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Health Care Analytics and Modeling 

•  Four professors, two 
physicians, nine PhDs 
and three PhD students 
•  NLP and Text Mining 
on (Swedish) clinical 
data --> 
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The Stockholm EPR Corpus 

•  Stockholm City Council 
•  ~ 1 million patients 
•  ~ 900 clinical units 
•  ~ 23 000 users 
•  2006 – 2008 (plus newer now) 
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Ethics 

•  Approval from Regional Vetting board 
(Etikprövningsnämnden) 

•  De-identified with respect to names and social 
security number 

–  Personal information still in free-text 

–  Secure storage 
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The medical records 

•  Structured information 
–  Gender, age, admission and discharge date, 

ICD-10 code, categories (specific to 
departments) 

•  Unstructured information (free-text) 

–  Documentation – spelling errors, jargon, 
domain-specific abbreviations, etc. 

–  Still a lot of personal information 
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Internal Projects 

•  Automatic de-identification 
•  Automatic identification of symptoms, diseases, 

diagnoses 
•  Automatic assignment of diagnosis codes 

(ICD-10) 

•  Co-morbidity networks 
•  Linguistic characterization 
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External Projects 

•  Interlock – Inter-language collaboration in clinical NLP 

–  DSV (me) and UCSD School of Medicine's Division of 

Biomedical Informatics (Dr. Wendy Chapman), Supported by 

the Stockholm University Academic Initiative 
•  HEXAnord - HEalth TeXt Analysis in the Nordic and Baltic 

Countries 

–  Sweden, Finland, Norway, Denmark, Estonia, Lithuania 

Supported by Nordforsk – The Nordic Council of Ministers 
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External Projects 

•  NICTA-Australia collaboration 
–  Dr. Hanna Suominen and Dr. David Martinez 

–  Text mining of invasive fungal infections 

•  Decision support for clinicians 
•  High-Performance Data Mining for Drug Effect 

Detection (DADEL) 
•  Dept. Computer and Systems Sciences, 5 years, 1/5 NLP 

•  Funded by the Swedish Foundation for Strategic Research 
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External Projects 

•  Detect-HAI 
•  Detection of Hospital Acquired Infections through 

language technology 

•  Collaboration with Karolinska University Hospital 

•  Automatiserad översättning av röntgensvar till 
allmänsvenska - ett led i demokratiseringen av 
sjukvården 
•  Making medical records understandable for patients 
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Shades of Certainty 

•  My PhD topic..! 
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Motivation 

•  Improve information access 
–  Reasoning documented in (EPR) free-text 

•  speculations, negations, affirmations 
•  important to distinguish 

–  Accurate and situation-specific information 
–  Overviews/summaries: these diagnoses have 

been affirmed, negated, … 
–  Capture reasoning à deepened knowledge 
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Aim and Objectives 

•  Build automated information access systems 
–  create annotation schema for modeling 

certainty levels 
–  apply on Swedish clinical documentation  
–  gain empirical understanding for qualitative 

analysis and use for automatic classifiers 

–  à adverse event surveillance, drug side-
effects, decision support, summaries, … 
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Approaches 

•  Two annotation initiatives 
–  Sentence level, “naive” annotators 

•  Different clinical departments 
–  Diagnostic statement level, domain-expert 

annotators 

•  One clinical department 
•  Automatic classification 

•  E-health scenarios 
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Sentence level: Comparison over 
clinics 
Geriatric clinics contain less uncertain expressions  
Neurology clinics contain most amount of uncertain 
expressions 
Uncertain expressions are often longer 
 

Sumithra Velupillai 14 



Levels of Knowledge Certainty 
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Diagnostic statement level 
annotation 
•  Creation of diagnosis list (~300 diagnostic 

statements) 
•  Annotation guidelines and annotations 

–  Two senior physicians (“domain experts”) 
•  Emergency ward, assessment entries 

–  Stockholm EPR Corpus 
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Diagnostic statement level: 
example 
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Patient has Parkinsons disease.  
Physical examination strongly suggests Parkinson. 
Patient possibly has Parkinson.  
Parkinson cannot yet be outruled. 
No support for Parkinson. 
Parkinsson can be excluded. 
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Results 
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•  Intra- and Inter-Annotator Agreement 
–  0.7/0.58 F-measure, 0.73/0.6 Cohen’s κ, 0.88/0.82 κw 

•  Certainly Positive clear majority (approx. 50%) 
–  High IAA: 0.9 F-measure 

•  Possibly Negative very rare 

•  Discrepancies in intermediate classes 
•  1-step most common 
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Certainly positive dominates:  

diagnosis shows on the outside 
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Certainly negative dominates:  

Generic skeleton injuries 

22 



Sumithra Velupillai 

Certainly	
  	
  

Posi.ve	
  

	
  

Probably	
  	
  

Posi.ve	
  

	
  

Possibly	
  

Posi.ve	
  

	
  

Certainly	
  	
  

Nega.ve	
  

	
  

Possibly	
  

Nega.ve	
  

	
  

Probably	
  

Nega.ve	
  

	
  

23 

Inverted pattern:  

Complementary vocabulary 
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Shift pattern:  

Speculation in Swedish 
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Annotation model: Conclusion 

•  Functional and agreeable model for annotators 
•  IAA results suggest that this model can be used 

for developing automated systems 
•  Different types of “cues” (not only linguistic) 
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Automatic classification 

•  Conditional Random Fields 
•  Local (simple) context features 

–  Window +/- 4 
–  Words, lemmas, PoS 
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Automatic classification 

•  all classes (8) 
•  merged classes (5) 

•   probably/possibly, nd+o 
•  Evaluation: 80/20% training/testing split 

•  stratified class distribution 

•  precision, recall, f-score (micro-average) 
•  conlleval 
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Automatic classification - results 

•  0.699 F-measure (all classes) 
•  0.762 F-measure (merged classes) 
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Automatic classification - results 

•  Preceding context important 
–  Låg sannolikhet för (low probability for) 
–  Tolkas som (interpreted as), sannolikt (likely) 

•  Lower levels of certainty more difficult 
–  Rare classes, lower IAA 

–  Conjunctions and other higher-level features 
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E-Health Scenarios 

•  Are these fine-grained levels needed/practical? 
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yes no 
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yes no 

yes no 
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yes no 
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yes no 
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yes no 

yes no Maybe 
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E-Health Scenarios 
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Adverse event surveillance 

 
Decision support alerts 

 
Summary/overview 
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E-Health Scenarios: Automatic 
classification 
•  Adverse event surveillance 

•  existence, no existence 
•  Decision support alerts 

•  plausible existence, no plausible existence 
•  Automatic summaries/overview 

•  affirmed, maybe, negated/excluded 
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E-Health Scenarios: Automatic 
classification 
•  Overall average results 

•  Adverse event surveillance: 0.89 F-score 
•  Decision support alerts: 0.91 F-score 
•  Automatic summaries/overviews: 0.8 F-score 

•  Improvements over baselines 
•  majority class + no context 
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E-Health Scenarios: Error analysis 

•  Difficulties in distinguishing probably negative 
and certainly negative 
•  Inga hållpunkter för (no indicators of) 

•  Local or global context 
•  Modifier emphasis 

•  liten misstanke (small suspicion) 
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E-Health Scenarios: Error analysis 

•  Clinical exclusion difficult 
•  e.g. DVT, important severe consequences if missed 

•  Test results 
•  performing a test in itself is indication of risk, but 

surrounding context suggests otherwise 

•  Chronic diseases 
•  e.g. probably stress triggered asthma 
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Conclusion & Discussion  

•  One fine-grained annotation model for several 
purposes/scenarios 

•  Annotation discrepancies need to be analyzed à 
refine annotation task 

•  Further studies on classification algorithms, 
representation and features needed 

Sumithra Velupillai 40 40 



Conclusion & Discussion  

•  Valuable corpora created for further studies 
•  Feasibility studies of automatic classification 
•  Evaluation – involve users 
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Thank you for your attention 

 

 
Ideas and comments welcome! sumithra@dsv.su.se 
 

Sumithra Velupillai 42 42 


