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Goals of Natural Language Processing
Natural Language Understanding

● Tasks that require inference, reasoning
● What representations do we need?
● How much structure?
● Where should this structure come from?
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Goals of Natural Language Processing
How to get there:

● Powerful models with neural networks
● Linguistically-informed structure
● Accurate inference over simple underlying structure
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Robust Incremental Neural Semantic Graph Parsing

Jan Buys and Phil Blunsom, ACL 2017
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Syntactic Dependencies

5

(Dyer et al 2015; Andor et al, 2016; Kiperwasser and Goldberg 2016) 



Semantic Dependencies
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(Oepen et al, 2014, 2015; Martins and Almeida 2014)



Semantic Graphs
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Abstract Meaning Representation
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(Banarescu et al, 2013; Flanigan et al, 2014; Wang et al, 2015; Arzi et al, 2015) 



Semantic representations
Compositionality

● Semantics constrained by syntax
● Explicit alignment to sentence structure
● Underlying lexicon and grammar
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Semantic representations
Compositionality

● Comprehensiveness
● Consistency
● Scalability

10
(Bender et al., 2015)



Semantic representations
Minimal Recursion Semantics 

● Semantic representation for feature-structure formalisms such as HPSG
● Implemented in the English Resource Grammar (ERG)
● Treebanks based on the ERG: DeepBank (WSJ), Redwoods.
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(Copenstake et al., 2005; Flickinger 2000; Flickinger et al., 2017)



Parsing MRS
Existing parsers based on the ERG
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● High precision, but incomplete coverage
● Find HPSG derivations
● Obtain MRS through unification
● Score with MaxEnt model
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Dependency MRS (DMRS)
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End-to-end semantic graph parsing
● Text to directed acyclic graphs with labelled nodes and edges, each node 

aligned to a span of input tokens
● No intermediate syntactic structure
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End-to-end semantic graph parsing
Predict graph structure incrementally

● Top-down linearization
● Transition-based parsing

○ Generating nodes rather than using words as nodes
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End-to-end semantic graph parsing
Top-down graph linearization
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End-to-end semantic graph parsing
Top-down graph linearization with 
alignments
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End-to-end semantic graph parsing
Top-down graph linearization, unlexicalized

21

Everybody    wants    to   meet          John .

_want_v_1

every_q

person

_meet_v_1ARG1
ARG2

ARG2

BV

proper_qARG1

“John”

CARG

BV

named

:root( <2> _v_1  
  :ARG1( <1> person  
    :BV-of( <1> every_q ) ) 
  :ARG2 <4> _v_1 
    :ARG1*( <1> person
    :ARG2( <5> named_CARG
      :BV-of ( <5> proper_q ) ) )



Transition-based graph parsing
● Arc-eager transition system for semantic graphs
● Data structures: Input sentence, stack, buffer
● Actions:

○ Shift - generate next predicate on buffer
○ Reduce
○ Left-arc
○ Right-arc
○ Cross-arc
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based graph parsing
Transition-based parsing: Oracle

● Node ordering - monotone ordering based on alignments
● Predict alignment spans start (shift) and end (reduce)
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End-to-end graph parsing: Encoder-decoders
Formulate parsing as a sequence to sequence problem

● Use either top-down or transition-based linearization
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RNN Encoder-decoders
● LSTM encodes the sentence (based on word embeddings)
● A decoder LSTM then decodes the sequence
● Attention mechanism links the encoder and decoder

○ Soft alignment between input and output learned jointly with the model
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Graph parsing with stack-based encoder-decoders
Alternative to soft attention

● Use alignments of top stack and buffer nodes to extract features based on 
biLSTM encoder

● Decoder still encodes predicted output symbols with an RNN
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Graph parsing with stack-based encoder-decoders
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Graph parsing with stack-based encoder-decoders

RNN decoder with hard attention
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Input sentence e, transition sequence t, alignment a.



Graph parsing with stack-based encoder-decoders
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Graph parsing with stack-based encoder-decoders
RNN decoder with stack-based features
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DMRS Experiments

Model EDM EDM 
Predicates

EDM 
Arguments

Top-down soft att 81.53 85.32 76.94

Top-down hard att 82.75 86.37 78.37

Arc-eager soft att, lexicalized 81.35 85.79 76.02

Arc-eager soft att, unlexicalized 82.56 86.76 77.54

Arc-eager hard att 84.65 87.77 80.85

Arc-eager stack-based att 85.28 88.38 81.51

Encoder-decoders with pointer networks for alignment

37



DMRS Experiments

Model RNN 
Top-down

RNN 
Arc-eager

ACE 
(ERG)

EDM 79.68 84.16 89.64

EDM Predicates 83.36 87.54 92.08

EDM Arguments 75.16 80.10 86.77

Smatch 85.28 86.69 93.50

Test results
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Parsing speed
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DMRS Experiments

Model Tokens per second

ACE 7.47

AE RNN 41.63

AE RNN (batched) 529.42



AMR Parsing
● Structure AMR to look more like MRS graphs
● Automatic word alignments
● Classify concepts as surface or abstract
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AMR Experiments
Test results

Model Smatch

JAMR - Flanigan et al. (2014) 56

CAMR - Wang et al. (2016) 66.54

ArcEager NN - Damonte et al. (2017) 64

Neural -  Peng et al. (2017) 52

Neural - Barzdins and Gosko (2016) 43.3

Top-down attention 56.56

Arc-eager stack-based attention, unlexicalized 60.11
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Future work: Semantic graph parsing
● More parsers for MRS
● Semi-supervised learning
● Downstream applications
● Generation
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Conclusion
● Neural Networks can effectively predict structured representations
● Robust parser for linguistically sound and informative semantic graphs
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