Textual Entailment Evolution and Application

Milen Kouylekov

Outline

- What is Textual Entailment?
- Distance Based Approach to Textual Entailment
- Entailment Based approach for Relation Extraction

Language Variability

The same information can be expressed with different ways (e.g. words and syntactic constructs)

Example:

- Ivan Kostov came in power in 1997.
- Ivan Kostov was prime-minister of Bulgaria from 1997 to 2001.
- Ivan Kostov stepped in as prime-minister 6 months after the December 1996 riots in Bulgaria.

Pervasive problem in the area of Natural Language Processing

- Lexical variability:
 - Squadra Azzura won the World Cup.
- Semantic Variability:
 - Italy became world champion for the fourth time.
- Syntactic & Semantic Variability:
 - The World Cup final was won by Italy.

Paraphrasing

Definition: pairs of units with approximate conceptual equivalence.

Test: substituted for one another in many contexts.

Example:

- Yahoo bought Overture.
- Yahoo purchased Overture.
- Yahoo pay for Overture.
- Yahoo completed acquisition of Overture.

Does not provide a complete model of the problem of language variability:

- Template: X owned Y
- Sentence : Datel corp. sold today DT Communications to Microsoft.

Regina Barzilay. PhD Thesis. 2003

Research Areas

The following areas have something in common:

- Information Retrieval
- Question Answering
- Information Extraction
- Summarization
- ...

Textual Entailment

An Entailment Relation holds between two text fragments (i.e. text T and hypothesis H) when the meaning of H, as interpreted in the context of T, can be inferred from the meaning of T.

- **Directional** an expression entails the other, while the opposite may not.
- Probabilistic the relation is not deterministic.

Example:

- T "For the first time in history, the players are investing their own money to ensure the future of the game," Atlanta Braves pitcher Tom Glavine said.
- H Tom Glavine plays for the Atlanta Braves.
- Dagan and Glickman. 2004. Pascal Workshop.

Entailment Rules

- Entailment Rules play a crucial role in textual entailment.
- An entailment rule consists of an entailing template (left hand side RHS) and an entailed template (right hand side RHS), which share the same variable scope.
- In order to apply an entailment rule, an appropriate prior or contextual (posterior) probability has to be assigned.

$$X \leftarrow \text{sell} \rightarrow Y \Rightarrow X \leftarrow \text{own} \rightarrow Y$$

 $Y \leftarrow X \rightarrow \text{pitcher} \Rightarrow X \leftarrow \text{play} \rightarrow Y$

Recognizing Textual Entailment

- RTE takes as input a T -H pair and consists in automatically determining whether an entailment relation* between T and H holds or not.
- Evaluated in 9 monolingual (8 English and 1 Italian) evaluation campaigns and 2 crosslanguage campaigns (CLTE)

RTE 1, 2 & Evalita

- One Text and One Hypothesis
- 2 Semantic Relations Between Texts
 - Entailment (YES)
 - No Entailment (NO)

```
<pair value="TRUE" task="CD">
    <t>
        Recreational marijuana smokers are no more likely to develop oral cancer
        than nonusers.
        </t>
        </t>
        </t>
        <br/>
        <h>
        Smoking marijuana does not increase the risk of developing oral cancer.
        </h>
        </pair>
```

RTE 3, 4 & 5

- One Text and One Hypothesis
- 3 Relations
 - Entailment
 - Contradiction
 - Unknown

```
<pair value="CONTRADICTION" task="CD">
  <t>
     Yahoo both Overture.
  </t>
  </t>
  </t>
  <h>
     Yahoo sold Overture.
  </h>
  </pair>
```

RTE 5 & 6

- One Hypothesis Multiple Texts
- 2 Semantic Relations between texts (YES|NO)

RTE 8

- One Text and One Hypothesis
- 5 Semantic Relations (Student Responses)
 - Correct
 - Partially Correct
 - Contradictory
 - Irrelevant
 - Non Domain

Cross Language Textual Entailment

- One Text and One Hypothesis
- 4 Relations (Content Synchronization)
 - Bi-Directional
 - Forward
 - Backward
 - No Entailment

Edit Distance Based Approach

We assume that the distance between T and H is a characteristic that separates the positive pairs from the negative pairs.

- It exists a function, with range from 0 to K, that calculates an entailment score of a T-H pair based on the edit distance between T and H.
- If T and H are the same, then T entails H.
- If T and H are completely different then, T does not entail H.
- It exists a distance boundary (threshold) S, 0 < S < K,
 that separates the positive from the negative examples.

Edit Operations

We assume that the distance between T and H is computed as the cost of the editing operations on text fragments that transform T into H.

Edit Operation - An operation that converts a text fragment A into another text fragment B (A \rightarrow B) with a certain cost γ (A \rightarrow B).

- Insertion $\Lambda \to A$: Inserts a text fragment A from H in T .
- Deletion A → Λ: Removes a text fragment A from T.
- Substitution A → B: Replaces a text fragment A form T with a text fragment B from H.

Algorithms

- Token Edit Distance (Levenshtein Distance on Words)
- Tree Edit Distance (Dependency Trees)
 - Kouylekov & Magnini Tree Edit Distance for Recognizing Textual Entailment
- Similarity Algorithms
 - Word Overlap
 - Longest Common Subsequence
 - Rouge

Substitution - Matching

- Central Part of the approach
- Employs Entailment Rules
- Source:
 - WordNet
 - Paraphrasing Resources
 - Similarity Databases
 - Ontologies
- Rules extracted using Web Crawling
 - L. Romano et. al. Investigating a Generic
 Paraphrase-Based Approach for Relation Extraction

Insertion & Deletion (Weight)

Linguistically Motivated Rules

- Negation
- Elena Cabrio (2011). Component-based Textual Entailment: a Modular and Linguistically-motivated Framework for Semantic Inferences. Ph.D. Thesis

Approximations

- Inverse Document Frequency
- Learning
 - Genetic Algorithms
 - Mehdad & Magnini (2009) Optimizing textual entailment recognition using particle swarm optimization

How this thing work for RTE

2 Relations

 Calculate a threshold that separates the positive from the negative

3 Relations

 Calculate 2 thresholds by grouping 2 similar relations and then separating

Multiple Relations

Use Learning Algorithm

Generalized Architecture

Open Source

EDITS is available at SourceForge

http://edits.sf.net

Kouylekov & Negri An Open-Source Package for Recognizing Textual Entailment. (ACL 2010)

Kouylekov et.al. Is it Worth Submitting this Run? Assess your RTE System with a Good Sparring Partner. TextInfer (EMNLP 2011)

Qall-Me Project

Objectives

 "design and implementation of a semantic based answer extraction Web Service [...] extract short answers [...] evaluate their reliability [...] return context sensitive answer representations"

Q QALL-ME Idea

- Recast our QA problem as a TE recognition problem where:
 - o *t* is the input question
 - h is a textual pattern stored in a pattern repository
 - Textual patterns are associated to *instructions* for answer retrieval (in our case SPARQL queries to a database)

Task: given a question (Q), check for the existence of entailment relations between Q and a set of textual patterns ($p_1, ..., p_n$), stored in a pattern repository P, which describe the relations of interest in a certain domain.

QALL-ME TE-based Approach

Given:

A question Q_i

A repository P of patterns $p_1, \dots p_n$ associated to SPARQL queries $q_{p1}, \dots q_{pn}$

Step1: If Exists pattern p_i in P

IF Q_i entails p_j

THEN collect p/q_{pj}

ELSE nil

RETURN entailed *p/q* pairs

Step2: **COMBINE** the collected queries in a single query to the DB

Input question

Q: "Where is cinema Astra located?"

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P_4 : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P_n	P _n SPARQL

Input question

Q: "Where is cinema Astra located?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P ₄ : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

Input question

Q: "Where is cinema Astra located?

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P ₄ : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

Input question

Q: "Where is cinema Astra located?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P ₄ : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

SELECT ?address

WHERE { ?cinema rdf:type tourism:Cinema

?cinema tourism:name "Astra".

?cinema tourism:hasPostalAddress ?addr.

?addr tourism:street ?address }

Input question

Q: "Where is cinema Astra located?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P_4 : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

SELECT ?address

WHERE { ?cinema rdf:type tourism:Cinema

?cinema tourism:name "Astra".

?cinema tourism:hasPostalAddress ?addr.

?addr tourism:street ?address }

Input question

Q: "What's the address of Astra?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P_4 : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

SELECT ?address

WHERE { ?cinema rdf:type tourism:Cinema

?cinema tourism:name "Astra".

?cinema tourism:hasPostalAddress ?addr.

?addr tourism:street ?address }

Input question

Q: "Where can I find a cinema in the city centre?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P ₄ : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P _n	P _n SPARQL

SELECT ?address

WHERE { ?cinema rdf:type tourism:Cinema

?cinema tourism:name "Astra".

?cinema tourism:hasPostalAddress ?addr.

?addr tourism:street ?address }

Input question

Q: "I want to see a movie at Astra. Where is it?"

Entailment engine

Pattern repository

P ₁ : What is the telephone number of <i>Cinema:X</i> ?	P ₁ SPARQL
P ₂ : Who is the director of <i>Movie:X</i> ?	P ₂ SPARQL
P ₃ : What is the ticket price of <i>Cinema:X</i> ?	P ₃ SPARQL
P_4 : Give me the address of <i>Cinema:X</i> .	P ₄ SPARQL
P_n	P _n SPARQL

SELECT ?address

WHERE { ?cinema rdf:type tourism:Cinema

?cinema tourism:name "Astra".

?cinema tourism:hasPostalAddress ?addr.

?addr tourism:street ?address }

Q.

Entailment-based QA

- Advantages of the proposed framework
 - Simplicity
 - Linguistic variations are handled at textual level
 - Process independent from the DB schema: no need of explicit mapping between linguistic expressions and the DB content
 - Reduced manual effort
 - Flexibility
 - A variety TE recognition approach/algorithm can be used and experimented
 - From simpler BOW approaches to more complex techniques based on deep syntactic analysis

Q.

Minimal Relational Patterns

- Focus: question decomposition into basic relations
 - Entailment checking between questions and Minimal Relational Patterns (def: "minimal text portions expressing a relation between two entities")
- Motivation: mapping questions to MRPs enables a more effective treatment of complex inputs (i.e. those involving many relations)

"On Saturday, where can I see in the city centre a comedy starring Ben Stiller?"

- Techniques: distance-based TE recognition
 - Levenshtein Distance: estimate the costs of transforming (through words insertion, deletion, or substitution) a question Q into a pattern P

Q: Come si intitola il film di stasera all'Astra di Trento?

Q: Come si intitola il film di stasera all'Astra di Trento?

RELATION ENTAILED MRP SPARQL
HasTitle(Movie, Title) P1 Dimmi il titolo di [MOVIE] Q1

Q: Come si intitola il film di stasera all'Astra di Trento?

RELATION ENTAILED MRP SPARQL

HasTitle(Movie, Title) P1 Dimmi il titolo di [MOVIE] Q1

HasMovie(Cinema, Movie) P2 [MOVIE] al cinema [CINEMA] Q2

Q: Come si intitola il **film** di **stasera** all'Astra di Trento?

RELATION ENTAILED MRP SPARQL

HasTitle(Movie, Title) P1 Dimmi il titolo di [MOVIE] Q1

HasMovie(Cinema, Movie) P2 [MOVIE] al cinema [CINEMA] Q2

HasDate(Movie, Date) P3 film in programma [T-EXP] Q3

Q: Come si intitola il film di stasera all'Astra di Trento?

RELATION ENTAILED MRP SPARQL

HasTitle(Movie, Title) P1 Dimmi il titolo di [MOVIE] Q1

HasMovie(Cinema, Movie) P2 [MOVIE] al cinema [CINEMA] Q2

HasDate(Movie, Date) P3 film in programma [T-EXP] Q3

IsInCity(Cinema, City) P4 [CINEMA] di [LOCATION] Q4

Q: Come si intitola il film di stasera all'Astra di Trento?

RELATION ENTAILED MRP SPARQL

HasTitle(Movie, Title) P1 Dimmi il titolo di [MOVIE] Q1

HasMovie(Cinema, Movie) P2 [MOVIE] al cinema [CINEMA] Q2

HasDate(Movie, Date) P3 film in programma [T-EXP] Q3

IsInCity(Cinema, City) P4 [CINEMA] di [LOCATION] Q4

Combined SPARQL query to the DB

Q What to do by hand?

Minimal manual effort

- 1. Collect domain-specific questions (QALL-ME benchmark)
- 2. To each question Q_i , associate all the ontology relations it expresses $R_1, ..., R_n$
- 3. Split [Q,R] pairs into training and test set
- 4. For each relation R_x , build a cluster C_{Rx} of positive examples expressing R_x
- 5. Extract relational patterns P from training questions (Pattern Extraction using Genetic Algorithm)
 - Kouylekov & Negri Detecting Expected Answer Relations through Textual Entailment.
- 6. Train a TE engine over [Q,P] pairs, both on positive and negative examples
- 7. Use test [Q,R] pairs to evaluate the entailment engine

Q Evaluation

- F-Measure: .72
- User Centric Evaluation:
 - The question got a correct answer?
 - o Four types:
 - Recognized all relations correctly (178)
 - Recognized some of relations (230)
 - Recognized some correctly some wrong (29)
 - Recognized only wrong (51)

Thanks

