Static analysis and all that

Martin Steffen

Ifl UiO

Spring 2016

Static analysis and all that

Martin Steffen

Ifl UiO

Spring 2016

- approx. 15 lectures, details see web-page
- flexible time-schedule, depending on progress/interest
- covering parts/following the structure of textbook [1], concentrating on
- overview
- data-flow
- control-flow
- type- and effect systems
- on request, new parts possible
- helpful prior knowledge: having at least heard of
- typed lambda calculi (especially for CFA)
- simple type systems
- operational semantics
- lattice theory, fixpoints, induction
but things needed will be covered ...
(1) Introduction
- Setting the scene
- Data-flow analysis
- Equational approach
- Constraint-based approach
- Constraint-based analysis
- Type and effect systems
- Algorithms
- introduction/motivation into the field
- short survey about the material: 5 main topics
- data flow analysis
- control flow analysis/constraint based analysis
- [Abstract interpretation]
- type and effect systems
- [algorithmic issues]
- 2 lessons

What: • static: at "compile time"

- analysis: deduction of program properties
- automatic/decidable
- formally, based on semantics

Why: error catching

- enhancing program quality
- catching common "stupid" errors without bothering the user much
- spotting errors early
- certain similarities to model checking
- examples: type checking, uninitialized variables (potential nil-pointer deref's), unused code
- optimization: based on analysis, transform the "code" , such the the result is "better"
- examples: precalculation of results, optimized register allocation ...
- programs have differerent "semantical phases"
- corresponding to Chomsky’s hierarchy
- "static" = in principle: before run-time, but in praxis, "context-free"2
- since: run-time most often: undecidable
\Rightarrow static analysis as approximation
- See [1, Figure 1.1]

${ }^{2}$ playing with words, one could call full-scale (hand?) verification "static" analysis, and likewise call lexical analysis a static analysis.

- simple, prototypical imperative language:
- "untyped"
- simple control structure: while, conditional, sequencing
- simple data (numerals, booleans)
- abstract syntax \neq concrete syntax
- disambiguation when needed: (...), or $\{\ldots\}$ or begin ...end

$$
\begin{aligned}
& a::= \\
& b|n| a \circ p_{a} a \\
& b::=\text { true } \mid \text { false } \mid \text { not } b\left|b \circ_{b} b\right| a \circ_{r} a \\
& S: x:=a \mid \text { skip } \mid S_{1} ; S_{2} \\
& \text { if } b \text { then } S \text { else } S \mid \text { while } b \text { do } S
\end{aligned}
$$

boolean expr. statements

Table: Abstract syntax

- associate flow information
\Rightarrow labels
- elementary block = labelled item
- identify basic building blocks
- unique labelling

```
\(a::=x|n| a \rho_{a} a\)
\(b::=\) true \(\mid\) false \(\mid\) not \(b\left|b \circ_{p} b\right| a \circ_{r} a\)
\(S::=[x:=a]^{\prime} \mid[\text { skip }]^{\prime} \mid S_{1} ; S_{2}\)
    if \([b]^{\prime}\) then \(S\) else \(S \mid\) while \([b]^{\prime}\) do \(S\)
```

arithm. expression boolean expr. statements

Table: Abstract syntax

$$
y:=x ; z:=1 ; \text { while } y>1 \mathrm{do}(z:=z * y ; y:=y-1) ; y:=0
$$

- input variable: x
- output variable: z

Example: factorial

$$
[y:=x]^{1} ;[z:=1]^{2} ; \text { while }[y>1]^{3} \mathrm{do}\left([z:=z * y]^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6}
$$

- "definition" of x : assignment to $x: x:=a$
- better name: reaching assignment analysis
- first, simple example of data flow analysis

Reaching def's
assignment (= "definition") $[x:=a]^{\prime}$ may reach a program point, if there exists an execution where x was last assigned at l, when the mentioned program point is reached.

Factorial: reaching assignment

- $(y, 1)$ (short for $[y:=x]^{1}$) may reach:
- the entry to 4 (short for $[z:=z * y]^{4}$).
- the exit to 4 (not in the picture as arrow)
- the entry to 5
- but: not the exit to 5
- "points" in the program: entry and exit to elementary blocks/labels
- ?: special label (not occurring otherwise), representing entry to the program, i.e., (x, ?) represents initial (uninitialized) value of x
- full information: pair of "functions"

$$
\begin{equation*}
\mathrm{RD}=\left(\mathrm{RD}_{\text {entry }}, \mathrm{RD}_{\text {exit }}\right) \tag{1}
\end{equation*}
$$

I	$\mathrm{RD}_{\text {entry }}$	$\mathrm{RD}_{\text {exit }}$
1	$(x, ?),(y, ?),(z, ?)$	$(x, ?),(y, 1),(z, ?)$
2	$(x, ?),(y, 1),(z, ?)$	$(x, ?),(y, 1),(z, 2)$
3	$(x, ?),(y, 1),(y, 5),(z, 2),(z, 4)$	$(x, ?),(y, 1),(y, 5),(z, 2),(z, 4)$
4	$(x, ?),(y, 1),(y, 5),(z, 2),(z, 4)$	$(x, ?),(y, 1),(y, 5),(z, 4)$
5	$(x, ?),(y, 1),(y, 5),(z, 4)$	$(x, ?),(y, 5),(z, 4)$
6	$(x, ?),(y, 1),(y, 5),(z, 2),(z, 4)$	$(x, ?),(y, 6), \quad(z, 2),(z, 4)$

- elementary blocks of the form
- $[b]^{\prime}$: entry/exit information coincides
- $[x:=a]^{\prime}$: entry/exit information (in general) different
- at program exit: $(x, ?), x$ is input variable
- table: "best" information = "smallest":
- additional pairs in the table: still safe
- removing labels: unsafe
- note: still an approximation
- no real (= run time) data, no real execution, only data flow
- approximate since
- in concrete runs: at each point in that run, there is exactly one last assignment, not a set
- label represents (potentially infinitely many) runs
- e.g.: at program exit in concrete run: either $(z, 2)$ or else $(z, 4)$
- standard: representation of program as flow graph
- nodes: elementary blocks with labels
- edges: flow of control
- two approaches (both (especially here) quite similar)
- equational approach
- constraint-based approach
- associate an equation system with the flow graph:
- describing the "flow of information"
- here:
- the information related to reaching assignments
- information imagined to flow forwards
- solution of the equations
- describe safe approximations
- not unique, interest in the least (or largest) solution
- here:
- give back RD of equation (1) on slide 16
first type: local, "intra-block":
- flow through each individual block
- relating for each elementary block its exit with its entry

$$
\text { elementary block: }[y:=x]^{1}
$$

$$
\begin{equation*}
\operatorname{RD}_{\text {exit }}(1)=\operatorname{RD}_{\text {entry }}(1) \backslash\{(y, /) \mid I \in \mathbf{L a b}\} \cup\{(y, 1)\} \tag{2}
\end{equation*}
$$

first type: local, "intra-block":

- flow through each individual block
- relating for each elementary block its exit with its entry
elementary block: $[y>1]^{3}$

$$
\begin{align*}
& \operatorname{RD}_{\text {exit }}(1)=\operatorname{RD}_{\text {entry }}(1) \backslash\{(y, I) \mid I \in \mathbf{L a b}\} \cup\{(y, 1)\} \tag{2}\\
& \operatorname{RD}_{\text {exit }}(3)=\operatorname{RD}_{\text {entry }}(3)
\end{align*}
$$

first type: local, "intra-block":

- flow through each individual block
- relating for each elementary block its exit with its entry
all equations with $\mathrm{RD}_{\text {exit }}$ as "left-hand side"

$$
\begin{align*}
& \mathrm{RD}_{\text {exit }}(1)=\mathrm{RD}_{\text {entry }}(1) \backslash\{(y, I) \mid I \in \mathbf{L} \mathbf{L a b}\} \cup\{(y, 1)\} \tag{2}\\
& \mathrm{RD}_{\text {exit }}(2)=\mathrm{RD}_{\text {entry }}(2) \backslash\{(z, I) \mid I \in \mathbf{L a b}\} \cup\{(z, 2)\} \\
& \mathrm{RD}_{\text {exit }}(3)=\mathrm{RD}_{\text {entry }}(3) \\
& \mathrm{RD}_{\text {exit }}(4)=\mathrm{RD}_{\text {entry }}(4) \backslash\{(z, I) \mid I \in \mathbf{L} \mathbf{L a b}\} \cup\{(z, 4)\} \\
& \mathrm{RD}_{\text {exit }}(5)=\mathrm{RD}_{\text {entry }}(5) \backslash\{(y, l) \mid I \in \mathbf{L} \mathbf{L a b}\} \cup\{(y, 5)\} \\
& \mathrm{RD}_{\text {exit }}(6)=\mathrm{RD}_{\text {entry }}(6) \backslash\{(y, I) \mid I \in \mathbf{L a b}\} \cup\{(y, 6)\}
\end{align*}
$$

second type: global, "inter-block"

- reflecting the control flow graph
- flow between the elementary blocks, following the control-flow edges
- relating the entry of each ${ }^{3}$ block with the exits of other blocks, that are connected via an edge
- initial block: mark variables as uninitialized

$$
\begin{equation*}
R D_{\text {entry }}(2)=R D_{\text {exit }}(1) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{RD}_{\text {entry }}(4)=\mathrm{RD}_{\text {exit }}(3) \\
& \mathrm{RD}_{\text {entry }}(5)=\mathrm{RD}_{\text {exit }}(4) \\
& \mathrm{RD}_{\text {entry }}(6)=\mathrm{RD}_{\text {exit }}(3)
\end{aligned}
$$

[^0]second type: global, "inter-block"

- reflecting the control flow graph
- flow between the elementary blocks, following the control-flow edges
- relating the entry of each ${ }^{3}$ block with the exits of other blocks, that are connected via an edge
- initial block: mark variables as uninitialized

$$
\begin{align*}
& \mathrm{RD}_{\text {entry }}(2)=\mathrm{RD}_{\text {exit }}(1) \tag{3}\\
& \mathrm{RD}_{\text {entry }}(3)=\mathrm{RD}_{\text {exit }}(2) \cup R \mathrm{D}_{\text {exit }}(5) \\
& \mathrm{RD}_{\text {entry }}(4)=\mathrm{RD}_{\text {exit }}(3) \\
& \mathrm{RD}_{\text {entry }}(5)=\mathrm{RD}_{\text {exit }}(4) \\
& \mathrm{RD}_{\text {entry }}(6)=\mathrm{RD}_{\text {exit }}(3)
\end{align*}
$$

[^1]second type: global, "inter-block"

- reflecting the control flow graph
- flow between the elementary blocks, following the control-flow edges
- relating the entry of each ${ }^{3}$ block with the exits of other blocks, that are connected via an edge
- initial block: mark variables as uninitialized

$$
\begin{align*}
& \mathrm{RD}_{\text {entry }}(2)=\mathrm{RD}_{\text {exit }}(1) \tag{3}\\
& \mathrm{RD}_{\text {entry }}(3)=\mathrm{RD}_{\text {exit }}(2) \cup \mathrm{RD}_{\text {exit }}(5) \\
& \mathrm{RD}_{\text {entry }}(4)=\mathrm{RD}_{\text {exit }}(3) \\
& \mathrm{RD}_{\text {entry }}(5)=\mathrm{RD}_{\text {exit }}(4) \\
& \mathrm{RD}_{\text {entry }}(6)=\mathrm{RD}_{\text {exit }}(3) \\
& \mathrm{RD}_{\text {entry }}(1)=\{(x, ?),(y, ?),(z, ?)\}
\end{align*}
$$

[^2]Intra: for assignments $[x:=a]^{1}$

$$
\begin{equation*}
\mathrm{RD}_{\text {exit }}(I)=\mathrm{RD}_{\text {entry }}(I) \backslash\left\{\left(x, I^{\prime}\right) \mid I^{\prime} \in \mathbf{L a b}\right\} \cup\{(x, I)\} \tag{4}
\end{equation*}
$$

for other blocks $[b]^{1}$ (side-effect free)

$$
\begin{equation*}
\mathrm{RD}_{\text {exit }}(I)=\mathrm{RD}_{\text {entry }}(I) \tag{5}
\end{equation*}
$$

Inter:

$$
\begin{equation*}
\mathrm{RD}_{\text {entry }}(I)=\bigcup_{\prime^{\prime} \rightarrow I} \mathrm{RD}_{\text {exit }}\left(I^{\prime}\right) \tag{6}
\end{equation*}
$$

Initial: I: label of the initial block ${ }^{4}$

$$
\begin{equation*}
\mathrm{RD}_{\text {entry }}(I)=\{(x, ?) \mid x \text { is a program variable }\} \tag{7}
\end{equation*}
$$

[^3]The equation system as fix point

- in the example: solution to the equation system $=12$ sets

$$
R D_{\text {entry }}(1), \ldots, \mathrm{RD}_{\text {exit }}(6)
$$

- i.e., the $\mathrm{RD}_{\text {entry }}(I), \mathrm{RD}_{\text {exit }}(I)$ are the variables of the equation system, of "type": "set of (x, I)-pairs"
- $\overrightarrow{R D}$: the mentioned twelve-tuple
\Rightarrow equation system understood as function F
Equations

$$
\overrightarrow{R D}=F(\overrightarrow{R D})
$$

- more explicitly, broken down to its 12 parts (the "equations")

$$
F(\overrightarrow{R D})=\left(F_{\text {entry }}(1)(\overrightarrow{R D}), F_{\text {exit }}(1)(\overrightarrow{R D}), \ldots, F_{\text {exit }}(6)(\overrightarrow{R D})\right)
$$

- for instance:

$$
F_{\text {entry }}(3)=\left(\ldots, \mathrm{RD}_{\text {exit }}(2), \ldots, R \mathrm{D}_{\text {exit }}(5), \ldots\right)=\mathrm{RD}_{\text {exit }}(2) \cup R \mathrm{D}_{\text {exit }}(5)
$$

- Var $_{*}=$ variables "of interest" (i.e., occurring), Lab ${ }_{*}$: labels of interest
- here $\mathbf{V a r}_{*}=\{x, y, z\}, \mathbf{L a b}_{*}=\{?, 1, \ldots, 6\}$

$$
\begin{equation*}
F:\left(2^{\mathbf{V a r}_{*} \times \mathbf{L a b}_{*}}\right)^{12} \rightarrow\left(2^{\mathbf{V a r}_{*} \times \mathbf{L a b}_{*}}\right)^{12} \tag{8}
\end{equation*}
$$

- domain $\left(2^{\mathbf{V a r}}{ }_{*} \times \text { Lab }_{*}\right)^{12}$: partially ordered pointwise:

$$
\begin{equation*}
\overrightarrow{\mathrm{RD}} \sqsubseteq \overrightarrow{\mathrm{RD}}^{\prime} \text { iff } \forall i . \mathrm{RD}_{i} \subseteq \mathrm{RD}_{i}^{\prime} \tag{9}
\end{equation*}
$$

\Rightarrow complete lattice

Constraint-based approach

- here, for DFA: a simple "variant" of the equational approach
- trivial rearrangement of the entry-exit relationships
- instead of equations: inequations (sub-set instead of set-equality)
- in more complex settings: constraints become more complex, no split in exit- and entry-constraints
elementary block: $[y:=x]^{1}$

```
RD
RD
```

elementary block: $[y>1]^{3}$

$$
R D_{\text {exit }}(3) \supseteq \mathrm{RD}_{\text {entry }}(3)
$$

all equations with $\mathrm{RD}_{\text {exit }}$ as left-hand side

$$
\begin{aligned}
& \operatorname{RD}_{\text {exit }}(1) \supseteq \mathrm{RD}_{\text {entry }}(1) \backslash\{(y, I) \mid I \in \mathbf{L a b}\} \\
& \mathrm{RD}_{\text {exit }}(1) \supseteq\{(y, 1)\} \\
& \mathrm{RD}_{\text {exit }}(2) \supseteq \mathrm{RD}_{\text {entry }}(2) \backslash\{(z, I) \mid I \in \mathbf{L a b}\} \\
& \operatorname{RD}_{\text {exit }}(2) \supseteq\{(z, 2)\} \\
& \operatorname{RD}_{\text {exit }}(3) \supseteq \mathrm{RD}_{\text {entry }}(3) \\
& \mathrm{RD}_{\text {exit }}(4) \supseteq \mathrm{RD}_{\text {entry }}(4) \backslash\{(z, I) \mid I \in \mathbf{L a b}\} \\
& \operatorname{RD}_{\text {exit }}(4) \supseteq\{(z, 4)\} \\
& \operatorname{RD}_{\text {exit }}(5) \supseteq \mathrm{RD}_{\text {entry }}(5) \backslash\{(y, I) \mid I \in \mathbf{L a b}\} \\
& \operatorname{RD}_{\text {exit }}(5) \supseteq\{(y, 5)\} \\
& \operatorname{RD}_{\text {exit }}(6) \supseteq \mathrm{RD}_{\text {entry }}(6) \backslash\{(y, I) \mid I \in \mathbf{L a b}\} \\
& \operatorname{RD}_{\text {exit }}(6) \supseteq\{(y, 6)\}
\end{aligned}
$$

Factorial program: inter-block constraints
cf. slide 27 ff.: inter-block equations:

$$
\begin{aligned}
& \mathrm{RD}_{\text {entry }}(2)=\mathrm{RD}_{\text {exit }}(1) \\
& \mathrm{RD}_{\text {entry }}(3)=\mathrm{RD}_{\text {exit }}(2) \cup \mathrm{RD}_{\text {exit }}(5) \\
& \mathrm{RD}_{\text {entry }}(4)=\mathrm{RD}_{\text {exit }}(3) \\
& \mathrm{RD}_{\text {entry }}(5)=\mathrm{RD}_{\text {exit }}(4) \\
& \mathrm{RD}_{\text {entry }}(6)=\mathrm{RD}_{\text {exit }}(3) \\
& \\
& \mathrm{RD}_{\text {entry }}(1)=\{(x, ?),(y, ?),(z, ?)\}
\end{aligned}
$$

Factorial program: inter-block constraints
splitting of composed right-hand sides + using \supseteq instead of $=$:

```
RD
RD
RD
RD
RD
RD
RD}\mp@subsup{\textrm{entry}}{(1)}{2}{(x,?),(y,?),(z,?)
```

- instead of $F(\overrightarrow{R D})=\overrightarrow{R D}$

$$
\begin{equation*}
F(\overrightarrow{R D}) \sqsubseteq \overrightarrow{R D} \tag{10}
\end{equation*}
$$

for the same F

- clear: solution to the equation system \Rightarrow solution to the constraint system
- important: least solution coincides!

Control-flow analysis

- goal: which elem. blocks lead to which other elem. blocks
- for while-language: immediate (labelled elem. blocks, resp., graph)
- complex for: more advanced features, higher-order languages, oo languages ...
- here: prototypical "higher-order" functional language (λ-calc.)
- formulated as constraint based analysis

```
let f = fn x => x 1;
    g = fn y => y + 2;
    h = fn z => z + 3;
in (f g) + (f h)
```

- higher-order function f :
- for simplicity untyped
- local definitions ${ }^{5}$ via let-in
goal (more specific)
for each function application, which function may be applied
- interesting above: x 1
${ }^{5}$ That's something else than assignment. We will not consider it (here) anyway.
- more complex language \Rightarrow more complex labelling
- "elem. blocks" can be nested
- all syntactic constructs (expressions) are labeled
- consider:

$$
(\mathrm{fn} x \Rightarrow x)(\mathrm{fn} y \Rightarrow y)
$$

- more complex language \Rightarrow more complex labelling
- "elem. blocks" can be nested
- all syntactic constructs (expressions) are labeled
- consider:

$$
\left[\left[\mathrm{fn} x \Rightarrow[x]^{1}\right]^{2}\left[\mathrm{fn} y \Rightarrow[y]^{3}\right]^{4}\right]^{5}
$$

- functional language: side effect free
\Rightarrow no need to distinguish entry and exit of labelled blocks.
- data of the analysis: $(\hat{C}, \hat{\rho})$, pair of functions abstract cache: $\hat{C}(I)$: set of values/function abstractions, the subexpression labelled I may evaluate to abstract env.: $\hat{\rho}$: values, x may be bound to

The constraint system

- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints
- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[\mathrm{fn} x \Rightarrow x]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{\prime}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[\mathrm{fn} x \Rightarrow x]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{\prime}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- function abstractions

$$
\begin{array}{lll}
\left\{\operatorname{fn} x \Rightarrow[x]^{1}\right\} & \subseteq & \hat{C}(2) \\
\left\{\operatorname{fn} y \Rightarrow[y]^{3}\right\} & \subseteq \hat{C}(4)
\end{array}
$$

- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[\mathrm{fn} x \Rightarrow x]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{1}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- variables

$$
\begin{aligned}
& \hat{\rho}(x) \subseteq \hat{C}(1) \\
& \hat{\rho}(y) \subseteq \hat{C}(3)
\end{aligned}
$$

- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[\mathrm{fn} x \Rightarrow x]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{1}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- application: connecting function entry and (body) exit with the argument
$\hat{C}(4) \subseteq \hat{\rho}(x)$
$\hat{C}(1) \subseteq \hat{C}(5)$
- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[\mathrm{fn} x \Rightarrow x]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{\prime}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)
- application: connecting function entry and (body) exit with the argument but:
- also $\left[\mathrm{fn} y \Rightarrow[y]^{3}\right]^{4}$ is a candidate at 2 ! (according to $\hat{C}(2)$)

$$
\begin{aligned}
& \hat{C}(4) \subseteq \hat{\rho}(x) \\
& \hat{C}(1) \subseteq \hat{C}(5) \\
& \hat{\mathbf{C}}(\mathbf{4}) \subseteq \hat{\rho}(y) \\
& \hat{C}(3) \subseteq \hat{\mathbf{C}}(\mathbf{5})
\end{aligned}
$$

- ignoring "let" here: three syntactic constructs \Rightarrow three kinds of constraints

1. function abstraction: $[f \mathrm{n} \boldsymbol{x} \Rightarrow \boldsymbol{x}]^{\prime}$
2. variables: $[x]^{\prime}$
3. application: $[f g]^{1}$

- relating $\hat{C}, \hat{\rho}$, and the program in form of constraints (subsets, order-relation)

$$
\begin{array}{llll}
\left\{\operatorname{fn} x \Rightarrow[x]^{1}\right\} \subseteq \hat{C}(2) & \Rightarrow & \hat{C}(4) & \subseteq \\
\left\{\operatorname{\rho n} x \Rightarrow[x]^{1}\right\} \subseteq \hat{C}(2) & \Rightarrow & \hat{C}(1) & \subseteq \\
\hat{C}(5) \\
\left\{\operatorname{fn} y \Rightarrow[y]^{3}\right\} \subseteq \hat{C}(2) & \Rightarrow & \hat{\mathbf{C}}(4) & \subseteq \hat{\rho}(y) \\
\left\{\operatorname{fn} y \Rightarrow[y]^{3}\right\} \subseteq \hat{C}(2) & \Rightarrow & \hat{C}(3) & \subseteq \hat{\mathbf{C}}(5)
\end{array}
$$

$\hat{C}(1)$	$=\left\{\mathrm{fn} y \Rightarrow[y]^{3}\right\}$
$\hat{C}(2)$	$=\left\{\mathrm{fn} x \Rightarrow[x]^{1}\right\}$
$\hat{C}(3)$	$=\emptyset$
$\hat{C}(4)$	$=\left\{\mathrm{fn} y \Rightarrow[y]^{3}\right\}$
$\hat{C}(5)$	$=\left\{\mathrm{fn} y \Rightarrow[y]^{3}\right\}$
$\hat{\rho}(x)$	$=\left\{\mathrm{fn} y \Rightarrow[y]^{3}\right\}$
$\hat{\rho}(y)$	$=\emptyset$

- type system: "classical" static analysis:

$$
t: T
$$

- judgment: "term/program phrase has type T "
- in general: context-sensitive judgments ${ }^{6}$

$$
\Gamma \vdash t: T
$$

Г: assumptions/context

- here: "non-standard" type systems: effects and annotations
- natural setting: typed languages, here: trivial! setting (while-language)

[^4]- setting: while-language
- each statement maps: state to states
- Σ : type of states
judgment

$$
\begin{equation*}
S: \Sigma \rightarrow \Sigma \tag{11}
\end{equation*}
$$

- specified as a derivation system
- note: partial correctness assertion
"Trival" type system: rules

$$
\begin{aligned}
& {[x:=a]^{\prime}: \Sigma \rightarrow \Sigma \quad \text { ASS }} \\
& {[\text { skip }]^{\prime}: \Sigma \rightarrow \Sigma \quad \text { SKIP }} \\
& \frac{S_{1}: \Sigma \rightarrow \Sigma \quad S_{2}: \Sigma \rightarrow \Sigma}{S_{1} ; S_{2}: \Sigma \rightarrow \Sigma} \text { SEQ } \\
& \frac{S: \Sigma \rightarrow \Sigma}{\text { while }[b]^{\prime} \text { do } S: \Sigma \rightarrow \Sigma} \text { WHILE } \\
& \frac{S_{1}: \Sigma \rightarrow \Sigma \quad S_{2}: \Sigma \rightarrow \Sigma}{\text { if }[b]^{\prime} \text { then } S_{1} \text { else } S_{2}: \Sigma \rightarrow \Sigma} \text { COND }
\end{aligned}
$$

annotated type system

$$
\begin{equation*}
\vdash S: \Sigma_{1} \rightarrow \Sigma_{2} \tag{12}
\end{equation*}
$$

effect system

$$
\begin{equation*}
\vdash S: \Sigma \xrightarrow{\varphi} \Sigma \tag{13}
\end{equation*}
$$

type and effect system (TES)

- often effect system + annotated type system (border fuzzy)
- annotated type system
- Σ_{i} : property of state (" $\Sigma_{i} \subseteq \Sigma$ ")
- "abstract" properties: invariants, a variable is positive, etc.
- effect system
"statement S maps state to state, with (potential ...) effect φ "
- effect φ : e.g.: errors, exceptions, file/resource access, ...

Annotated type systems

- example: reaching definitions/assignments in While-lang.
- 2 flavors

1. annotated base types: $S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}$
2. annotated type constructors: $S: \Sigma \underset{\mathrm{RD}}{\underset{ }{X}} \Sigma$

Annotated base types

- judgment

$$
\begin{equation*}
S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2} \tag{14}
\end{equation*}
$$

- RD $\subseteq 2^{\text {Var } \times \text { Lab }}$
- auxiliary functions
- note: every S has one "initial" elementary block, potentially more than one "at the end"
- init(S): the (unique) label at the entry of S
- final(S): the set of labels at the exits of S
"meaning" of judgment $S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}$:
" RD_{1} is the set of var/label reaching the entry of S and $R D_{2}$ the corresponding set at the exit(s) of $S "$:

$$
\begin{aligned}
& \mathrm{RD}_{1}=\mathrm{RD}_{\text {entry }}(\text { init }(S)) \\
& \mathrm{RD}_{2}=\bigcup\left\{\mathrm{RD}_{\text {exit }}(I) \mid I \in \text { final }(S)\right\}
\end{aligned}
$$

$$
[x:=a]^{\prime \prime}: \operatorname{RD} \rightarrow \operatorname{RD} \backslash\{(x, I) \mid I \in \mathbf{L a b}\} \cup\left\{\left(x, I^{\prime}\right)\right\} \quad \text { Ass }
$$

$$
\text { [skip] }{ }^{\prime}: \mathrm{RD} \rightarrow \mathrm{RD} \quad \text { SKIP }
$$

$$
\frac{S_{1}: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2} \quad S_{2}: \mathrm{RD}_{2} \rightarrow \mathrm{RD}_{3}}{S_{1} ; S_{2}: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{3}} \text { SEQ }
$$

$$
\frac{S_{1}: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2} \quad S_{2}: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}}{\text { if }[b]^{\prime} \text { then } S_{1} \text { el se } S_{2}: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}} \text { IF }
$$

$$
S: R D \rightarrow R D
$$

$$
\overline{\text { while }[b]^{\prime}} \text { do } S: \mathrm{RD} \rightarrow \mathrm{RD} \text { WHILE }
$$

$$
\frac{S: \mathrm{RD}_{1}^{\prime} \rightarrow \mathrm{RD}_{2}^{\prime} \quad \mathrm{RD}_{1} \subseteq \mathrm{RD}_{1}^{\prime} \quad \mathrm{RD}_{2}^{\prime} \subseteq \mathrm{RD}_{2}}{S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}} \text { SuB }
$$

"Meaning" of judgment $S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}$:
" RD_{1} is the set of var/label reaching the entry of S and RD_{2} the corresponding set at the exit(s) of $S^{\prime \prime}$:

$$
\begin{aligned}
& \mathrm{RD}_{1}=\mathrm{RD}_{\text {entry }}(\text { init }(S)) \\
& \mathrm{RD}_{2}=\bigcup\left\{\mathrm{RD}_{\text {exit }} \mid I \in \text { final }(S)\right\}
\end{aligned}
$$

- Be careful:

$$
\text { if }[b]^{\prime} \text { then } S_{1} \text { else } S_{2}
$$

- more concretely

$$
\text { if }[b]^{\prime} \operatorname{then}[x:=y]^{1 /} \text { el se }[y:=x]^{/ 2}
$$

Once again: "Meaning" of judgment $S: \mathrm{RD}_{1} \rightarrow \mathrm{RD}_{2}$:
" $R D_{1}$ is the set of var/label reaching the entry of S and $R D_{2}$ the corresponding set at the exit(s) of $S "$:

$$
\begin{array}{rlll}
& \text { if } \mathrm{RD}_{1} & \left.\subseteq \mathrm{RD}_{\text {entry }} \text { (init }(S)\right) \\
\text { then } \forall I \in \text { final }(S) . & \mathrm{RD}_{\text {exit }}(I) & \subseteq \mathrm{RD}_{2}
\end{array}
$$

- compare subsumption rule SuB
- subsumption adds necessary slack
- similar to the contraint formulation
- Remember: data flow equations and their (possible/minimal) solution

Example: factorial

$$
[y:=x]^{1} ;[z:=1]^{2} ; \text { while }[y>1]^{3} \mathrm{do}\left([z:=z * y]^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6}
$$

$$
\begin{gathered}
{[y:=x]^{1}: \mathrm{RD}_{0} \rightarrow\left\{?_{x}, 1, ?_{z}\right\} \frac{[z:=1]^{2}:\left\{?_{x}, 1, ?_{z}\right\} \rightarrow\left\{?_{x}, 1,2\right\} \quad f_{3}:\left\{?_{x}, 1,2\right\} \rightarrow \mathrm{RD}_{\text {final }}}{f_{2}:\left\{?_{x}, 1, ?_{z}\right\} \rightarrow \mathrm{RD}_{\text {final }}}} \\
f: \mathrm{RD}_{0} \rightarrow \mathrm{RD}_{\text {final }} \\
\operatorname{RD}_{0}=\left\{?_{x}, ?_{y}, ?_{z}\right\} \quad \mathrm{RD}_{\text {final }}=\left\{?_{x}, 6,2,4\right\}
\end{gathered}
$$

type sub-derivation for the rest $f_{3}=$ while $\ldots ;[y:=0]^{6}$ loop invariant

$$
\mathrm{RD}_{\text {body }}=\left\{?_{x}, 1,5,2,4\right\}
$$

$$
\begin{gathered}
{[z:=-]^{4}: \mathrm{RD}_{\text {body }} \rightarrow\left\{?_{x}, 1,5,4\right\}} \\
{[y:=-]^{5}:\left\{?_{x}, 1,5,4\right\} \rightarrow\left\{?_{x}, 5,4\right\}} \\
\hline
\end{gathered}
$$

$$
f_{\text {body }}: \mathrm{RD}_{\text {body }} \rightarrow\left\{?_{x}, 5,4\right\}
$$

$$
f_{\text {body }}: \mathrm{RD}_{\text {body }} \rightarrow \mathrm{RD}_{\text {body }}
$$

$$
f_{\text {while }}: \mathrm{RD}_{\text {body }} \rightarrow \mathrm{RD}_{\text {body }}
$$

$$
f_{\text {while }}:\{? x, 1,2\} \rightarrow \mathrm{RD}_{\text {body }} \quad[y:=0]^{6}: \mathrm{RD}_{\text {body }} \rightarrow \mathrm{RD}_{\text {final }}
$$

$$
f_{3}:\{? x, 1,2\} \rightarrow \mathrm{RD}_{\text {final }}
$$

- alternative approach of annotated type systems
- arrow constructor itself annotated
- annotion of \rightarrow : flavor of effect system
- judgment

$$
S: \Sigma \underset{\mathrm{RD}}{\longrightarrow} \Sigma
$$

- annotation with RD (corresponding to the post-condition from above) alone is not enough
- alternative approach of annotated type systems
- arrow constructor itself annotated
- annotion of \rightarrow : flavor of effect system
- judgment

$$
S: \Sigma \xrightarrow[\mathrm{RD}]{X} \Sigma
$$

- annotation with RD (corresponding to the post-condition from above) alone is not enough
- also need: the variables "being" changed
- Meaning
" S maps states to states, where RD is the set of reaching definition, S may produce and X the set of var's S must (= unavoidably) assign

$$
\begin{aligned}
& {[x:=a]^{\prime}: \Sigma \underset{\{(x, l)\}}{\underset{\{x\}}{ }} \Sigma \text { Ass }} \\
& {\left[\text { skip] }{ }^{\prime}: \Sigma \underset{\emptyset}{\emptyset} \Sigma \quad\right. \text { SKIP }} \\
& \frac{S_{1}: \Sigma \frac{X_{1}}{\mathrm{RD}_{1}} \Sigma S_{2}: \Sigma \frac{X_{2}}{\mathrm{RD}_{2}} \Sigma}{S_{1} ; S_{2}: \Sigma \underset{\mathrm{RD}_{1} \backslash \underset{X_{2}}{ } \backslash \mathrm{X}_{2} \cup \mathrm{RD}_{2}}{ } \Sigma} \text { SEQ } \\
& \underset{\text { if }[b] \text { then } S_{1} \text { else } S_{2}: \Sigma \frac{X}{\mathrm{RD}} \Sigma}{S_{1}: \Sigma \xrightarrow[\mathrm{RD}]{\mathrm{RD}} \Sigma} \quad S_{2}: \Sigma \\
& \frac{S: \Sigma \frac{x}{\mathrm{RD}} \Sigma}{\text { while }[b]^{\prime} \text { do } S: \Sigma \underset{\mathrm{RD}}{\bullet} \Sigma} \text { WHILE } \\
& \frac{S: \Sigma \underset{\mathrm{RD}^{\prime}}{ } \Sigma \quad x \subseteq X^{\prime} \quad \mathrm{RD}^{\prime} \subseteq \mathrm{RD}}{S: \Sigma \xrightarrow[\mathrm{XD}]{ } \Sigma} \text { SUB }
\end{aligned}
$$

- this time: functional language ${ }^{7}$
- starting point: simple type system
- judgment:

$$
\Gamma \vdash e: \tau
$$

- Г: type environment, "mapping" from var's to types
- types: bool, int, and $\tau \rightarrow \tau$

[^5]\[

$$
\begin{aligned}
& \frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \mathrm{VAR} \\
& \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{fn}_{\pi} x \Rightarrow e: \tau_{1} \rightarrow \tau_{2}} \mathrm{ABS} \\
& \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}} \mathrm{APP}
\end{aligned}
$$
\]

call tracking analysis:
Determine: for each subexpression, which function abstractions may be applied during its evaluation.
\Rightarrow set of function names

- annotate: function type with latent effect
\Rightarrow annotated types: $\hat{\tau}$: base types as before, arrow types:

$$
\begin{equation*}
\hat{\tau}_{1} \xrightarrow{\varphi} \hat{\tau}_{2} \tag{15}
\end{equation*}
$$

- functions from τ_{1} to τ_{2}, where in the execution, functions from set φ are called.
- judgment

$$
\begin{equation*}
\hat{\Gamma} \vdash e: \hat{\tau} \& \varphi \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\hat{\Gamma}(x)=\hat{\tau}}{\hat{\Gamma} \vdash x: \hat{\tau} \& \emptyset} \mathrm{VAR} \\
& \frac{\Gamma, x: \hat{\tau}_{1} \vdash e: \hat{\tau}_{2} \& \varphi}{\Gamma \vdash \operatorname{fn}_{\pi} x \Rightarrow e: \hat{\tau}_{1} \xrightarrow{\varphi \cup\{\pi\}} \hat{\tau}_{2} \& \emptyset} \mathrm{ABS} \\
& \frac{\hat{\Gamma} \vdash e_{1}: \hat{\tau}_{1} \xrightarrow[\rightarrow]{\varphi} \hat{\tau}_{2} \& \varphi_{1} \quad \hat{\Gamma} \vdash e_{2}: \hat{\tau}_{1} \& \varphi_{2}}{\hat{\Gamma} \vdash e_{1} e_{2}: \hat{\tau}_{2} \& \varphi \cup \varphi_{1} \cup \varphi_{2}} \text { APP }
\end{aligned}
$$

Call tracking: example

$$
\begin{aligned}
& x: \text { int } \xrightarrow{\{Y\}} \text { int } \vdash x: \text { int } \xrightarrow{\{Y\}} \text { int \& } \emptyset \\
& \xrightarrow{\vdash\left(\operatorname{fnn}_{X} x \Rightarrow x\right):(\text { int } \xrightarrow{\{Y\}} \text { int }) \xrightarrow{\{X\}}(\text { int } \xrightarrow{\{Y\}} \text { int) \& } \emptyset} \quad \vdash(\underset{Y}{\text { fn }} y \Rightarrow y): \text { int } \xrightarrow{\{Y\}} \text { int \& } \emptyset \\
& \vdash\left(\underset{X}{f f_{n}} x \Rightarrow x\right)\left(\underset{Y}{f_{n}} y \Rightarrow y\right): \text { int } \xrightarrow{\{Y\}} \text { int } \&\{X\}
\end{aligned}
$$

Chaotic iteration

- back to Data flow/reaching def's
- goal: solve

$$
\overrightarrow{R D}=F(\mathrm{RD}) \quad \text { or } \quad \overrightarrow{R D} \sqsubseteq F(\mathrm{RD})
$$

- F : monotone, finite domain
- straightforward/naive approach init: $\overrightarrow{R D}_{0}=F^{0}(\emptyset)$
iterate: $\overrightarrow{R D}_{n+1}=F\left(\overrightarrow{R D}_{n}\right)=F^{n+1}(\emptyset)$ until stabilization
- approach to implement that: chaotic iteration
- abbrev:

$$
\begin{aligned}
\overrightarrow{R D} & =\left({\left.R D_{1}, \ldots, R D_{12}\right)}^{F(\overrightarrow{R D})}\right.
\end{aligned}=F(R \overrightarrow{R D}, \ldots, R \overrightarrow{R D})
$$

Chaotic iteration (for RD)

```
Input: example equations for reaching definitions
Output: least solution: }\vec{RD}=(\mp@subsup{RDD}{1}{},\ldots,\mp@subsup{RDDD}{12}{}
Method: step 1: initialization
    RD
    step 2: iteration
    while RD
    do
        RD
```

References I
[1] F. Nielson, H.-R. Nielson, and C. L. Hankin.
Principles of Program Analysis.
Springer-Verlag, 1999.

[^0]: ${ }^{3}$ except (in general) the initial block.

[^1]: ${ }^{3}$ except (in general) the initial block.

[^2]: ${ }^{3}$ except (in general) the initial block.

[^3]: ${ }^{4}$ isolated entry.

[^4]: ${ }^{6}$ remember Chomsky ...

[^5]: ${ }^{7}$ same as for constraint-based cfa.

