
Static analysis and all that

Martin Steffen

IfI UiO

Spring 2016

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Static analysis and all that

Martin Steffen

IfI UiO

Spring 2016

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Plan

• approx. 15 lectures, details see web-page

• flexible time-schedule, depending on progress/interest

• covering parts/following the structure of textbook [1],
concentrating on

• overview
• data-flow
• control-flow
• type- and effect systems

• on request, new parts possible

• helpful prior knowledge: having at least heard of

• typed lambda calculi (especially for CFA)
• simple type systems
• operational semantics
• lattice theory, fixpoints, induction

but things needed will be covered . . .

1 Introduction

Setting the scene

Data-flow analysis

Equational approach

Constraint-based approach

Constraint-based analysis

Type and effect systems

Algorithms

Plan

• introduction/motivation into the field

• short survey about the material: 5 main topics

• data flow analysis
• control flow analysis/constraint based analysis
• [Abstract interpretation]
• type and effect systems
• [algorithmic issues]

• 2 lessons

SA: why and what?

What: • static: at “compile time”
• analysis: deduction of program properties

• automatic/decidable
• formally, based on semantics

Why: • error catching
• enhancing program quality
• catching common “stupid” errors without

bothering the user much
• spotting errors early
• certain similarities to model checking
• examples: type checking, uninitialized

variables (potential nil-pointer deref’s),
unused code

• optimization: based on analysis, transform the
“code”1, such the the result is “better”

• examples: precalculation of results,

optimized register allocation . . .

success-story for formal methods
1source code, intermediate code at various levels

Nature of SA

• programs have differerent “semantical phases”

• corresponding to Chomsky’s hierarchy

• “static” = in principle: before run-time, but in praxis,

“context-free”2

• since: run-time most often: undecidable

⇒ static analysis as approximation

• See [1, Figure 1.1]

L0

L1

L2

L3
lexer parser sa exec.

run timecompile time

2playing with words, one could call full-scale (hand?) verification “static”

analysis, and likewise call lexical analysis a static analysis.

Phases

lexical

analysis
syntactic

analysis

stat. semantic
checking

code

generation

stream of

char’s

stream of
tokens

symbol table

syntax tree
syntax tree machine

code

machine indep.

optimizations

machine dep.

optimizations

SA as approximation

universe

safe over-approximation

unsafe

exact

While-language

• simple, prototypical imperative language:

• “untyped”
• simple control structure: while, conditional, sequencing
• simple data (numerals, booleans)

• abstract syntax 6= concrete syntax

• disambiguation when needed: (. . .), or { . . . } or begin

. . . end

a ::= x | n | aopa a arithm. expressions

b ::= true | false |not b | b opb b | aopr a boolean expr.

S ::= x := a | skip | S1;S2 statements

ifb thenS elseS | whileb doS

Table: Abstract syntax

While-language: labelling

• associate flow information

⇒ labels

• elementary block = labelled item

• identify basic building blocks

• unique labelling

a ::= x | n | aopa a arithm. expressions

b ::= true | false |not b | b opb b | aopr a boolean expr.

S ::= [x := a]l | [skip]l | S1;S2 statements

if[b]l thenS elseS | while[b]l doS

Table: Abstract syntax

Example: factorial

y := x ; z := 1;whiley > 1do(z := z ∗ y ; y := y − 1); y := 0

• input variable: x

• output variable: z

Example: factorial

[y := x]1; [z := 1]2;while[y > 1]3 do([z := z∗y]4; [y := y−1]5); [y := 0]6

[y := x]1

[z := 1]2

[y > 1]3

[z := z ∗ y]4

[y := y − 1]5

[y := 0]6

yes

no

Reaching definitions analysis

• “definition” of x : assignment to x : x := a

• better name: reaching assignment analysis

• first, simple example of data flow analysis

Reaching def’s

assignment (= “definition”) [x := a]l may reach a program point,

if there exists an execution where x was last assigned at l ,

when the mentioned program point is reached.

Factorial: reaching assignment

[y := x]1

[z := 1]2

[y > 1]3

[z := z ∗ y]4

[y := y − 1]5

[y := 0]6

yes

no

• (y ,1) (short for [y := x]1) may reach:

• the entry to 4 (short for [z := z ∗ y]4).
• the exit to 4 (not in the picture as arrow)
• the entry to 5
• but: not the exit to 5

Factorial: reaching assignments

• “points” in the program: entry and exit to elementary

blocks/labels

• ?: special label (not occurring otherwise), representing

entry to the program, i.e., (x , ?) represents initial

(uninitialized) value of x

• full information: pair of “functions”

RD = (RDentry ,RDexit) (1)

l RDentry RDexit

1 (x , ?), (y , ?), (z, ?) (x , ?), (y , 1), (z, ?)
2 (x , ?), (y , 1), (z, ?) (x , ?), (y , 1), (z, 2)
3 (x , ?), (y , 1), (y , 5), (z, 2), (z, 4) (x , ?), (y , 1), (y , 5), (z, 2), (z, 4)
4 (x , ?), (y , 1), (y , 5), (z, 2), (z, 4) (x , ?), (y , 1), (y , 5), (z, 4)
5 (x , ?), (y , 1), (y , 5), (z, 4) (x , ?), (y , 5), (z, 4)
6 (x , ?), (y , 1), (y , 5), (z, 2), (z, 4) (x , ?), (y , 6), (z, 2), (z, 4)

Reaching assignments: remarks

• elementary blocks of the form

• [b]l : entry/exit information coincides
• [x := a]l : entry/exit information (in general) different

• at program exit: (x , ?), x is input variable

• table: “best” information = “smallest”:

• additional pairs in the table: still safe
• removing labels: unsafe

• note: still an approximation

• no real (= run time) data, no real execution, only data flow
• approximate since

• in concrete runs: at each point in that run, there is exactly

one last assignment, not a set
• label represents (potentially infinitely many) runs

• e.g.: at program exit in concrete run: either (z, 2) or else
(z, 4)

Data flow analysis

• standard: representation of program as flow graph

• nodes: elementary blocks with labels
• edges: flow of control

• two approaches (both (especially here) quite similar)

• equational approach
• constraint-based approach

From flow graphs to equations

• associate an equation system with the flow graph:

• describing the “flow of information”
• here:

• the information related to reaching assignments
• information imagined to flow forwards

• solution of the equations

• describe safe approximations
• not unique, interest in the least (or largest) solution
• here:

• give back RD of equation (1) on slide 16

Equations for RD and factorial: intra-block

first type: local, “intra-block”:

• flow through each individual block

• relating for each elementary block its exit with its entry

elementary block: [y := x]1

RDexit(1) = RDentry (1) \{(y , l) | l ∈ Lab} ∪ {(y ,1)} (2)

Equations for RD and factorial: intra-block

first type: local, “intra-block”:

• flow through each individual block

• relating for each elementary block its exit with its entry

elementary block: [y > 1]3

RDexit(1) = RDentry (1) \{(y , l) | l ∈ Lab} ∪ {(y ,1)}

RDexit(3) = RDentry (3)

(2)

Equations for RD and factorial: intra-block

first type: local, “intra-block”:

• flow through each individual block

• relating for each elementary block its exit with its entry

all equations with RDexit as “left-hand side”

RDexit(1) = RDentry (1) \{(y , l) | l ∈ Lab} ∪ {(y ,1)}
RDexit(2) = RDentry (2) \{(z, l) | l ∈ Lab} ∪ {(z,2)}
RDexit(3) = RDentry (3)
RDexit(4) = RDentry (4) \{(z, l) | l ∈ Lab} ∪ {(z,4)}
RDexit(5) = RDentry (5) \{(y , l) | l ∈ Lab} ∪ {(y ,5)}
RDexit(6) = RDentry (6) \{(y , l) | l ∈ Lab} ∪ {(y ,6)}

(2)

Equations for RD and factorial: inter-block

second type: global, “inter-block”

• reflecting the control flow graph

• flow between the elementary blocks, following the

control-flow edges

• relating the entry of each3 block with the exits of other

blocks, that are connected via an edge

• initial block: mark variables as uninitialized

RDentry (2) = RDexit(1)

RDentry (4) = RDexit(3)
RDentry (5) = RDexit(4)
RDentry (6) = RDexit(3)

(3)

3except (in general) the initial block.

Equations for RD and factorial: inter-block

second type: global, “inter-block”

• reflecting the control flow graph

• flow between the elementary blocks, following the

control-flow edges

• relating the entry of each3 block with the exits of other

blocks, that are connected via an edge

• initial block: mark variables as uninitialized

RDentry (2) = RDexit(1)
RDentry (3) = RDexit(2) ∪ RDexit(5)
RDentry (4) = RDexit(3)
RDentry (5) = RDexit(4)
RDentry (6) = RDexit(3)

(3)

3except (in general) the initial block.

Equations for RD and factorial: inter-block

second type: global, “inter-block”

• reflecting the control flow graph

• flow between the elementary blocks, following the

control-flow edges

• relating the entry of each3 block with the exits of other

blocks, that are connected via an edge

• initial block: mark variables as uninitialized

RDentry (2) = RDexit(1)
RDentry (3) = RDexit(2) ∪ RDexit(5)
RDentry (4) = RDexit(3)
RDentry (5) = RDexit(4)
RDentry (6) = RDexit(3)

RDentry (1) = {(x , ?), (y , ?), (z, ?)}

(3)

3except (in general) the initial block.

RD: general scheme

Intra: for assignments [x := a]l

RDexit(l) = RDentry (l) \{(x , l
′) | l ′ ∈ Lab}∪{(x , l)}

(4)

for other blocks [b]l (side-effect free)

RDexit(l) = RDentry (l) (5)

Inter:

RDentry (l) =
⋃

l ′→l

RDexit(l
′) (6)

Initial: l : label of the initial block4

RDentry (l) = {(x , ?) | x is a program variable} (7)

4isolated entry.

The equation system as fix point

• in the example: solution to the equation system = 12 sets

RDentry (1), . . . ,RDexit(6)

• i.e., the RDentry (l),RDexit(l) are the variables of the

equation system, of “type”: “set of (x , l)-pairs”

• ~RD: the mentioned twelve-tuple

⇒ equation system understood as function F

Equations

~RD = F (~RD)

• more explicitly, broken down to its 12 parts (the

“equations”)

F (~RD) = (Fentry (1)(~RD),Fexit(1)(~RD), . . . ,Fexit(6)(~RD))

• for instance:

Fentry (3) = (. . . ,RDexit (2), . . . ,RDexit (5), . . .) = RDexit (2)∪RDexit (5)

The least solution

• Var∗ = variables “of interest” (i.e., occurring), Lab∗: labels

of interest

• here Var∗ = {x , y , z}, Lab∗ = {?,1, . . . ,6}

F : (2Var∗×Lab∗)12 → (2Var∗×Lab∗)12 (8)

• domain (2Var∗×Lab∗)12: partially ordered pointwise:

~RD ⊑ ~RD
′
iff ∀i . RDi ⊆ RD′

i (9)

⇒ complete lattice

Constraint-based approach

• here, for DFA: a simple “variant” of the equational approach

• trivial rearrangement of the entry-exit relationships

• instead of equations: inequations (sub-set instead of

set-equality)

• in more complex settings: constraints become more

complex, no split in exit- and entry-constraints

Factorial program: intra-block constraints

elementary block: [y := x]1

RDexit(1) ⊇ RDentry (1) \{(y , l) | l ∈ Lab}
RDexit(1) ⊇ {(y ,1)}

Factorial program: intra-block constraints

elementary block: [y > 1]3

RDexit(3) ⊇ RDentry (3)

Factorial program: intra-block constraints

all equations with RDexit as left-hand side

RDexit(1) ⊇ RDentry (1) \{(y , l) | l ∈ Lab}
RDexit(1) ⊇ {(y ,1)}
RDexit(2) ⊇ RDentry (2) \{(z, l) | l ∈ Lab}
RDexit(2) ⊇ {(z,2)}
RDexit(3) ⊇ RDentry (3)
RDexit(4) ⊇ RDentry (4) \{(z, l) | l ∈ Lab}
RDexit(4) ⊇ {(z,4)}
RDexit(5) ⊇ RDentry (5) \{(y , l) | l ∈ Lab}
RDexit(5) ⊇ {(y ,5)}
RDexit(6) ⊇ RDentry (6) \{(y , l) | l ∈ Lab}
RDexit(6) ⊇ {(y ,6)}

Factorial program: inter-block constraints

cf. slide 27 ff.: inter-block equations:

RDentry (2) = RDexit(1)
RDentry (3) = RDexit(2) ∪ RDexit(5)
RDentry (4) = RDexit(3)
RDentry (5) = RDexit(4)
RDentry (6) = RDexit(3)

RDentry (1) = {(x , ?), (y , ?), (z, ?)}

Factorial program: inter-block constraints

splitting of composed right-hand sides + using ⊇ instead of =:

RDentry (2) ⊇ RDexit(1)
RDentry (3) ⊇ RDexit(2)
RDentry (3) ⊇ RDexit(5)
RDentry (4) ⊇ RDexit(3)
RDentry (5) ⊇ RDexit(4)
RDentry (6) ⊇ RDexit(3)

RDentry (1) ⊇ {(x , ?), (y , ?), (z, ?)}

least solution revisited

• instead of F (~RD) = ~RD

F (~RD) ⊑ ~RD (10)

for the same F

• clear: solution to the equation system ⇒ solution to the

constraint system

• important: least solution coincides!

Control-flow analysis

• goal: which elem. blocks lead to which other elem. blocks

• for while-language: immediate (labelled elem. blocks,

resp., graph)

• complex for: more advanced features, higher-order

languages, oo languages . . .

• here: prototypical “higher-order” functional language

(λ-calc.)

• formulated as constraint based analysis

Simple example

let f = fn x => x 1;

g = fn y => y + 2;

h = fn z => z + 3;

in (f g) + (f h)

• higher-order function f :

• for simplicity untyped

• local definitions5 via let-in

goal (more specific)

for each function application, which function may be applied

• interesting above: x 1

5That’s something else than assignment. We will not consider it (here)

anyway.

Example

• more complex language ⇒ more complex labelling

• “elem. blocks” can be nested

• all syntactic constructs (expressions) are labeled

• consider:

(fn x ⇒ x) (fn y ⇒ y)

Example

• more complex language ⇒ more complex labelling

• “elem. blocks” can be nested

• all syntactic constructs (expressions) are labeled

• consider:

[[fn x ⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• functional language: side effect free

⇒ no need to distinguish entry and exit of labelled blocks.

• data of the analysis: (Ĉ, ρ̂), pair of functions

abstract cache: Ĉ(l): set of values/function abstractions,

the subexpression labelled l may evaluate to

abstract env.: ρ̂: values, x may be bound to

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

• function abstractions

{fn x ⇒ [x]1} ⊆ Ĉ(2)

{fn y ⇒ [y]3} ⊆ Ĉ(4)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

• variables

ρ̂(x) ⊆ Ĉ(1)

ρ̂(y) ⊆ Ĉ(3)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

• application: connecting function entry and (body) exit with

the argument

Ĉ(4) ⊆ ρ̂(x)

Ĉ(1) ⊆ Ĉ(5)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)
• application: connecting function entry and (body) exit with

the argument but:

• also [fn y ⇒ [y]3]4 is a candidate at 2! (according to Ĉ(2))

Ĉ(4) ⊆ ρ̂(x)

Ĉ(1) ⊆ Ĉ(5)

Ĉ(4) ⊆ ρ̂(y)

Ĉ(3) ⊆ Ĉ(5)

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three

kinds of constraints

1. function abstraction: [fn x ⇒ x]l

2. variables: [x]l

3. application: [f g]l

• relating Ĉ, ρ̂, and the program in form of constraints

(subsets, order-relation)

{fn x ⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(x)

{fn x ⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(1) ⊆ Ĉ(5)

{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(y)

{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(3) ⊆ Ĉ(5)

The least solution

Ĉ(1) = {fn y ⇒ [y]3}

Ĉ(2) = {fn x ⇒ [x]1}

Ĉ(3) = ∅

Ĉ(4) = {fn y ⇒ [y]3}

Ĉ(5) = {fn y ⇒ [y]3}

ρ̂(x) = {fn y ⇒ [y]3}

ρ̂(y) = ∅

Effects: Intro

• type system: “classical” static analysis:

t : T

• judgment: “term/program phrase has type T ”

• in general: context-sensitive judgments6

Γ ⊢ t : T

Γ: assumptions/context

• here: “non-standard” type systems: effects and

annotations

• natural setting: typed languages, here: trivial! setting

(while-language)

6remember Chomsky . . .

“Trival” type system

• setting: while-language

• each statement maps: state to states

• Σ: type of states

judgment

S : Σ → Σ (11)

• specified as a derivation system

• note: partial correctness assertion

“Trival” type system: rules

[x := a]l : Σ → Σ ASS

[skip]l : Σ → Σ SKIP

S1 : Σ → Σ S2 : Σ → Σ
SEQ

S1;S2 : Σ → Σ
‘

S : Σ → Σ
WHILE

while[b]l doS : Σ → Σ

S1 : Σ → Σ S2 : Σ → Σ
COND

if[b]l thenS1 elseS2 : Σ → Σ

Types, effects, and annotations

annotated type system

⊢ S : Σ1 → Σ2 (12)

effect system

⊢ S : Σ
ϕ

→ Σ (13)

type and effect system (TES)

• often effect system + annotated type system (border fuzzy)

• annotated type system

• Σi : property of state (“Σi ⊆ Σ”)
• “abstract” properties: invariants, a variable is positive, etc.

• effect system

“statement S maps state to state, with (potential . . .) effect

ϕ”
• effect ϕ: e.g.: errors, exceptions, file/resource access, . . .

Annotated type systems

• example: reaching definitions/assignments in While-lang.

• 2 flavors

1. annotated base types: S : RD1 → RD2

2. annotated type constructors: S : Σ
X

−→
RD

Σ

Annotated base types

• judgment

S : RD1 → RD2 (14)

• RD ⊆ 2Var×Lab

• auxiliary functions

• note: every S has one “initial” elementary block, potentially
more than one “at the end”

• init(S): the (unique) label at the entry of S
• final(S): the set of labels at the exits of S

“meaning” of judgment S : RD1 → RD2:

“RD1 is the set of var/label reaching the entry of S and RD2 the

corresponding set at the exit(s) of S”:

RD1 = RDentry (init(S))
RD2 =

⋃
{RDexit(l) | l ∈ final(S)}

[x := a]l
′
: RD → RD \{(x , l) | l ∈ Lab} ∪ {(x , l ′)} ASS

[skip]l : RD → RD SKIP

S1 : RD1 → RD2 S2 : RD2 → RD3
SEQ

S1;S2 : RD1 → RD3

S1 : RD1 → RD2 S2 : RD1 → RD2
IF

if[b]l thenS1 elseS2 : RD1 → RD2

S : RD → RD
WHILE

while[b]l doS : RD → RD

S : RD
′
1 → RD

′
2 RD1 ⊆ RD

′
1 RD

′
2 ⊆ RD2

SUB

S : RD1 → RD2

Meaning of annotated judgment

“Meaning” of judgment S : RD1 → RD2:

“RD1 is the set of var/label reaching the entry of S and RD2 the

corresponding set at the exit(s) of S”:

RD1 = RDentry (init(S))
RD2 =

⋃
{RDexit l | l ∈ final(S)}

• Be careful:

if[b]l thenS1 elseS2

• more concretely

if[b]l then[x := y]l1 else[y := x]l2

Meaning of annotated judgment

Once again: “Meaning” of judgment S : RD1 → RD2:

“RD1 is the set of var/label reaching the entry of S and RD2 the

corresponding set at the exit(s) of S”:

if RD1 ⊆ RDentry (init(S))
then ∀l ∈ final(S). RDexit(l) ⊆ RD2

• compare subsumption rule SUB

• subsumption adds necessary slack

• similar to the contraint formulation

• Remember: data flow equations and their

(possible/minimal) solution

Example: factorial

[y := x]1; [z := 1]2;while[y > 1]3 do([z := z∗y]4; [y := y−1]5); [y := 0]6

[y := x]1

[z := 1]2

[y > 1]3

[z := z ∗ y]4

[y := y − 1]5

[y := 0]6

yes

no

[y := x]1 : RD0 → {?x , 1, ?z}

[z := 1]2 : {?x , 1, ?z} → {?x , 1, 2} f3 : {?x , 1, 2} → RDfinal

f2 : {?x , 1, ?z} → RDfinal

f : RD0 → RDfinal

RD0 = {?x , ?y , ?z} RDfinal = {?x , 6, 2, 4}

type sub-derivation for the rest f3 = while . . . ; [y := 0]6

loop invariant

RDbody = {?x , 1, 5, 2, 4}

[z :=]4 : RDbody → {?x , 1, 5, 4}
[y :=]5 : {?x , 1, 5, 4} → {?x , 5, 4}

fbody : RDbody → {?x , 5, 4}
SUB

fbody : RDbody → RDbody

fwhile : RDbody → RDbody

SUB

fwhile : {?x , 1, 2} → RDbody [y := 0]6 : RDbody → RDfinal

f3 : {?x , 1, 2} → RDfinal

Annotated type constructors

• alternative approach of annotated type systems

• arrow constructor itself annotated

• annotion of →: flavor of effect system

• judgment

S : Σ −→
RD

Σ

• annotation with RD (corresponding to the post-condition

from above) alone is not enough

Annotated type constructors

• alternative approach of annotated type systems

• arrow constructor itself annotated

• annotion of →: flavor of effect system

• judgment

S : Σ
X

−→
RD

Σ

• annotation with RD (corresponding to the post-condition

from above) alone is not enough

• also need: the variables “being” changed

• Meaning

“S maps states to states, where RD is the set of

reaching definition, S may produce and X the set of

var’s S must (= unavoidably) assign

[x := a]l : Σ
{x}
−→
{(x,l)}

Σ ASS

[skip]l : Σ
∅

−→
∅

Σ SKIP

S1 : Σ
X1−→

RD1

Σ S2 : Σ
X2−→

RD2

Σ
SEQ

S1;S2 : Σ
X1∪X2−→

RD1 \X2∪RD2

Σ

S1 : Σ
X

−→
RD

Σ S2 : Σ
X

−→
RD

Σ
IF

if[b]l thenS1 elseS2 : Σ
X

−→
RD

Σ

S : Σ
X

−→
RD

Σ
WHILE

while[b]l doS : Σ
∅

−→
RD

Σ

S : Σ
X ′

−→
RD′

Σ X ⊆ X ′ RD′ ⊆ RD
SUB

S : Σ
X

−→
RD

Σ

Effect systems

• this time: functional language7

• starting point: simple type system

• judgment:

Γ ⊢ e : τ

• Γ: type environment, “mapping” from var’s to types

• types: bool, int, and τ → τ

7same as for constraint-based cfa.

Γ(x) = τ
VAR

Γ ⊢ x : τ

Γ, x :τ1 ⊢ e : τ2
ABS

Γ ⊢ fn
π

x ⇒ e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
APP

Γ ⊢ e1 e2 : τ2

Effect: Call tracking analysis

call tracking analysis:

Determine: for each subexpression, which function abstractions

may be applied during its evaluation.

⇒ set of function names

• annotate: function type with latent effect

⇒ annotated types: τ̂ : base types as before, arrow types:

τ̂1
ϕ

→ τ̂2 (15)

• functions from τ1 to τ2, where in the execution, functions

from set ϕ are called.

• judgment

Γ̂ ⊢ e : τ̂ & ϕ (16)

Γ̂(x) = τ̂
VAR

Γ̂ ⊢ x : τ̂ & ∅

Γ, x :τ̂1 ⊢ e : τ̂2 & ϕ
ABS

Γ ⊢ fn
π

x ⇒ e : τ̂1
ϕ∪{π}
→ τ̂2 & ∅

Γ̂ ⊢ e1 : τ̂1
ϕ

→ τ̂2 & ϕ1 Γ̂ ⊢ e2 : τ̂1 & ϕ2
APP

Γ̂ ⊢ e1 e2 : τ̂2 & ϕ ∪ ϕ1 ∪ ϕ2

Call tracking: example

x:int
{Y}
→ int ⊢ x:int

{Y}
→ int & ∅

⊢ (fn
X

x ⇒ x) : (int
{Y}
→ int)

{X}
→ (int

{Y}
→ int) & ∅ ⊢ (fn

Y
y ⇒ y) : int

{Y}
→ int & ∅

⊢ (fn
X

x ⇒ x) (fn
Y

y ⇒ y) : int
{Y}
→ int & {X}

Chaotic iteration

• back to Data flow/reaching def’s

• goal: solve

~RD = F (RD) or ~RD ⊑ F (RD)

• F : monotone, finite domain

• straightforward/naive approach

init: ~RD0 = F 0(∅)

iterate: ~RDn+1 = F (~RDn) = F n+1(∅) until stabilization

• approach to implement that: chaotic iteration

• abbrev:
~RD = (RD1, . . . ,RD12)

F (~RD) = F (~RD, . . . , ~RD)

Chaotic iteration (for RD)

Input: example equations for reaching definitions

Output: least solution: ~RD = (RD1, . . . ,RD12)

Method: step 1: initialization

RD1 := ∅; . . . ;RD12 := ∅

step 2: iteration

while RDj 6= Fj(RD1, . . . ,RD12) for some j

do

RDj := Fj(RD1, . . . ,RD12)

References I

[1] F. Nielson, H.-R. Nielson, and C. L. Hankin.
Principles of Program Analysis.
Springer-Verlag, 1999.

	Introduction
	Setting the scene
	Data-flow analysis
	Equational approach
	Constraint-based approach
	Constraint-based analysis
	Type and effect systems
	Algorithms

