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Introduction

Nominal Compounds

[Li, 1971]: “the simple concatenation of any two or more nouns
functioning as a third nominal”

They simply got carried away with interpreting what [ARG0 the executive
order] [rel banning] [ARG1 assassinations] really meant. (ProbBank)
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Introduction

Motivation

Frequent:
3% of all words in the British National Corpus [Ó Séaghdha, 2008]
3.9% of all words in Reuters corpus [Baldwin and Tanaka, 2004]

Productive: executive order, purchase order, delivery order
. . . but also: human door, people door
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3% of all words in the British National Corpus [Ó Séaghdha, 2008]
3.9% of all words in Reuters corpus [Baldwin and Tanaka, 2004]

Productive: executive order, purchase order, delivery order
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Figure: [Downing, 1977]
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Introduction

Background: Three Tasks

Three NLP tasks related to noun compounds [Lauer and Dras, 1994]
Detection or identification of noun compounds

Syntactic analysis of the internal structure, i.e. left vs. right
bracketing of compounds with more than two constituents

Interpretation of the semantic relation holding between the
constituents of the compound
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Background Semantic Interpretation

Two Main Approaches

Two main approaches to semantic interpretation of nominal
compounds:

Taxonomy-based [Girju et al., 2005, Tratz and Hovy, 2010,
Ó Séaghdha and Copestake, 2013]
Paraphrase-based [Nakov, 2013]
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Background Datasets

Background: Datasets

Dataset Size Relations
Nastase & Szpakowicz (2003) 600 30
Girju et al. (2005) 4,500 21
Ó Séaghdha & Copestake (2007) 1,443 6
Kim & Baldwin (2008) 2,169 20
Tratz & Hovy (2010) 17,509 43
Nombank (Fares 2016) 10,596 20
Functor (Fares 2016) 10,596 35

Table: Overview of noun compound datasets. Size: type count
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Background Datasets

Background: Datasets – Examples

cancer death
Tratz: CREATOR-PROVIDER-CAUSE_OF
Ó Séaghdha: INST
Nombank: ARGM-CAU
Functor: CAUS

world opinion
Tratz: EXPERIENCER-OF-EXPERIENCE
Ó Séaghdha: HAVE
Nombank: ARG0
Functor: ACT-arg
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Background Datasets

Background: Datasets – Examples

research team
Tratz: PERFORM&ENGAGE_IN
Ó Séaghdha: ACTOR
Nombank: ARG1
Functor: RSTR

aid package
Tratz: TOPIC
Ó Séaghdha: INST
Nombank: ARG1
Functor: RSTR
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Background Classification Approaches

Background: Classification Approaches

Maximum Entropy [Tratz and Hovy, 2010]
Support Vector Machines [Ó Séaghdha and Copestake, 2009]
Deep Neural Networks [Dima and Hinrichs, 2015]

Used word vectors from “a selection of publicly available word
embeddings” as input to a neural network.
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Background

The Big Questions

Do word embeddings capture the semantic relations holding between
the constituents of nominal compounds?

Can we predict the compound semantic relations using the vector
arithmetic typically used to solve word analogy tasks?
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Background Vector Space Models

Vector Space Models

Vector space representations of words (meaning) based on the
distributional hypothesis
Words are represented as vectors of real numbers in Rd

Corresponding to number of times wj occur in the context of wi
The vectors are referred to as the co-occurrence matrix

Similarity measures: Euclidean distance, cosine similarity, etc.
Typically very high-dimensional sparse models
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Background Vector Space Models

Word Embeddings

Word embeddings are vector space models with:
Lower-dimensional dense vectors

Many approaches and tools: CBOW, SG (word2vec), GloVe
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Background GloVe

GloVe: Global Vectors for Word Representation

Let X be a word-word co-occurrence matrix
Xij: the number of times word j occurs in the context of word i

Pij = P(j|i) =
Xij

Xi
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Background GloVe

GloVe: Ratios

GloVe relies on ratio of co-occurrence probabilities instead of just
co-occurrence probabilities

Prob. & ratio k = solid k = gas k = water k = fashion
P(k|ice) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−3 1.7 × 10−5

P(k|steam) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5

P(k|ice)/P(k|steam) 8.9 8.5 × 10−2 1.36 0.96

Table: Based on Table 1 in [Pennington et al., 2014]
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Background GloVe

GloVe: Vector Learning

Given the observation about ratio of co-occurrence probabilities

F(wi,wj, w̃k) = Pik
Pjk

. . . fast forward seven steps

J =
V∑

i,j=1

f (Xij)
(
wT

j w̃j + bi + b̃j − logXij

)2

See [Pennington et al., 2014]
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Background GloVe

GloVe: Training

Given a training corpus and a set of parameters (to be discussed
later):

1 Construct a vocabulary dictionary
2 Construct a co-occurrence matrix
3 Shuffle the co-occurrence matrix
4 Train the GloVe model (using the equation from the previous slide)
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Background GloVe Parameters

GloVe: Parameters and Hyperparameters

Text pre-processing:
sentence segmentation
tokenization
lemmatization

Vocabulary:
frequency cutoff

Co-occurrence matrix:
context window size
(a)symmetric window

Training:
vector dimensions
number of iterations
learning rate
. . .
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Background Vector Arithmetic

Vector Arithmetic

Can we predict the compound semantic relations using the vector
arithmetic typically used to solve word analogy tasks?

King is to queen as man is to ?

3COSADD: arg max
b∗∈V

(cos(b∗, b − a + a∗))

PAIRDIRECTION: arg max
b∗∈V

(cos(b∗ − b, a∗ − a))

[Levy and Goldberg, 2014] report that [Mikolov et al., 2013] used
3COSADD to solve the syntactic analogies task and PAIRDIRECTION to
solve the semantic one.
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Background Vector Arithmetic

Vector Arithmetic for Nominal Compounds

Given a test compound b, b∗

3COSADD: arg max
a,a∗∈C

(cos(b∗, b − a + a∗))

PAIRDIRECTION: arg max
a,a∗∈C

(cos(b∗ − b, a∗ − a))

C is the set training compounds
Return the relation of the most similar compound
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Experimental Setup Datasets & Tools

Experimental Setup: Datasets

Dataset Size Relations
Ó Séaghdha 1,443 6
Tratz (2011) 19,027 37
Nombank 7,850 17
Functors 7,850 33

Table: Overview of noun compound datasets.

5-fold cross validation: Ó Séaghdha
10-fold cross validation: Tratz, Nombank, Functor
Numbers reported are accuracy, unless otherwise said
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Experimental Setup Datasets & Tools

Experimental Setup: Tools

Text pre-processing: Stanford CoreNLP
Word embeddings: GloVe
Vector arithmetic & evaluation: Python script(s)
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Experimental Setup Parameters

Five Sets of Experiments

1 Pre-processing: lemma vs. full form
2 Training data: Wikipedia, Gigaword, both
3 Vector dimension: 50, 100, 300, 600, 1000
4 Vector arithmetic: 3COSADD vs. PAIRDIRECTION

5 1-nearest neighbor vs. k-nearest neighbors
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Results Pre-processing

1. Text Pre-processing: Lemma vs. Full Form

Tratz Ó Séaghdha Nombank Functor
Full form 57.24 45.14 66.43 42.46
Lemma 56.08 45.21 67.03 42.54

Table: Lemma vs. full form. Wiki+Giga, 300d, PAIRDIRECTION

More or less the same, but . . .
shorter training time for lemma-based models and . . .
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Results Pre-processing

Aside: Lemma vs. Full Form

Model SimLex Analogy

GloVe wiki lemmas 0.36 0.81
GloVe wiki forms 0.31 0.81
GloVe giga lemmas 0.38 0.72
GloVe giga forms 0.32 0.71
GloVe comb lemmas 0.40 0.77
GloVe comb forms 0.35 0.76

Table: Benchmarking against SimLex-999 and the Google Analogies Dataset
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Results Training data

2. Size of Training Data

Corpus Tratz Ó Séaghdha Nombank Functor

PAIRDIRECTION
Wikipeida 55.99 45.56 65.36 41.57
Gigaword 56.34 43.75 67.17 43.29
Wiki+Giga 56.08 45.21 67.03 42.54

3COSADD
Wikipeida 54.57 40.14 64.05 41.45
Gigaword 55.25 37.92 67.49 44.09
Wiki+Giga 55.22 39.65 66.91 43.72

Table: The impact of the size of training data on accuracy. Other parameters: lemma, 300d

Wikipedia: 1.08 billion tokens

Gigaword: 2.47 billion tokens

Wiki+Giga: 3.56 billion tokens
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Results Vector dimensionality

3. Vector Dimensionality

50 100 300 600 1000
Vector Dimension

35

40

45

50

55

60

65

70

75

Ac
cu
ra
cy

Tratz
O'Seaghdha
Nombank
Functor
Tratz
O'Seaghdha
Nombank
Functor

Other model parameters: lemma, Wiki+Giga, PAIRDIRECTION
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Results Vector Arithmetic

4. Vector Arithmetics: PAIRDIRECTION vs. 3COSADD

Reminder:

3COSADD arg max
b∗∈V

(cos(b∗, b − a + a∗))

PAIRDIRECTION arg max
b∗∈V

(cos(b∗ − b, a∗ − a))

Tratz Ó Séaghdha Nombank Functor
PAIRDIRECTION 56.08 45.21 67.03 42.54
3COSADD 55.22 39.65 66.91 43.72

Other parameters: lemma, Wiki+Giga, 300d
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Results kNN vs 1NN

5. 1-NN vs. k-NN

Tratz Ó Séaghdha Nombank Functor
n = 1 56.08 45.21 67.03 42.54
n = 3 58.58 46.39 71.03 45.71
n = 5 60.28 45.7 72.06 47.8
n = 7 60.84 44.24 72.38 49.8
n = 9 61.12 45.69 72.21 51.08
n = 11 61.35 44.72 72.18 51.7

Table: 1-NN vs. k-NN. Other parameters: lemma, 300d, Wiki+Giga, PAIRDIRECTION

Clear increase in accuracy, but . . .
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Results Closer Look

Nombank: Distribution of Relations
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Results Closer Look

Per Relation Precision & Recall - Nombank
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Results Closer Look

Functor: Distribution of Relations
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Results Closer Look

Per Relation Precision & Recall - Functor
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Results Closer Look

Macro-average: Precision & Recall
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Results Closer Look

Ó Séaghdha: Distribution of Relations
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Results Closer Look

Per Relation Precision & Recall - Ó Séaghdha
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Results Closer Look

Tratz: Distribution of Relations
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Results Closer Look

Per Relation Precision & Recall - Tratz
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Results Closer Look

Closer Look into Tratz’s Dataset

ADJ-LIKE_NOUN has only 7 distinct modifiers for 254 compounds
[Dima, 2016]
AMOUNT_OF has only 15 distinct heads for 168 compounds
[Dima, 2016]
which means . . .

Lexical memorization not relation learning :-(

“Lexical Memorization is the phenomenon in which the classifier learns
that a specific word in a specific slot is a strong indicator of the label.”

[Levy et al., 2015]
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Conclusion

Recap: Putting the Results in Perspective

Tratz Ó Séaghdha Nombank Functor
Majority-class baseline 17 15.4 71 51.7
State-of-the-art 79.3 63.1 n/a n/a
n = 11 61.35 44.72 72.18 51.7
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Conclusion

Recommendations to Train GloVe Models

Use lemmas (if possible)
Use the original C implementation of GloVe
Start with 300d vectors
More training data is not necessarily better
Pre-shuffle the training data to make your experiments ‘more’
deterministic
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