Treelet model for HPSG-parsing with error correction

Angelina Ivanova Project carried out at University of Groningen

PhD Seminar in Language Technology 08.10.2013 Oslo, Norway

Motivation

HPSG-parsing with error-correction

 Cross-sentence comparability of parse tree probabilities

Related work

- Shared tasks on grammatical error correction: HOO 2011, 2012; CoNLL 2013
- Influence of errors on parse tree probabilities: Wagner and Foster (2009)
- Treelet model for error correction: Pauls and Klein (2012), Yoshimoto et al. (2013)
- HPSG-parsing with error correction: Flickinger and Yu (2013)

System

 Generate weighted versions of a sentence with a grammatical error
 Approaches: n-gram (Lee and Seneff, 2006), Levenshtein-distance kernel (Levy, 2008)

Parse candidate sentences with PET

 Choose the best version by the highest joint probability of the version and its parse tree

 $s = s_i | max(P(s_i, t_i))$

 s_e^{-} erroneous sentence $s_1^{-} \dots s_n^{-}$ - versions of s_e^{-} with error correction $t_1^{-} \dots tn$ - parse trees of versions s - best corrected version of s_e^{-}

System

Sentence with an error:
 Am I feeding my prt enough?

Corrected sentence versions:

Am I feeding my pet enough?
Am I feeding my put enough?
Am I feeding my part enough?

Requirement

Generative probabilities of parse trees

we need to compare probabilities of parse trees of different sentences (corrected versions of the sentence with an error)

Parse ranking in PET

 PET exploits maximum entropy model for parse selection (discriminative)

- Only parse trees of the same sentence could be compared by the scores
- To obtain generative probabilities unpacking of the whole forest is required, which is not easily feasible

Possible solution

Apply treelet model to compute generative probabilities of the parse trees

Treelet model (Pauls and Klein, 2012)

r = P ---- C1, ..., Cd

r – parent symbol C1, ..., Cd – children

Probability of the parse tree:

$$p(T) = \prod_{r \in T} p(C_1^d | h)$$

h - context

Context (Pauls and Klein, 2012)

Zero probabilities: non-terminal producitons

 Backing-off $p(C_1^d|r', P', P) \implies p(C_1^d|P', P) \implies p(C_1^d|P) \implies$ $\Rightarrow \lambda \prod^{d} p(C_i|P) + (1-\lambda) \prod^{u} p(C_i) \Rightarrow$ $P_{WB}(C_i) = \frac{c_h(\epsilon)}{c_h(\epsilon) + N_{1+}(\epsilon)} P_{MLE}(C_i) +$ $+\frac{N_{1+}(\epsilon)}{c_h(\epsilon)+N_{1+}(\epsilon)}\frac{1}{|V|}$

Back-off parameters

Estimation-maximization algorithm

The algorithm searches for λ_j that would minimize

 $-\frac{1}{|H|}\sum_{i\ldots|H|}\log_2(p'_\lambda(w_i|h_i))$

where H is the size of the development set.

Algorithm finds maximum likelihood estimates of the parameters of the statistical model. It alternates between the two steps: estimation and maximization.

Zero probabilities: lexical level

- We have seen all the lexical items of which the ngram is composed on the training set, but we haven't seen such ngram.
 Solution: smoothing
- We haven't seen one or several lexical items of which the ngram is composed.
 <u>Solution:</u> UNK_> token

$$p_{KN}(w_i|w_{i-n+1}^{i-1}) = \frac{c(w_{i-n+1}^i) - D(c(w_{i-n+1}^i))}{\sum_{w_i} c(w_{i-n+1}^i)} + \gamma(w_{i-n+1}^{i-1})p_{KN}(w_i|w_{i-n+2}^{i-1})$$

where

$$D(c) = \begin{cases} 0 & \text{if } c = 0\\ D_1 & \text{if } c = 1\\ D_2 & \text{if } c = 2\\ D_{3+} & \text{if } c \ge 3. \end{cases}$$
$$\gamma(w_{i-n+1}^{i-1}) = \frac{D_1 N_1(w_{i-n+1}^{i-1} \cdot) + D_2 N_2(w_{i-n+1}^{i-1} \cdot) + D_{3+} N_{3+}(w_{i-n+1}^{i-1} \cdot)}{\sum_{w_i} c(w_{i-n+1}^i)} \end{cases}$$

$$N_1(w_{i-n+1}^{i-1}\cdot) = |\{w_i \colon c(w_{i-n+1}^{i-1}w_i) = 1\}$$

the number of words that appear after the context w_{i-n+1}^{i-1} exactly once.

$$N_2(w_{i-n+1}^{i-1}\cdot) = |\{w_i \colon c(w_{i-n+1}^{i-1}w_i) = 2\}|$$

the number of words that appear after the context w_{i-n+1}^{i-1} exactly twice.

$$N_{3+}(w_{i-n+1}^{i-1}\cdot) = |\{w_i \colon c(w_{i-n+1}^{i-1}w_i) \ge 3\}|$$

the number of words that appear after the context w_{i-n+1}^{i-1} three or more times.

$$D_{1} = 1 - 2Y \frac{n_{2}}{n_{1}}$$
$$D_{2} = 2 - 3Y \frac{n_{3}}{n_{2}}$$
$$D_{3+} = 3 - 4Y n_{4} n_{3}$$
$$Y = \frac{n_{1}}{n_{1} + 2n_{2}}$$

where n_1 , n_2 , n_3 and n_4 are the total number of n-grams with exactly one, two, three and four respectively, in the training data.

 $\sum_{w_i} c(w_{i-n+1}^i) = 0$

lf

1) full backoff to the lower level n-gram 2) setting the probability to a small constant μ = 0.000001

<UNK> tokens

Hapax to model unknown words

Choose vocabulary in advance and replace other words in the training corpus with <UNK> (12%)

ERG data

 36,918 sentences from DeepBank 1.0 (sections 0-21 of PTB in ERG representation)

 50,997 sentences from WeSearch, Sem-Cor, Verbmobil and other resources

ERG data

Train Development

Test

63,298 sentences7,034 sentences17,583 sentences

NUS Corpus

NUS Corpus of Learner English

 We collected only non-overlapping corrections that are in the scope of one paragraphs

Wikipedia

3,959 pairs of aligned sentences from Wikipedia 2012 and Wikipedia 2013

Hypothesis Sent. from Wiki 13 are corrections for sent. from Wiki 12

Experiments

- Parse selection
- Scoring parse trees of erroneous and corrected sentences

Treelet model for parse selection

Upper- bound	12,311 sent.	100%
Treelet	4,487 sent.	36.45%
PCFG	2,905 sent.	23.60%
Random	621 sent.	5.04%

Treelet model for parse selection

- Treelet model gives 36.44% exact match.
 Zhang et al. (2007): 56.83% exact match for selective unpacking.
- Differences:
 - 1) Multiple domains vs. one domain
 - 2) Size of datasets:
 - 63,298 vs 8,000 for training
 - 12,255 vs 1,603 for testing

Treelet model for scoring parse trees of erroneous and corrected sentences

Model	NUS corpus			Wikipedia		
	Corrected	Equal	Original	Corrected	Equal	Original
Oracle	2,223		0	4,604		0
Treelet	1,449	11	763	1,884	994	1,726
PCFG	1,304	11	908	1,835	996	1,773
Trigram	1,249	80	894	1,732	1,294	1,578
Random	1,112		1,111	2,302		2,302

Statistical significance

- Binomial test
 Population proportions
 Analysis of variance
- Results on the NUS corpus are significant
 Results on the Wikipedia dataset are insignificant

Wikipedia errors

 Noise will be created - were be created Proper nouns Christobal – Christóbal Herakles – Heracles Stuebing – Stübing Semantic errors most – many youth days after his birth – four days after his birth Stylistic errors you – one Discourse-level errors his daughter – their daughter

Proper nouns

Possible solution: add lists of proper nouns to vocabulary

Conclusions

- The treelet model outperforms PCFG for parse selection but is probably weaker than ME
- The treelet model scores parse trees of corrected sentences more often than PCFG and trigram on the NUS corpus
- The treelet, PCFG, trigram and random models perform similarly on the Wikipedia dataset
- Results on Wikipedia are related to the types of errors present in the resource

Contributions

 The Wikipedia dataset (pairs of parallel sentences from Wiki12 and Wiki13)

 Application of the treelet model to the two tasks