

COMPARISON OF DISTRIBUTIONS - KL DIVERGENCE

- \cdot We are comparing the distributions p_X and q_X over some discrete random variable X
- The Kullbach-Leibler (KL) divergence is given by

$$D_{KL}(p_X||q_X) = \sum_x p_X(x) \log \frac{p_X(x)}{q_X(x)}$$

• This is an asymmetric distance metric, meaning that, *in general*

$$p_X \neq q_X \rightarrow D_{KL}(p_X||q_X) \neq D_{KL}(q_X||p_X)$$

 \cdot Let p_X and q_X be as above, and let their mixture be

$$g_X = \frac{1}{2}(p_X + q_X)$$

 \cdot The Jensen-Shannon (JS) divergence is then given by

$$D_{JS}(p_X||q_X) = \frac{1}{2}D_{KL}(p_X||g_X) + \frac{1}{2}D_{KL}(q_X||g_X)$$

• This is a symmetrized and smoothed version of the KL divergence

COMPARISON OF DISTRIBUTIONS

- In these figure, the KL-divergences and JS-divergences are computed for a range of distribution comparisons
- \cdot The reference distribution is $p = \mathcal{N}(0.0, 1.0)$
- \cdot The comparison distributions is $q = \mathcal{N}(\mu, \sigma^2)$ with, simultaneously
 - \cdot μ ranging from -1.0 to 1.0
 - $\cdot ~\sigma^2$ ranging from 0.5 to 1.5

OPTIMAL DISCRIMINATOR LOSS

 \cdot What value of D(x) is maximizing the value function?

$$V(D,G) = -J_D(\theta_D, \theta_G)$$

= $\int_x p_d(x) \log(D(x, \theta_D)) + p_m(x) \log(1 - D(x, \theta_D)) dx$
= $\int_x \tilde{V}(D,G)(x) dx$

where $\tilde{V}(D,G)(x)$ is the integrand.

· From variational calculus, we have that (the functional derivative is)

$$\frac{\mathrm{d}V(D,G)}{\mathrm{d}D(x)} = \frac{\mathrm{d}\tilde{V}(D,G)}{\mathrm{d}D(x)} \\ = \left[p_d(x) \frac{1}{\ln 10} \frac{1}{D(x)} - p_m(x) \frac{1}{\ln 10} \frac{1}{1 - D(x)} \right] \\ = \frac{1}{\ln 10} \left[\frac{p_d(x)}{D(x)} - \frac{p_m(x)}{1 - D(x)} \right]$$

 \cdot Equating the derivative with zero yields the optimal discriminator value

$$0 = \frac{\mathrm{d}V(D,G)}{\mathrm{d}D(x)}$$
$$= \frac{1}{\ln 10} \left[\frac{p_d(x)}{D^*(x)} - \frac{p_m(x)}{1 - D^*(x)} \right]$$
$$D^*(x) = \frac{p_d(x)}{p_d(x) + p_m(x)}$$

· Moreover, when the generator is working optimally $p_m = p_d$, and therefore

$$D^*(x) = \frac{1}{2}$$

OPTIMAL DISCRIMINATOR LOSS

· Inserting the optimal generator $G^*(x)$, and discriminator $D^*(x) = \frac{1}{2}$, back into the value function, we get

$$V(D^*, G^*) = \int_x p_d(x) \log \frac{1}{2} + p_m(x) \log \frac{1}{2} dx$$

= $\log \frac{1}{2} \left[\int_x p_d(x) + p_m(x) dx \right]$
= $2 \log \frac{1}{2}$
= $-2 \log 2$

• To be clear: this is the value of the discriminator loss when using the discriminator that minimizes the loss, and the generator that samples from the (approximate) data distribution

 \cdot If we analyze the JS divergence

$$\begin{aligned} D_{JS}(p_X||q_X) &= \frac{1}{2} D_{KL}(p_X||\frac{1}{2}(p_X + q_X)) + \frac{1}{2} D_{KL}(q_X||\frac{1}{2}(p_X + q_X)) \\ &= \frac{1}{2} \left(\int_x p_d(x) \log(2\frac{p_d}{p_d + p_m}) \, \mathrm{d}x + \int_x p_m(x) \log(2\frac{p_m}{p_d + p_m}) \, \mathrm{d}x \right) \\ &= \frac{1}{2} \left(\log 2 + \int_x p_d(x) \log \frac{p_d}{p_d + p_m} \, \mathrm{d}x + \log 2 + \int_x p_m(x) \log \frac{p_m}{p_d + p_m} \, \mathrm{d}x \right) \\ &= \frac{1}{2} \left(2 \log 2 + \int_x p_d(x) \log D^*(x) \, \mathrm{d}x + \int_x p_m(x) \log(1 - D^*(x)) \, \mathrm{d}x \right) \\ &= \frac{1}{2} \left(2 \log 2 + V(D^*, G) \right) \end{aligned}$$

• From the result on the previous slide, we get an expression for the discriminator loss with an optimal discriminator

$$V(D^*, G) = 2D_{JS}(p_d||p_m) - 2\log 2$$

- From this we see that minimizing the value function given an optimal discriminator is equivalent to optimizing the JS-divergence
- · Also note that the optimal generator gives $p_d = p_m$, and therefore $V(D^*, G^*)$

- In the discriminator, we are minimizing the cross-entropy between the target distribution and the generated distribution
- $\cdot\,$ It has strong gradients when the classifier is wrong
- \cdot The gradients saturates when the classifier is right, but this is not as important
- For the generator objective, we have found a candidate with convenient theoretical interpretations
- Unfit in practice: When the discriminator successfully rejects generated examples with high confidence, the gradients of the generator loss vanishes
- $\cdot\,$ We must find a generator loss that does not saturate at unwanted places

 \cdot For the generator cost, we propose the following

$$J_G(\theta_D, \theta_G) = -E_{z \sim p_g} \log D(G(z; \theta_G); \theta_D)$$
$$= -\frac{1}{m} \sum_{i=1}^m \log D(G(z_i; \theta_G); \theta_D)$$

- With this, the generator maximizes the log-probability of the discriminator being mistaken (assigning label 1 to the generated examples)
- Contrast this with the previous minimax game where we the generator minimizes the log-probability of the discriminator being correct (assigning label 0 to the generated examples)
- Both the generator and the discriminator now have strong gradients when they are "losing the game"

THE GENERATOR COST FUNCTION

Figure 15: Graph of the gradient cost w.r.t. discriminator classification. Source: [Goodfellow, 2016]

COST FUNCTIONS OVERVIEW

 $\cdot\,$ Minimizing the discriminative cost

$$J_D(\theta_D, \theta_G) = -\frac{1}{m} \sum_{i=1}^{m} \left[\log(D(x_i; \theta_D)) + \log(1 - D(G(z_i; \theta_G))) + \log(1 - D(Z(z_i; \theta_G)$$

"pushes" D(x) to 1 (real class) and D(G(z)) to 0 (fake class)

 $\cdot\,$ Minimizing the generative cost

$$J_G(\theta_D, \theta_G) = -\frac{1}{m} \sum_{i=1}^m \log(D(G(z_i; \theta_G)\theta_D))$$

"pushes" D(G(z)) to 1 (real class)

- $\cdot\,$ Tend to produce sharper examples than other generative models
- \cdot The reason was thought to be the relationship to the JS-divergence
- $\cdot\,$ This view is not supported now
- $\cdot\,$ It is not entirely clear why GANs tend to produce sharper images

- · Convergence
- · Performance evaluation
- \cdot Discrete output

- $\cdot\,$ Achieving convergence is in general difficult
- $\cdot\,$ The solutions tends to oscillate
- This is connected to that one try to achieve an equilibrium in stead of a plain optimization
- · The major problem is connected to what is called *mode collapse*

- $\cdot\,$ A peak in the probability density is called a mode
- · Real-world data tends to be *multi-model*
- $\cdot\,$ This means that similar examples are clustered in separate locations
- \cdot The data probability distribution will have peaks (modes) at these locations
- $\cdot\,$ Mode-collapse is the phenomenon where the generator tends to generate very similar examples
- These similar examples originates from roughly the same location in the model distribution
- $\cdot\,$ This location has high probability in the data distribution.

Mode-collapse — example

- $\cdot \,$ Suppose we have a dataset with two modes, around A and B
- $\cdot\,$ You want the GAN to generate examples estimating the training data, from both $A\,$ and $B\,$
- $\cdot\,$ Mode collapse can be described as follows
 - 1. The generator produces examples close to A which "fools" the discriminator
 - 2. The discriminator classifies x from B as real with high probability, x from A are classified 50/50 as real or fake
 - 3. The generator is then driven to produce examples from ${\cal B}$
 - 4. The discriminator counters, and classifies examples x from A as real and examples from B real or fake with 50% probability
 - 5. This cycle then repeats from 1.

 \cdot Some rationale can be that when the generator should be the solution to

 $\min_{\theta_G} \max_{\theta_D} V(D,G)$

there seems to be difficult to guarantee that it is not the solution to

 $\max_{\theta_D} \min_{\theta_G} V(D,G)$

which would explain the mode collapse

- \cdot Partial mode collapse is more common than complete mode collapse
- \cdot Generated images then tend to have the same colors, or some of the same features
- $\cdot\,$ See the figure below for another example

Figure 18: Mode collapse on data of a mixture of gaussians. Source: [Metz et al., 2016]

PERFORMANCE EVALUATION

- $\cdot\,$ Results from generative models can be hard to quantify and evaluate
- \cdot Often, in terms of images, perceptual similarity is important
- \cdot Other generative models may have an explicit objective function
- \cdot GANs lack this, which makes it even harder
- · [Salimans et al., 2016] discusses this:
- · Human evaluation using Amazon Mechanical Turk
 - · Subjective
 - \cdot Work intensive
 - \cdot Overly pessimistic when thought
- · Automatic evaluation using a classifier to produce conditional distributions p(y|x)
 - \cdot Examples with a clear class should have p(y|x) with low entropy
 - · A generative model should produce varied results: $\int p(y|x = g(z)) \, \mathrm{d}z$ should have high entropy

- $\cdot\,$ We will present some useful tricks for GAN
- $\cdot\,$ Some are related to preventing the mode collapse problem
- · See [Salimans et al., 2016] and [Goodfellow, 2016] for a more thorough discussion

- · The discriminator in a standard GAN compares single examples
- The idea is to aid this comparison with information from the whole mini-batch of real and generated examples
- The rationale is that the discriminator can detect if one example is unusually similar to other generated examples
- \cdot This technique is shown to work quite well

- \cdot This is related to the minibatch discrimination
- \cdot Also attempts addressing the mode-collapse problem by increasing diversity
- Extends (or replaces) the discriminator loss with a comparison of intermediate features from both the real and generated data
- In stead of explicitly discriminating on the output, we also discriminate on hidden layers

- $\cdot\,$ If you have a labeled training set, use the labels
- $\cdot \,$ If you have K classes, add the fake data as class K+1
- \cdot The discriminator now tries to classify examples as one of K+1 classes
- \cdot This improves the perceptual quality of generated examples
- \cdot This technique can be used in semi-supervised learning

- \cdot Neural network classifiers tend to classify with too high confidence
- \cdot We can encourage the discriminator to produce more soft predictions
- $\cdot\,$ Set the true label for the real samples to be 0.9 in stead of $1\,$
- $\cdot\,$ This penalizes models producing too large logits on real samples
- $\cdot\,$ Important to not smooth the generated sample label

BATCH NORM

- $\cdot\,$ Batch normalization in GAN is, in general, very useful
- Batch normalization is not ideal for small batch sizes as the mean and variance varies too much between batches
- This is problematic for GANs as these fluctuations can dominate over the latent variable *z* in the generator (see figure below)
- · Reference batch norm and virtual batch norm can aid this [Goodfellow, 2016]

Figure 19: GAN on ImageNet. Source: [Goodfellow, 2016]

DECENT LOOKING EXAMPLES

PROBLEMS WITH COUNTING

Figure 21: GAN on ImageNet. Source: [Goodfellow, 2016]

PROBLEMS WITH 3D (ONE OF THESE ARE REAL)

PROBLEMS WITH ANATOMY AND STRUCTURE

NOTABLE GAN VARIANTS

- $\cdot\,$ GANs have gained a lot of interest
- For an impression of the amount of models, take a look at this post: https://deephunt.in/the-gan-zoo-79597dc8c347
- \cdot We are only going to look briefly at two architectures:
 - · DCGAN
 - · WGAN
- \cdot Both have been selected because of their generality and popularity

- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [Radford et al., 2016]
- $\cdot\,$ Wants to learn good intermediate image representations from unlabeled data
- $\cdot\,$ VAEs and standard GANs produces generates blurry images
- $\cdot\,$ GANs are difficult to train and can generate non-sensical results
- $\cdot\,$ DCGAN enables the coupling of CNNs with GANs

- \cdot Uses techniques from the (then) resent lessons learned
- Replaces deterministic spatial pooling operations (such as maxpool) with learned spatial up- and down-sampling
 - $\cdot\,$ strided convolutions for the discriminator
 - $\cdot\,$ fractionally strided convolutions (transposed convolutions) for the generator
- Elimination of dense layers on top of the convolutional layers at the end of the networks
- \cdot Use batch-normalization between layers in both the generator and discriminator
- \cdot Use ReLU activation in the generator (except in the output layer, which uses tanh)
- \cdot Use leaky ReLU activation in the discriminator

Figure 24: DCGAN generator architecture. Source: [Radford et al., 2016]

- \cdot Image values are scaled to [-1,1]
- \cdot Adam optimizer with momentum 0.5
- $\cdot\,$ Learning rate of 2×10^{-4}
- · Mini-batch size of 128
- \cdot Initialize weights from a zero-mean normal distribution with standard deviation 0.02

DCGAN - RESULTS

Figure 25: Bedroom interpolation

DCGAN - RESULTS

Figure 26: Faces looking left to faces looking right

- · Introduced in 2017, [Arjovsky et al., 2017]
- $\cdot\,$ Claims to solve, or reduce many of the problems with training GANs
- \cdot Is based on the Wasserstein distribution similarity metric
- $\cdot\,$ Has become quite popular with >500 citations and >1700 github stars in little over a year
- $\cdot\,$ It is quite technical, so we will only look at the wasserstein distance
- · Also known as Earth Mover Distance
- · Intuitively easy to grasp
- $\cdot\,$ Quite complicated to derive, compute, and fully understand
- \cdot We will only concern ourself with the intuition
- · For more details, I refer to https://vincentherrmann.github.io/blog/wasserstein/,
- $\cdot\,$ The figures for this section are from the above resource

- It measures the smallest amount of "work" that needs to be done in order to transform one distribution to the other.
- \cdot Let our distributions be P_r and $P_ heta$

WASSERSTEIN DISTANCE

- · Let $\gamma(x,y)$ be the difference between $P_r(x)$ and $P_{\theta}(y)$
- $\cdot\,$ The Wasserstein distance is then

$$W(P_r, P_{\theta}) = \inf_{\gamma \in \Gamma} \sum_{x, y} ||x - y|| \gamma(x, y)$$

- $\cdot\,$ Here Γ contains all "valid" γ (details are not important here)
- inf means *infimum* and can be thought of as the greatest lower bound

WGAN — MOTIVATING EXAMPLE

Figure 29: Wasserstein distance (left) and JS-divergence (right) when the above two distributions come closer, overlap, and then move away from each other again. Source: [Arijovsky et al., 2017]

ADVERSARIAL DOMAIN ADAPTATION

- \cdot Generalization of results on training to the real world is crucial for a useful method
- \cdot This can be hard enough when training and test comes from the same distribution
- Even worse when the train and test data comes from different distributions, known as *domain shift* or *dataset bias*
- · Domain adaptation methods addresses this problem
- $\cdot\,$ Adversarial domain adaptation methods uses principles from GANs
- In essence, they try to train models that are invariant to the dataset domain by trying to fool a discriminator that tries to classify domains

- \cdot There are several approaches to this problem
- · Notable works are e.g.
 - · Gradient reversal [Ganin et al., 2016]
 - · Domain confusion [Tzeng et al., 2015]
 - · CoGAN [Liu and Tuzel, 2016]
- The adversarial discriminative domain adaption (ADDA) is illustrated because of its simplicity and performance

- \cdot We have labeled data (x_s,y_s) for the source domain
- \cdot The target domain data, y_t is unlabeled
- \cdot We are going to learn a source mapping $M_s: x_s \mapsto y_s$
- \cdot We are also going to learn a target mapping $M_t: x_t \mapsto y_t$
- The target mapping should be invariant to the domain difference between the source and the target
- We are going to use a discriminator with an associated loss to learn this domain invariance

ADDA: EXAMPLE MAPPINGS

- $\cdot\,$ For the source mapping $M_s,$ we can use a standard classification network with cross-entropy loss
- $\cdot\,$ The target mapping M_t is equal to M_s , except for the classifier part, but with separate and independent parameters
- \cdot The parameters of M_t are initialized with the parameters of a trained M_s
- $\cdot \ M_s$ is fixed when M_t is trained

ADDA: DISCRIMINATOR

- \cdot The discriminator D should classify outputs of these networks as either originating from the source or the target domain
- \cdot This is a similar situation as with regular GANs, and the loss is

$$J_D(M_s, M_t) = -E_s \left[\log D(M_s(x_s)) \right] - E_t \left[\log(1 - D(M_t(x_t))) \right]$$

- The discriminator wants to maximize the probability that it predicts the correct domain
- The target mapping should produce examples that maximizes the probability of being classified as coming from the source
- $\cdot\,$ We therefore chose the generator loss from GANs

 $J_M(M_s, M_t) = -E_t \left[\log D(M_t(x_t)) \right]$

 $\cdot E_d$ is the expectation over examples in $d \in \{$ source, target $\}$

- $\cdot\,$ We now have a classifier that can classify examples from features
- \cdot We also have a base mapping M_t that should generate domain-invariant features
- $\cdot\,$ We reuse those parts in the testing

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial Networks. *arXiv preprint*, 2017. URL https://arxiv.org/pdf/1701.07875.pdf.

- Ugur Demir and Gozde Unal. Patch-Based Image Inpainting with Generative Adversarial Networks. *arXiv preprint*, 2018. URL http://arxiv.org/abs/1803.07422.
- Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms. *arXiv preprint*, (Iccc):1–22, 2017. doi: 10.1089/cyber.2017.29084.csi. URL http://arxiv.org/abs/1706.07068.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal of Machine Learning Research*, 2016.

REFERENCES II

Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv preprint, 2016. ISSN 0253-0465. doi: 10.1001/jamainternmed.2016.8245. URL http://arxiv.org/abs/1701.00160.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv preprint, pages 1–9, 2014. ISSN 10495258. doi: 10.1001/jamainternmed.2016.8245. URL http://arxiv.org/abs/1406.2661.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. CoRR, 2016.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled Generative Adversarial Networks. *arXiv preprint*, 2016. URL https://arxiv.org/pdf/1611.02163.pdf.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In *ICLR 2016*, pages 1–16, 2016. URL http://arxiv.org/abs/1511.06434.

- Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved Techniques for Training GANs. *arXiv preprint*, 2016. doi: arXiv:1504.01391. URL https://arxiv.org/pdf/1606.03498.pdf.
- Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across domains and tasks. *International Conference in Computer Vision (ICCV)*, 2015.

QUESTIONS?