Static analysis and all that

Martin Steffen

Ifl UiO

Spring 2016

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Static analysis and all that

Martin Steffen

Ifl UiO

Spring 2016

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Plan

approx. 15 lectures, details see web-page

flexible time-schedule, depending on progress/interest
covering parts/following the structure of textbook [1],
concentrating on

e overview

o data-flow

e control-flow

o type- and effect systems

on request, new parts possible

helpful prior knowledge: having at least heard of

o typed lambda calculi (especially for CFA)
e simple type systems

e operational semantics

o lattice theory, fixpoints, induction

but things needed will be covered ...

0 Introduction

@ Setting the scene
Data-flow analysis
Equational approach
Constraint-based approach
Constraint-based analysis
Type and effect systems
Algorithms

Plan

e introduction/motivation into the field

e short survey about the material: 5 main topics
e data flow analysis
o control flow analysis/constraint based analysis
o [Abstract interpretation]
o type and effect systems
e [algorithmic issues]

e 2 lessons

SA: why and what?

What: e static: at “compile time”
e analysis: deduction of program properties
e automatic/decidable
o formally, based on semantics
Why: e error catching
e enhancing program quality
e catching common “stupid” errors without
bothering the user much
e spotting errors early
o certain similarities to model checking
e examples: type checking, uninitialized
variables (potential nil-pointer deref’s),
unused code
e optimization: based on analysis, transform the
“code”, such the the result is “better”
e examples: precalculation of results,
optimized register allocation . . .

- ds

'source code, intermediate code at various levels

Nature of SA

e programs have differerent “semantical phases”
e corresponding to Chomsky’s hierarchy
e “static” = in principle: before run-time, but in praxis,
“context-free”?
e since: run-time most often: undecidable
= static analysis as approximation

e See[1, Figure 1.1]

LO

L1

L2

L3

compile time run time

2playing with words, one could call full-scale (hand?) verification “static”
analysis, and likewise call lexical analysis a static analysis.

Phases

machine indep. machine dep.
optimizations gptimizations

lexical syntactic stat. semangic code
7 analysis 7 analysis™ ' checking generafion
stream of stream of symbol table syntax tree machine
char’s tokens syntax tree code

SA as approximation

unsafe

safe over-approximation

While-language

e simple, prototypical imperative language:
e “untyped”
e simple control structure: while, conditional, sequencing
e simple data (numerals, booleans)

« abstract syntax # concrete syntax
« disambiguation when needed: (...), or { ...} or begin

...end
a = x|n|aopza arithm. expressions
b = true|false |notb| bopyb|aop,a boolean expr.
S = x:=a]lskip|Si;S statements

ifbthenSelseS|whilebdoS

Table: Abstract syntax

While-language: labelling

e associate flow information
= labels
e elementary block = labelled item
e identify basic building blocks
e unique labelling

a = x|n|aopza arithm. expression
b = true|false |notb | bopyb|aocp,a boolean expr.
S = [x:=a]|[skip]' | Si; Sz statements

if[b]'then Selse S| while[b]'do S

Table: Abstract syntax

Example: factorial

y:=x;z:=1,whiley >1do(z:=zxy;y =y —1),y =0

e input variable: x
e output variable: z

Example: factorial

Iy .= x]"; [z := 1)% while[y > 1]¥do([z == z+y]% [y == y—11°); [y := 0]°

[z:

Reaching definitions analysis

 “definition” of x: assignmentto x: x := a
e better name: reaching assignment analysis
o first, simple example of data flow analysis

Reaching def’s

assignment (= “definition”) [x := a]' may reach a program point,
if there exists an execution where x was last assigned at /,
when the mentioned program point is reached.

Factorial: reaching assignment

e (y,1) (short for [y := x]') may reach:
o the entry to 4 (short for [z := z * y]*).
o the exit to 4 (not in the picture as arrow)
e the entry to 5
e but: not the exit to 5

Factorial: reaching assignments

“points” in the program: entry and exit to elementary
blocks/labels

?7: special label (not occurring otherwise), representing
entry to the program, i.e., (x,?) represents initial
(uninitialized) value of x

full information: pair of “functions”

RD = (RDentry’ I:‘Dexit) (1)
/ I:{Deni‘ry I:{Dexit
(7, (,7).(2,7) (x, 1), (¥, 1),(2.7)
21 (x,7),(y,1),(2,7) (x,7),(y,1),(2,2)
31 (%7, (¥,1),(5,5),(2,2),(2,4) | (x,7),(y,1),(y,5),(2,2),(2,4)
41 (x7),(,1),(¥,5),(2,2),(z,4) | (x,7),(¥,1),(¥,5), (z,4)
51067, (. 1),(y.5), (z,4) | (x,7), (¥,5), (z,4)
6] (x.7),(.1),(¥.5),(2,2),(2,4) | (x.7),(y,6), (2,2),(z,4)

Reaching assignments: remarks

elementary blocks of the form
e [b]': entry/exit information coincides
e [x := a]': entry/exit information (in general) different
at program exit: (x,?), x is input variable
e table: “best” information = “smallest”:
o additional pairs in the table: still safe
e removing labels: unsafe
note: still an approximation

e no real (= run time) data, no real execution, only data flow
e approximate since
e in concrete runs: at each point in that run, there is exactly
one last assignment, not a set
o |abel represents (potentially infinitely many) runs

e e.g.: at program exit in concrete run: either (z,2) or else
(z,4)

Data flow analysis

e standard: representation of program as flow graph

e nodes: elementary blocks with labels
e edges: flow of control

¢ two approaches (both (especially here) quite similar)

e equational approach
e constraint-based approach

From flow graphs to equations

e associate an equation system with the flow graph:
e describing the “flow of information”
e here:
e the information related to reaching assignments
e information imagined to flow forwards
e solution of the equations

o describe safe approximations
e not unique, interest in the least (or /largest) solution
e here:

e give back RD of equation (1) on slide 16

Equations for RD and factorial: intra-block

first type: local, “intra-block”:
e flow through each individual block
e relating for each elementary block its exit with its entry

elementary block: [y := x|

RDexit(1) = RDenry(1)\{(v,/) | I € Lab} U {(y,1)} (2)

Equations for RD and factorial: intra-block

first type: local, “intra-block”:
e flow through each individual block
e relating for each elementary block its exit with its entry

elementary block: [y > 1]

RDexit(1) = RDenry(1)\{(v,/) | I € Lab} U {(y, 1)} (2)

I:“:)exit(3) = I:“:)em‘ry(3)

Equations for RD and factorial: intra-block

first type: local, “intra-block”:
e flow through each individual block
e relating for each elementary block its exit with its entry

all equations with RD,;; as “left-hand side”

RDexi(1) = RDeniy(1)\{(y.) | I € Lab} U{(y.1)}
RDexit(2) = RDeniy(2)\{(z./) |/ € Lab} U {(z,2)}
RDexit(3) = RDentry(3)

RDexit(4) = RDeniy(4)\{(z./) |/ € Lab} U {(z,4)}
RDeyit(5) = RDentry(5)\{(y,/) |/ € Lab} U{(y,5)}
RDexit(6) = RDeny(6) \{(y./) |/ € Lab} U{(y,6)}

Equations for RD and factorial: inter-block

second type: global, “inter-block”
e reflecting the control flow graph
o flow between the elementary blocks, following the
control-flow edges
« relating the entry of each® block with the exits of other
blocks, that are connected via an edge
e initial block: mark variables as uninitialized

I:“:)entry(z) = I:%Dexit(‘l)

I:‘Dentry(‘l) = I:“:)exit(3)
RDentry(5) = I:“:)exiz‘(“')
RDentry(6) = RDexit(3)

Sexcept (in general) the initial block.

Equations for RD and factorial: inter-block

second type: global, “inter-block”
e reflecting the control flow graph

o flow between the elementary blocks, following the
control-flow edges

« relating the entry of each® block with the exits of other
blocks, that are connected via an edge

e initial block: mark variables as uninitialized
I:{Denz‘ry(2) = RDexit(1)

I:*Dentry('?) = RDexit(2) U I:“:)exiz‘(s)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDentry(6) = RDexit(3)

Sexcept (in general) the initial block.

Equations for RD and factorial: inter-block

second type: global, “inter-block”
e reflecting the control flow graph

o flow between the elementary blocks, following the
control-flow edges

« relating the entry of each® block with the exits of other
blocks, that are connected via an edge

e initial block: mark variables as uninitialized
I:{Denz‘ry(2) = RDexit(1)

I:*Dentry('?) = RDexit(2) U I:“:)exiz‘(s)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDentry(6) = RDexit(3)

Sexcept (in general) the initial block.

RD: general scheme

Intra: for assignments [x := 4]’

RDexit(/) = RDentry () \{(x, ') | I € Lab}u{(x, /)}

(4)
for other blocks [b]' (side-effect free)
I:“:)exiz‘(/) = RDentry(/) (5)
Inter:
RDentry(I) = U I:“:)exit(//) (6)

I'—1

Initial: /: label of the initial block*

RDentry (1) = {(x,?) | x is a program variable} (7)

“isolated entry.

The equation system as fix point

¢ in the example: solution to the equation system = 12 sets
RDentry(1)7 SRR RDexit(G)

e i.e., the RDentry (), RDeyit(/) are the variables of the
equation system, of “type”: “set of (x, /)-pairs”
e RD: the mentioned twelve-tuple
= equation system understood as function F
Equations

RD = F(RD)

e more explicitly, broken down to its 12 parts (the
“equations”)

(RD) = (Fentry(1)(RD) Fex;t(1)(RD) ex;t(6)(R_b))
o for instance:
Fentry(3) = (..., RDexit(2), . . ., RDexit(5), . . .) = RDexit (2)URD gt (5)

The least solution

e Var, = variables “of interest” (i.e., occurring), Lab.: labels
of interest

e here Var, = {x,y,z}, Lab, = {?,1,...,6}
F - (2Var*><Lab*)12 N (2Var*><Lab*)12 (8)
o domain (2Var-xLab.y12: partially ordered pointwise:
RD C RD’ iff vi. RD; C RD)/ 9)

= complete lattice

Constraint-based approach

e here, for DFA: a simple “variant” of the equational approach

e trivial rearrangement of the entry-exit relationships

e instead of equations: inequations (sub-set instead of
set-equality)

e in more complex settings: constraints become more
complex, no split in exit- and entry-constraints

Factorial program: intra-block constraints

elementary block: [y := x|

RDexit(1) 2 RDennry (1) \{(y, /) | | € Lab}
RDexir(1) 2 {(y, 1)}

Factorial program: intra-block constraints

elementary block: [y > 1]

RDexit(3) 2 RDentry(3)

Factorial program: intra-block constraints

all equations with RDg,;; as left-hand side

I:{Dexit 1) 2 RDentry“)\{(Y» I) | I € Lab}
RDexit 1) 2 {()}
RDgyit(2) 2 RDent,y(Z)\{(z l) | I € Lab}
RDexit 2) 2 {(Z 2)}

3

(

(

E

I:{Dexit() 2 I:“:)entry(3)

RDexit(4) 2 RDentry(4) \{(Z, /) ‘ l e Lab}
RDexit(4) 2 {(2,4)}

RDexit(5) 2 RDentry(5) \{(y, /) | l e Lab}
RDexit(5) 2 {(y,5)}

RDexit(6) 2 I:“:)entry(fs) \{(y,!) | | € Lab}
RDexit(G) = {(y76)}

Factorial program: inter-block constraints

cf. slide 27 ff.: inter-block equations:

RDentry(Z) - RDex:t(1)
RDentry(s) = RDexit(z) U RDexit(s)
RDentry(4) = RDexit(3)
RDentry(s) = RDexit(4)
RDentry(S) = RDexit(3)

Factorial program: inter-block constraints

splitting of composed right-hand sides + using O instead of =:

RDentry(Z) 2 RDexit(1)
RDentry(s) 2 RDexit(2)
RDentry(S) 2 RDexit(5)
RDentry(4) 2 RDexit(S)
RDentry(5) 2 RDexit(4)
RDentry(6) 2 RDexit(S)

X
O
(0]
=4
<
—~~
—
N—r
U
~
~—
x
~
~
~—~~
=
~
N—r
—
N
~
N
—

least solution revisited

« instead of F(RD) = RD

F(RD) C RD (10) |

for the same F

e clear: solution to the equation system =- solution to the
constraint system

e important: least solution coincides!

Control-flow analysis

goal: which elem. blocks lead to which other elem. blocks

for while-language: immediate (labelled elem. blocks,
resp., graph)

complex for: more advanced features, higher-order
languages, oo languages . ..

here: prototypical “higher-order” functional language
(A-calc.)

o formulated as constraint based analysis

Simple example

let £ = fn x => x 1;
g =fny=>y+ 2;
h = fn z => z + 3;

in (£ g) + (£ h)

e higher-order function f:
o for simplicity untyped
o local definitions® via let-in

goal (more specific)
for each function application, which function may be applied

e interesting above: x 1

®That's something else than assignment. We will not consider it (here)
anyway.

Example

more complex language = more complex labelling
“elem. blocks” can be nested

all syntactic constructs (expressions) are labeled
consider:

(fnx=X) (fny =Y)

Example

more complex language = more complex labelling
“elem. blocks” can be nested

all syntactic constructs (expressions) are labeled
consider:

[[Enx= X]"P [tny = WP PP
e functional language: side effect free

= no need to distinguish entry and exit of labelled blocks.
« data of the analysis: (C, p), pair of functions

abstract cache: C(/): set of values/function abstractions,
the subexpression labelled / may evaluate to
abstract env.: p: values, x may be bound to

The constraint system

e ignoring “let” here: three syntactic constructs = three
kinds of constraints

« relating C, p, and the program in form of constraints
(subsets, order-relation)

The constraint system

e ignoring “let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [fn x = x]/
2. variables: [x]'

3. application: [f g]'

« relating C, p, and the program in form of constraints
(subsets, order-relation)

The constraint system

e ignoring “Let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [fn x = x]/
2. variables: [x]’

3. application: [f g]’

« relating C, p, and the program in form of constraints
(subsets, order-relation)

e function abstractions
{fnx = [x]"'}
{fny = [y]’}

The constraint system

e ignoring “let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [fn x = x]/
2. variables: [x]'

3. application: [f g]'

« relating C, p, and the program in form of constraints
(subsets, order-relation)

e variables

N 1N

The constraint system

e ignoring “Let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [£n x = x|/
2. variables: [x]’

3. application: [f g]'

« relating C, p, and the program in form of constraints
(subsets, order-relation)

e application: connecting function entry and (body) exit with
the argument

N 1N
(@}
G

The constraint system

e ignoring “Let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [fn x = x]/

2. variables: [x]’

3. application: [f g]’

« relating C, p, and the program in form of constraints
(subsets, order-relation)

e application: connecting function entry and (body) exit with
the argument but:

e also [fny = [y]®]* is a candidate at 2! (according to C(2))

C4) < p(x)
C(1) < C)
€@4) <)
c(3) ¢ €5

The constraint system

e ignoring “let” here: three syntactic constructs = three
kinds of constraints

1. function abstraction: [fn x = x]/
2. variables: [x]'

3. application: [f g]'

« relating C, p, and the program in form of constraints
(subsets, order-relation)

{fnx="cl@ = C@4) <)
{tnx=["}cC@) = C(1) < C(5)
{fny=DPrcC@) = CA) < iy
{tny=[PP}cC@) = C@B) < C(5)

The least solution

c(1) = {fny=[P’}
C(2) = {fnx=[x]"}
C3) = 0

C(4) = {tny=[P*}
C(5) = {tny= [P’}
px) = {tny=[I°}
ply) = 0

Effects: Intro

type system: “classical” static analysis:

t: T

judgment: “term/program phrase has type T~
in general: context-sensitive judgments®

Fr=t: T

I': assumptions/context

¢ here: “non-standard” type systems: effects and
annotations

e natural setting: typed languages, here: trivial! setting
(while-language)

éremember Chomsky ...

“Trival” type system

e setting: while-language
 each statement maps: state to states
e Y: type of states

judgment

S: XX

¢ specified as a derivation system
e note: partial correctness assertion

“Trival” type system: rules

[x:=a' X —-% Ass
[skip] : X - X Skip

S1IZ—>Z Sg:Z—)Z
S1;82:Z—>Z

SEQ

S: X%

WHILE
while[b]'doS: ¥ =%

S1IZ—>Z Sg:Z—)Z
COND

if[b]lthen SielseS: Y = X

Types, effects, and annotations

annotated type system effect system

FS: %= (12) FS: x5 (13)

type and effect system (TES)

¢ often effect system + annotated type system (border fuzzy)
e annotated type system
e 3 ;: property of state (“%; C 1)
e “abstract” properties: invariants, a variable is positive, etc.
o effect system
“statement S maps state to state, with (potential ...) effect

¥
o effect ¢: e.g.: errors, exceptions, file/resource access, ...

Annotated type systems

e example: reaching definitions/assignments in While-lang.
o 2 flavors

1. annotated base types: S: RD; — RD,

2. annotated type constructors: S: ¥ R—);> pX

Annotated base types

e judgment
S:RDy — RDy (14)

e RD C 2Var><Lab

e auxiliary functions

e note: every S has one “initial” elementary block, potentially
more than one “at the end”

o init(S): the (unique) label at the entry of S

o final(S): the set of labels at the exits of S

“meaning” of judgment S : RDy — RDy:

“RD+ is the set of var/label reaching the entry of S and RD5 the
corresponding set at the exit(s) of S”:

RD2 = U{RDexi(/) | ! € final(S)}

[x :=a]" :RD - RD\{(x,/) | | € Lab} U {(x,/)} Ass
[skip] : RD — RD skip

31 . RD1 — RD2 82 . RDQ — RD3
31; 82 : RD1 — RD3

SEQ

31 . RD1 — RD2 82 . RD1 — RDQ
if[b]lthen Sielse Sy : RDy — RD»

IF

S:RD — RD
while[b]'do S:RD — RD

WHILE

S:RD} - RD, RD;CRD, RD,CRD,
S: RD1 — RD2

SuB

Meaning of annotated judgment

“Meaning” of judgment S : RDy — RD::

“RD; is the set of var/label reaching the entry of S and RD, the
corresponding set at the exit(s) of S”:

RD1 = RDentry(init(S))
RD, = U{RDey! |/ € final(S)}

e Be careful:
if[b] then Sjelse Sy

e more concretely

if[b]' then[x := y]" elsely := x]?

Meaning of annotated judgment

Once again: “Meaning” of judgment S : RD; — RD.:

“RD; is the set of var/label reaching the entry of S and RD- the
corresponding set at the exit(s) of S”:

then VI e final(S). RDgyt(/) < RD2

compare subsumption rule SuUB
subsumption adds necessary slack
similar to the contraint formulation

Remember: data flow equations and their
(possible/minimal) solution

Example: factorial

Iy .= x]"; [z := 1)% while[y > 1]¥do([z == z+y]% [y == y—11°); [y := 0]°

[z:

[2:=112: {7, 1,72} = {2, 1,2} f5: {?x,1,2} = RDsna

[y = X]1 :RDy — {?X,1’?Z} fo: {?x71,?z} — RDﬁnaI

f: RDO — RDfina/
RDg = {?x,?y,?2} RDjipag = {7x,6,2,4}

type sub-derivation for the rest 3 = while...;[y := 0]6
loop invariant

RDbody = {?X7 1’5’2’4}

[z:=]*: RDpody —+ {?x, 1,5, 4}
[y = —]5 : {?X’17574} - {?X7574}

foody : RDpody — {?x, 5,4}

SuB
foody * RDpogy — RDpogy

Twhite : RDbody — RDbody
SuB
fwnite * {?x, 1,2} — RDpogy ly:= 0]6 : RDpody — RDfinay

B : {?x,1,2} = RDfjna

Annotated type constructors

alternative approach of annotated type systems
arrow constructor itself annotated

annotion of —: flavor of effect system

judgment

S: Yy — Y%
RD

annotation with RD (corresponding to the post-condition
from above) alone is not enough

Annotated type constructors

e alternative approach of annotated type systems
e arrow constructor itself annotated
e annotion of —: flavor of effect system
e judgment
s 5y
RD

e annotation with RD (corresponding to the post-condition

from above) alone is not enough
e also need: the variables “being” changed
e Meaning

“S maps states to states, where RD is the set of

reaching definition, S may produce and X the set of
var's S must (= unavoidably) assign

[x:=a: X {——>
[skip]” : —g—> Y Skip

ISR EAND SR SN
RD»>

RD; SEQ
X UX:
81) Sg T 1—>2
RD; \ XoURD;

s;:r X%y s.v Xy
RD RD IF

if[b)' then Syelse Sy : X R—);> r

sy Xy
RD WHILE

while[b]ldo S: X RL:)> >

X’

S:¥ =% XX RD’ € RD

RD’

Effect systems

this time: functional language’
starting point: simple type system
judgment:

N-e:r

I: type environment, “mapping” from var’s to types
types: bool, int,and 7 — 7

"same as for constraint-based cfa.

rx)=r
Me=x:r

r,X:T1 Fe:m
ABS

N fnx=¢e:1qy > 7
s

Fl—e1:7-1—>72 Fl—e2:7-1

e e:m

APP

Effect: Call tracking analysis

call tracking analysis:

Determine: for each subexpression, which function abstractions
may be applied during its evaluation.

= set of function names
e annotate: function type with latent effect
= annotated types: 7: base types as before, arrow types:

751y (15)
e functions from 71 to 7, where in the execution, functions

from set ¢ are called.
e judgment

A

fre: & (16)

F(x)=7
FEx:72&0

VAR

Mxthe: & ¢

M-fnx=e: % "5 2 8&0

ABS

|A_}—e1:7ﬁ1£>7ﬁ2&901 |A_|—egi?1&902
APP

f e € T & pUpyUps

Call tracking: example

x:int {—Y>} int - x:int {—Y>} int& 0

- (£px = x) : (int iny X it Wiy &0 - (£py = y) s int D inte o

(g x = x) (Y = 1) int 9 int & (X}

Chaotic iteration

back to Data flow/reaching def’s
goal: solve

RD = F(RD) or RDC F(RD)

F: monotone, finite domain
straightforward/naive approach
init: RDy = FO(0)
iterate: RD,.q = F(RD,) = F™(0)) until stabilization
approach to implement that: chaotic iteration
abbrev:

RD = (RDy,...,RDyy)

F(RD) = F(RD,...,RD)

Chaotic iteration (for RD)

Input: example equations for reaching definitions
Output: least solution: R_D:(RD1,...,RD12)
Method: step 1: initialization

step 2: iteration

while RD; # F;(RDy,
do
RD; := F;(RDyq,

...,RD12) for some j

...,RD1)

References |

[1] F. Nielson, H.-R. Nielson, and C. L. Hankin.
Principles of Program Analysis.
Springer-Verlag, 1999.

DA

	Introduction
	Setting the scene
	Data-flow analysis
	Equational approach
	Constraint-based approach
	Constraint-based analysis
	Type and effect systems
	Algorithms

