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Abstract 
Recent contributions to information systems theory suggest the primary role of a firm’s 

IT architecture is to facilitate agility, ensuring the continued alignment of a firm’s capabilities 

with a changing business environment.   Despite advances in our understanding of the role of IT 

however, we lack robust empirical data on the precise mechanisms by which IT architecture 

impacts agility.  As a result, it is difficult to identify specific managerial actions that can improve 

a firm’s architecture, and thereby lower the cost of responding to changing future demands. 

We address this gap in the literature by exploring the relationship between IT architecture 

and IT agility at the level of the individual components in the architecture.  In particular, we 

draw upon modular systems theory to develop and test a series of propositions about the impact 

of component coupling on the cost of IT change.  Our methods make use of “Design Structure 

Matrices” (DSMs), a novel network analysis technique that addresses the limitations of prior 

work in this area.  DSMs allow us to i) identify discrete layers in the IT architecture associated 

with different types of components, and; ii) capture data on the dependencies between 

components; hence to assess their relative levels of coupling and position within the architecture.  

We test our propositions using empirical data from a large pharmaceutical firm, 

encompassing 407 architectural components and 1,157 dependencies between them.  We show 

that different components occupy different positions in the IT architecture and possess different 

levels of coupling.   We find measures of coupling predict IT agility – defined as the cost of 

making changes to software applications.  The measure of coupling that best predicts agility is 

one that captures all direct and indirect connections between components (i.e., it captures the 

potential for changes to propagate via all possible paths between components).  Our results 

reveal that different business groups within the firm face different costs of adaptation, deepening 

our understanding of the roots of organizational agility.  
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1. Introduction 

As information becomes more pervasive in the economy, information systems within 

firms have become more complex. Initially, these systems were designed to automate back-office 

functions and provide data to support managerial decision-making. Their role was expanded to 

coordinate the flow of production in factories and supply chains.  The invention of the personal 

computer led to the creation of client-server systems, which enhanced the productivity of office 

workers and middle managers. Finally, the arrival of the Internet brought a need to support web-

based communication, e-commerce, and online communities. Today, even a moderately sized 

business maintains information systems comprising hundreds of applications and databases, 

running on geographically distributed hardware platforms, and serving multiple clients. These 

systems must be secure, reliable, flexible, and capable of evolving to meet new challenges. 

 As the importance of information systems has grown, management scholars have 

developed frameworks to ensure these systems support a firm’s business strategy.  Enterprise 

architecture (EA) is the name given to a set of conceptual frameworks, processes and tools used 

to manage an enterprise’s information system infrastructure.  The aim of EA is to achieve 

alignment between the strategy of the firm and the configuration of its IT assets (Weill, 2007).  

In essence, EA is the expression of a firm’s business strategy, in terms of its choice of IT assets, 

the configuration of these assets and the relationships that exist between these assets and the 

formal organization.  The process of developing EA is inherently “top-down” in nature; for a 

given business strategy, the goal is to design an optimal enterprise architecture.  For example, 

TOGAF®, the most-cited EA framework in this field, was developed by a consortium of firms to 

provide a standardized approach to the design and management of information systems within 
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and across organizations (TOGAF, 2009). It provides a method for visualizing, understanding 

and planning for the needs of organizational stakeholders in a seamless way.  

While EA research emphasizes the need for alignment, a related but distinct stream of 

research adopts a sharper focus on the “IT Artifact” itself, and in particular, the way in which IT 

architecture facilitates the development of new capabilities (Orlikowski and Iacono, 2001; 

Tiwana and Konsynski, 2010).  This work is motivated by the complex and dynamic nature of 

today’s competitive landscapes, and the increasingly pervasive nature of digital platforms 

(Tanriverdi et al, 2010; Tiwana et al, 2010; Tilson et al, 2010).   Given such trends, the view of 

EA as a static optimization problem is increasingly obsolete.  Instead, modern theory emphasizes 

the need for an architecture that facilitates agility, through the use of layered, modular 

technologies (Yoo et al, 2010; Tiwana and Konsynski, 2010).  Firms with modular architectures 

can quickly reconfigure resources to respond to new challenges, ensuring a continuous alignment 

of IT assets with changing business needs.  In contrast to EA, IT Architecture research implies a 

more “bottom-up” approach to design; the aim is to create an architecture that can sense and 

respond to new challenges, the nature of which cannot be predicted in advance (Sambumurthy et 

al, 2003; Hanseth and Lyytinen, 2010).  The goal is optionality, not optimality (see Figure 1). 

 
Figure 1:  Enterprise Architecture and IT Architecture Research Frameworks 

 

Firm Strategy Firm Capabilities 

IT Architecture IT Architecture 

GOAL:  Optimality GOAL:  Optionality 

Enterprise Architecture IT Architecture 
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Robust empirical work exploring the impact of information systems architecture on firm 

performance are scarce and produce mixed findings (Tamm et al, 2011).  Studies of EA are often 

constrained by the difficulty of comparing architectures for firms that possess very different 

strategies and/or organizational structures.  As a result, empirical work in this area has focused 

more on the quality of the EA planning process, the governance of this process or the documents 

output from it (e.g., Schmidt and Buxmann, 2011).  By contrast, IT Architecture research places 

greater emphasis on measuring characteristics of the IT artifact itself, instead of the processes 

through which it is created.  For example, several studies use firm-level measures of IT 

infrastructure flexibility to assess the impact of this construct on measures of firm performance 

(e.g., Duncan, 1995; Kim et al, 2011).  Of particular note to this study, Tiwana and Konsynski 

(2010) show that firms with more modular IT architectures (i.e., a greater use of loosely-coupled, 

and standardized components) tend to have higher perceived levels of IT agility. 

While these studies have increased our understanding of the role of IT in the modern 

firm, we still lack robust empirical data on the precise mechanisms by which IT architecture 

impacts IT agility, and as a consequence, firm performance.  A major challenge relates to the fact 

that in many empirical studies, the firm is conceived of as a monolithic entity, hence measures of 

IT function and architecture are reduced to simple single item scales.  But firms are not 

monolithic; their constituent parts do not move in lockstep.  They comprise differentiated 

organizational units, with different objectives, requiring different levels of flexibility (Lawrence 

and Lorsch, 1967).  Similarly, the components of a firm’s IT architecture are heterogeneous 

(Orlikowski and Iacono, 2001).  They are diverse in type, play different roles in the system, are 

connected in different ways, and vary significantly in their costs of adaptation (Sambumurthy 

and Zmud, 2000; Yoo et al, 2010).  Research to better understand the roots of agility must 
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recognize this heterogeneity, and adopt methods to assess its impact on performance.  This 

suggests a need to study the impact of IT architecture at the level of the individual components in 

the architecture.  With such an approach, we can discriminate between parts of a firm’s IT 

infrastructure that are amenable to change, versus parts that are rigid and inflexible.  We can 

show how these relationships affect specific organizational groups within a firm, bridging the 

gap that exists between prior work on EA and IT Architecture.  And we can identify specific 

managerial actions to improve a firm’s IT architecture, thereby lowering the cost of responding 

to changing future demands.  These goals serve as the motivation for our study. 

In this paper, we explore the mechanisms through which IT architecture impacts IT 

agility, and as a consequence, firm performance.  Our work addresses a well-defined gap in the 

literature, in particular, the lack of empirical data exploring the link between IT architecture and 

IT agility at the level of the individual components (i.e., the “microstructure” of IT architecture).  

Specifically, we use modular systems theory to develop propositions about the impact of 

different types/levels of component coupling on IT agility – defined as the cost to make changes 

to software applications.  We use Design Structure Matrices (DSMs), a novel network-based 

methodology, to test these propositions (Steward, 1981; MacCormack et al, 2006).  DSMs can 

reveal the different layers in an IT architecture associated with different types of component 

(e.g., applications, data, infrastructure) as well as the relationships between these layers and 

components (Yoo et al, 2010).  Our data is drawn from a division of a large pharmaceutical firm.  

In contrast to prior work, which uses holistic measures of a firm’s entire IT architecture, we 

capture fine-grained data on the actual dependencies between components in the architecture.  

Our dataset encompasses 407 components and 1, 157 dependencies between them. 



BUILDING THE AGILE ENTERPRISE  
 

 7 

We find significant differences in the cost to change different software components in the 

IT architecture in our focal firm.  We show these differences in cost are associated with the level 

of coupling for components.   Specifically, components that are tightly coupled to many other 

components in the IT architecture have significantly higher change costs than components that 

have relatively few connections to others.   The measure of coupling that best predicts the cost of 

change is one that captures all direct and indirect connections between components.  In sum, it is 

critical to account for all possible paths by which changes may propagate, when assessing the 

potential costs of change for a component.  Other measures of coupling (e.g., direct coupling, 

closeness centrality) add no further power to our models.   Our results suggest that different 

groups within the firm, by virtue of their use of different applications, data and infrastructure 

components, face different costs of change, and hence possess different levels of agility.  Our 

work contributes to the literature by deepening our understanding of the roots of organizational 

agility, while helping to bridge the gap between EA and IT Architecture research. 

The paper is organized as follows. In Section 2, we review the existing literature that 

motivates our work.  In section 3, we develop theory and derive our research hypotheses.  In 

Section 4, we describe our research methods, which make use of a novel network-based 

methodology called Design Structure Matrices.  In Section 5, we introduce our empirical setting 

and describe how we develop measures of IT Architecture at our focal firm.  In Section 6, we 

describe our empirical data, and provide the results of our statistical tests.  Finally, in Section 7, 

we discuss the implications of our results for research and for managerial practice. 

2.  Literature Review 

 This section reviews the related but distinct streams of work on enterprise architecture 

and IT architecture, with the aim of explicitly defining the gap in the literature that we seek to 
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address. We then use Modular Systems Theory to develop a number of theoretical propositions 

about the relationship between measures of IT architecture and IT agility, focusing on the 

mechanisms that affect the individual components in the architecture. 

2.1 Enterprise Architecture Research 

Enterprise Architecture is commonly defined as a tool for achieving alignment between a 

firm’s business strategy and its IT infrastructure. For example, MIT’s Center for Information 

Systems Research defines EA as “the organizing logic for business processes and IT 

infrastructure reflecting the integration and standardization requirements of the company's 

operating model” (Weill, 2007).  EA analysis is not limited to IT systems, but encompasses the 

relationship with and support of business entities.  Hence EA research tends to focus on the 

“strategic” implications of EA efforts (Aier, 2014, Boh & Yellin, 2007; Ross et al., 2006). 

Prior EA work emphasizes conceptual models, frameworks and processes that seek to 

achieve alignment between business needs and IT infrastructure (e.g., Aier and Winter, 2009).  

As the name suggests, architectural descriptions are central to these efforts. These descriptions 

include entities that cover a broad range of phenomena, such as organizational units, business 

processes, applications, data and IT infrastructure (Lankhorst, 2009; Winter & Fischer, 2007; 

Jonkers et al., 2006). A number of frameworks have been proposed detailing the entities and the 

relationships between them that should form part of EA modeling efforts (e.g., DODAF, 2007; 

MODAF 2008; TOGAF, 2009).  However, diversity exists in terms of the unit of analysis and 

terminology adopted within each (Zachman, 1987; TOGAF, 2009; Lagerström et al., 2009). 

While there exists a wide range of EA frameworks, a theme they have in common is 

layering.   Layers comprise the basic structure of an EA model, representing distinct conceptual 

domains which group together related entities (Simon et al, 2013).  Given the goal of achieving 
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alignment between business strategy and IT resources, EA models include both business and IT 

layers. Typical business layers are business strategy, business processes and business groups. 

Typical IT layers are applications, data and infrastructure (Simon et al, 2013; Matthes et al, 

2008; Winter and Fischer, 2006).  While studies differ in the way that they classify different 

layers, they share common underlying assumptions.  First, layering reflects a division of 

functions provided by a system into units, such that these units can be designed, developed, used 

and updated independently.  Second, layering establishes a design “hierarchy” (Clark, 1985) 

such that each layer interacts only with layers immediately above or below, reducing complexity.  

Finally, the direction of dependencies between layers is such that higher layers “use” lower 

layers, but not the reverse, limiting the potential for changes to propagate (Gao and Iyer, 2006).  

Several EA frameworks propose using matrices to display the relationships among 

various components of an information system, in an attempt to make EA more operational.  For 

example, TOGAF (2009) recommends preparing nine separate matrices in the development of a 

firm’s architecture, which are used to track the linkages and dependencies between various parts 

of the system.  Unfortunately, it is not clear how these matrices should be combined to generate 

managerial insights (e.g., how to improve a system).  Furthermore, the information used to 

construct them reflects an idealized view of how a system should function, and not how it 

actually functions.  In essence, these matrices are primarily descriptive in nature, and do not 

yield quantitative measures of architecture that can be used to improve performance. 

2.1.1 Empirical Studies in EA Research 

Surprisingly, there has been little academic work to explore the performance benefits of 

EA, using empirical data on the outcomes achieved by firms. Tamm et al. (2011) found that of 

the top 50 articles on EA (ranked by citation count) only 5 provided data that sought to establish 
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a link between EA efforts and improved performance outcomes.  Studies that do make claims 

about the performance benefits of EA typically cite a range of “enablers” that EA affects, which 

are likely to mediate important firm outcomes.  Recurring themes include better organizational 

alignment, improved information quality and availability, optimized resource allocation, and 

increased complementarities between firm resources (Tamm et al., 2011). 

Many authors note it is difficult to directly assess the “quality” of a firm’s architecture.  

Hence empirical studies linking EA to performance have tended to focus on assessing the quality 

of the EA planning process, or the quality of the documents output from this process (Kluge et 

al., 2006; Aier et al., 2011; Lagerström et al., 2011; Schmidt and Buxmann, 2011).  

Unfortunately, this means that it is difficult to differentiate between firms that follow similar 

processes, but that implement different system designs.  One exception is the work of Schmidt 

and Buxmann (2011), who show that higher quality enterprise architecture processes are 

associated with more “flexible” IT infrastructures (i.e., those with a greater level of connectivity, 

compatibility and modularity).  Significantly, in this work, IT infrastructure is conceived of as a 

measure of output, whereas in studies of IT Architecture, it is typically viewed as an input. This 

further illustrates the gap that has emerged between EA and IT Architecture research. 

From a practitioner perspective, the evidence that adopting EA frameworks like TOGAF 

(2009) improves outcomes is mixed (Buckl et al., 2009; Seppänen et al., 2009; Dietz & 

Hoogervorst, 2011).  A 2008 study of EA adoption by firms reported that over two-thirds of EA 

projects fail to meet managers’ expectations (Roeleven, 2010).  EA frameworks have however, 

been shown to be a useful decision-support tool when focused on the needs of specific decision-

makers (Johnson and Ekstedt, 2007).  Narrow models help stakeholders to understand how EA 

efforts impact specific performance dimensions (e.g., security).  They also generate insight into 
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current and possible future EA states (Sommestad et al., 2013; Ullberg et al., 2011; Franke et al., 

2014; Lagerström et al., 2010; Närman et al., 2011).   

In sum, operationalizing EA in a robust and reliable way, that allows firms to quantify, 

analyze and improve their information systems infrastructure, has proven an elusive goal.  A 

wide range of EA frameworks exist, each employing differing units of analysis and terminology. 

Furthermore, most frameworks are conceptual in nature, generating few quantitative measures 

with which to analyze performance.  Finally, these frameworks focus on “ideal” (i.e., planned) 

representations of a firm’s architecture, as opposed to data on the actual architecture “in-use.” 

2.2 IT Architecture Research 

In contrast to EA research, which focuses on the alignment of a firm’s strategy to its IT 

assets, IT Architecture research adopts a sharper focus on the “IT Artifact” itself, and in 

particular, features of the architecture that facilitate the development of new firm capabilities 

(Tiwana and Konsynski, 2010).  This line of work is motivated by critiques of EA research that 

note the overwhelming emphasis on processes and governance structures through which IT is 

managed, as opposed to features and characteristics of the technology itself (Orlikowski and 

Iacono, 2001; Tilson et al, 2010).  In addition, the rapid rise of the Internet, World Wide Web 

and use of digital technologies has brought a need to revisit prior conceptions of the role of 

information systems within firms, to reflect the new dynamics of a digital age with its rapidly 

shifting competitive landscapes (Hansen and Lyytinen, 2010).  As Sambamurthy and Zmud 

(2000) note, the “aim is to shift thinking… towards more complex structures that are reflective of 

contemporary practice.  These structures are designed around important IT capabilities and 

network architectures.” 
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Early work in the field of IT Architecture focused on understanding desirable features of 

IT technologies, and in particular, the antecedents of more flexible IT infrastructure.  The works 

of Duncan (1995) and Byrd and Turner (2000), for example, were notable in establishing distinct 

constructs thought to underpin a more flexible IT infrastructure.  They emphasized the need for 

IT systems with greater levels of compatibility and connectivity, through the use of system-wide 

standards and interfaces, to promote the sharing and reuse of applications, data and infrastructure 

components. They also emphasized the need for greater levels of modularity (i.e., the loose 

coupling of applications, data and infrastructure) so that components could be deployed, 

modified and updated with minimal impact on other system elements. 

Subsequent work sought to deepen our understanding of how these concepts could be 

operationalized in firms competing in a dynamic, connected digital world. Sambamurthy and 

Zmud (2000) suggest the new organizing logic for IT architecture is the platform, which 

encompasses a “flexible combination of resources, routines and structures” to meet the needs of 

current and future IT-enabled functionalities.   Platforms facilitate agility along multiple 

dimensions of performance, creating “digital options” and enhancing “entrepreneurial alertness” 

(Samburmathy at al, 2003).  Adomavicius et al. (2008) introduce the concept of an IT 

“ecosystem,” highlighting the different roles played by products, applications, component 

technologies and infrastructure technologies, including those external to the firm.  Finally, Yoo 

et al. (2010) describe how pervasive digitization has given rise to a new “layered-modular” 

architecture, comprising devices, network technologies, services and content. 

Firms with layered, modular IT architectures can quickly reconfigure resources to 

respond to new challenges, creating a continuous stream of new capabilities (Tanriverdi et al, 

2010; Tiwana et al, 2010).  In contrast to EA research, IT Architecture research therefore implies 
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a more “bottom-up” approach to design; the aim is to create an architecture that can sense and 

respond to new challenges, the nature of which cannot be predicted in advance (Sambumurthy et 

al, 2003).   Yet layered, modular IT architectures are not easy to build, and not the norm in firms 

with complex information systems infrastructures (Baldwin et al 2014). Firms more often 

grapple with a mixture of systems of different vintages, designed using different conceptual 

frameworks, to meet different demands (Ross 2003).  To move from the status quo to a layered, 

modular architecture, firms must adopt new models for the role of IT and new structures by 

which these technologies will work together (Ross, 2003; Ross and Westerman, 2004). 

2.2.1 Empirical Studies in IT Architecture Research 

Empirical studies of IT Architecture have also been scarce and limited in scope.  Most 

work to date has been either case-based, or has used survey measures of IT infrastructure adapted 

from Duncan’s work (1995) to demonstrate correlation with measures of performance (Salmela, 

2015).  For example, Kim et al (2011) show measures of a firm’s IT infrastructure flexibility, as 

captured by the constructs of compatibility, connectivity and modularity, are correlated with a 

firm’s ability to change existing business processes.  Conversely, Liu et al (2013) find IT 

infrastructure flexibility is not associated with agility, but contributes to performance only via its 

association with increased levels of absorptive capacity. Schmidt and Buxmann (2011) measure 

IT infrastructure as an output, and find it is associated with higher quality EA planning 

processes.  However, it is possible the implied causal relationship here operates in reverse.  That 

is, IT infrastructure flexibility may in fact, promote more effective EA planning processes. 

The most insightful empirical study in this stream of work is from Tiwana and Konsynski 

(2010), who characterize IT Architecture along two dimensions – loose coupling, and 

standardization – showing that these measures are associated with a more agile, adaptive, 



BUILDING THE AGILE ENTERPRISE  
 

 14 

flexible and responsive IT function.  While this work has increased our knowledge of important 

features of IT Architecture in the modern firm however, we still lack robust empirical data on the 

precise mechanisms by which IT architecture impacts IT agility.  The challenge relates to the fact 

that in this and other studies, the firm is conceived of as a monolithic entity; hence measures of 

IT function and architecture are assumed to be homogenous across the firm.  But firms are not 

monolithic, they comprise differentiated organizational units, with different objectives and 

require different levels of flexibility (Lawrence and Lorsch, 1967).  Similarly, the components of 

a firm’s IT architecture are diverse in type, play different roles in the system, are connected in 

different ways, and vary in their costs of adaptation (Orlikowski and Iacono, 2001; 

Sambumurthy and Zmud, 2000; Yoo et al, 2010).  Research to better understand the roots of 

agility must recognize this heterogeneity, and adopt methods to assess its impact on 

performance.  This suggests a need to study the impact of IT architecture at the level of the 

individual components in the architecture.   

3.  Theory Development 

3.1 Modular Systems Theory 

A large number of studies contribute to our understanding of the design of complex 

systems (Holland, 1992; Kauffman, 1993; Rivkin, 2000; Rivkin and Siggelkow, 2007).  Many of 

these studies are situated in the field of technology management, exploring factors that influence 

the design of physical or information-based systems (Braha et al, 2006). Complex technological 

systems comprise a large number of components with interactions between them.  The scheme 

by which a system’s functions are allocated to components is called its architecture (Ulrich, 

1995; Whitney et al, 2004).  Understanding how architectures are chosen, how they perform and 

how they can be adapted are critical topics for the study of complex technological systems. 
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Modularity is a concept that helps us to characterize different architectures (Sanchez and 

Mahoney, 1996; Schilling, 2000).  It refers to the way that a system is “decomposed” into 

different parts or modules (Simon, 1962).  Although there are different definitions of modularity, 

authors agree on its fundamental features: the interdependence of decisions within modules, and 

the independence of decisions between modules (Mead and Conway, 1980; Baldwin and Clark, 

2000).  The latter concept is commonly referred to as “loose-coupling.”  Modular systems are 

loosely coupled in that changes to one module have little or no impact on others (MacCormack et 

al, 2012).  Just as there are degrees of coupling, there are also degrees of modularity. 

Modular systems theory is the name given to a growing body of theory that explores the 

design of systems and the costs and benefits that arise from designs that are modular (Sanchez 

and Mahoney, 1996; Schilling, 2000; Baldwin and Clark, 2000).  This theory has been broadly 

applied, to the study of biological systems, technical systems and organizational systems 

(Kauffman, 1993; Weick, 2001; Langlois 2002; Berente and Yoo, 2012). A central tenet of the 

theory is that modular systems (i.e., systems with components that are loosely-coupled) can be 

adapted with lower costs and with greater speed, given changes are isolated within modules.  

Conversely, in a system with tight coupling, change is more costly and takes longer, given the 

potential for changes to propagate and impact other system elements.  We therefore assert: 

Proposition:  IT Architecture Modularity is associated with IT Agility; wherein IT 

Agility is defined as the cost of making changes to components in the architecture.   

Several studies offer evidence to support this proposition, using holistic measures of a 

firm’s IT architecture, and measures of the extent to which the IT function is perceived as agile, 

adaptive and flexible (e.g., Tiwana and Konsynski, 2010).  However, studies that explore this 

dynamic using the firm as unit of analysis are not well suited to understanding the precise 
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mechanisms through which architecture impacts agility.  We need a more nuanced view of 

architecture, reflecting the complexity of modern day IT systems, which comprise hundreds of 

components, organized into different layers, with many relationships between them 

(Sambumurthy and Zmud, 2000; Yoo etal, 2010).   Recent empirical studies confirm that 

heterogeneous levels of coupling are the norm in such systems (Lagerstrom et al, 2014; Baldwin 

et al, 2014). Some components belong to “Core” subsystems, critical for system functioning; 

whereas others belong to “Peripheral” subsystems, playing a less significant role (Tushman and 

Rosenkopf, 1992; Tushmann and Murmann, 1998).  These studies and others suggest a need to 

focus on the microstructure of IT architecture; to identify different layers in the architecture 

associated with different types of component, to understand the patterns and levels of coupling 

between components, and to explore the impact of these measures on the cost of IT change. 

3.2 Component Coupling and the Cost of Component Change 

 The computer scientist David Parnas argued that, in technical systems, the most 

important form of linkage between components is a directed relationship he calls “depends on” 

or “uses” (Parnas, 1972).  If B uses A, then A fulfills a need for B. If the design of A changes, 

then B’s need may go unfulfilled.  B’s behavior may then need to change to accommodate the 

change in A. Hence change propagates in the opposite direction to use.  Parnas stressed that use 

is not symmetric.  If B uses A, but A does not use B, then B might change with no impact on A.  

Our first step in theory building is to relate Parnas’ concept of dependency to component 

coupling.  To capture Parnas’ insight that a dependency may be asymmetric, we define coupling 

as the property of being used (i.e., depended upon) by another component.  Component A is 

coupled with component B if B uses A.  Then, according to Parnas, if A changes, B may have to 

change as well.  Hence we will state our hypotheses in terms of component coupling. 
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Modular systems theory predicts the more coupled a component is, the more difficult and 

expensive it will be to change (Simon, 1962; Sanchez and Mahoney, 1996).  However, the 

components of a system can be coupled in different ways (Baldwin and Clark, 2000).  They can 

be coupled directly or indirectly; and they can be coupled hierarchically or cyclically. 

Furthermore, components that are hierarchically coupled may be located at the top or the bottom 

of the design hierarchy (Clark, 1985); and components that are cyclically coupled may be 

members of a large or small cyclic group of components (Sosa et al, 2013).  For the purposes of 

theory development, we therefore consider a single component (labeled “A”) within a firm’s IT 

architecture. A could represent any type of component in the IT architecture (e.g., an application, 

a database, or a piece of technical infrastructure). The question we must answer is how does the 

presence of coupling (or the lack thereof) affect the cost of change for this component?   To 

answer this question, we examine four different types of coupling in a technical system, and 

consider how each type is likely to affect the cost of change (see Figure 2).1 

Figure 2:  Four Types of Coupling between Components  

 

In Figure 2.1, component A is directly coupled with components B and C.  Modular 

systems theory predicts that components with higher levels of direct coupling are more costly to 

change, given the need to consider the potential impact of changing the coupled component on 

                                                
1 We note the concept of studying different types of coupling is also a feature of studies of the social context within 
which technology is situated (e.g., Berente and Yoo, 2010).  Here however, we focus only on technical coupling. 
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the dependent components (Simon, 1962). We therefore predict that component A would be 

more costly to change than a similar component with no coupling.  Support for such a 

relationship is found in empirical studies of software systems, in which components are defined 

to be source files or classes, and dependencies denote relationships between them (Chidamber 

and Kemerer, 1994).  We believe this relationship will also hold true for IT architecture: 

Hypothesis 1:  Within an IT architecture, the level of direct coupling for a 

component will be positively associated with the cost of component change. 

Figure 2.2 depicts a more complex set of relationships between system components.  

Component A is directly coupled to B but is indirectly coupled to components C and D.  This 

raises the prospect that changes may propagate between components that are not directly 

connected, via “chains” of direct couplings.  Empirical work has shown that changes to one 

component in an IT system often create unexpected disruptions in distant parts of the system 

(Vakkuri, 2013).  Furthermore, measures of indirect coupling have been shown to predict both 

the number of defects and the ease (or difficulty) with which a software system can be adapted 

(MacCormack, 2010; MacCormack and Sturtevant, 2016).  In essence, when dealing with 

complex systems, changes often propagate in unexpected ways, significantly increasing the costs 

of adaptation.  Hence we believe that the level of indirect coupling for a component will also be 

a significant predictor of the cost of component change:   

Hypothesis 2:  Within an IT architecture, the level of indirect coupling for a 

component will be positively associated with the cost of component change. 

A related but distinct problem that complicates the design of complex systems is the 

presence of “cyclic groups” – groups of components that are mutually interdependent (Whitney, 

et al, 2004; Sosa et al, 2013).  Figure 2.3 illustrates this challenge.  In this system, A is coupled 
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with B, B is coupled with C, and C is coupled with A.  Hence all three components are 

connected, either directly or indirectly, to all others.  In such systems, there is no “hierarchy” or 

natural ordering of the components, such that one can be designed (or adapted) before the others.  

Rather, components in cyclic groups must often be designed (or changed) concurrently, to ensure 

that they continue to work together effectively.  When cyclic groups are large, this presents a 

significant challenge, increasing the cost of change for components within the cyclic group 

(Baldwin et al, 2014).  Hence we propose: 

Hypothesis 3:  Within an IT architecture, the level of cyclic coupling for a 

component will be positively associated with the cost of component change. 

Components that are members of the same cyclic group possess the same levels of 

indirect coupling, given each component shares the dependencies of all others in the group.  In 

this situation however, some components may still be more “central” than others, in terms of 

their position in the system, and their relative importance for the potential propagation of 

changes.  Figure 2.4 illustrates this situation.  In this system, the pattern of couplings is such that 

all components are mutually interdependent (there are indirect paths between all components).  

However, component A occupies a distinct position in that it is “closer” to all others, on average, 

and on more pathways by which changes might propagate between any two components.  As a 

consequence, it is likely to be more costly to adapt than others: 

Hypothesis 4:  Within a cyclic group of components, the centrality of a 

component will be positively associated with the cost of component change. 

The different types of coupling described above represent related, but conceptually 

distinct, mechanisms through which IT architecture might impact IT agility.  We do not have an 

ex-ante view as to which will be stronger.  Indeed, empirical evidence is found for each of them, 
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albeit in different contexts (i.e., for different types of system, and for different units of analysis).  

For this reason, we believe that the four mechanisms are likely to be complementary in their 

effect.  Hence our final hypothesis can be stated as follows: 

Hypothesis 5: Measures of component coupling, taken together, explain more of 

the variation in the cost of component change than any single measure. 

We note that the types of coupling we describe above are likely to be correlated.  

Specifically, components with high levels of direct coupling are more likely to have high levels 

of indirect coupling. All else equal, components with high levels of indirect coupling are more 

likely to be members of cyclic groups.  Finally, components that are members of cyclic groups 

with high levels of direct coupling are more likely to have higher measures of centrality.  It will 

be important to be sensitive to these issues when conducting empirical tests. 

4. Research Methods 

Studies that attempt to measure modularity often employ network representations of a 

design (Barabasi, 2009).  The objective is to identify the level of coupling that exists between 

different elements (Simon, 1962; Alexander, 1964).  To develop measures of IT Architecture, we 

use Design Structure Matrices, an increasingly popular network-based method for analyzing 

technical systems (Steward, 1981; Eppinger et al., 1994; MacCormack et al., 2006; 2012; Sosa et 

al., 2007).  A DSM highlights the structure of a complex system using a square matrix, in which 

rows and columns represent system elements, and dependencies between elements are captured 

in the off-diagonal cells.   Baldwin et al. (2014) show that DSMs can be used to understand the 

“hidden structure” of complex systems, by capturing the level of coupling between components, 

and classifying components into categories based upon the direction and level of coupling.  
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Metrics that capture the level of coupling for components have been calculated from a 

DSM and used to understand system performance and evolution. For example, MacCormack et 

al. (2006) and LaMantia et al. (2008) use DSMs and the metric “propagation cost” to compare 

software system architectures, and to track the evolution of systems over time.  MacCormack et 

al. (2012) show that the architecture of software systems tends to “mirror” that of the 

organizations in which they are developed. Sturtevant (2013) shows that software components 

with high levels of coupling experience more defects, cost more to adapt and are associated with 

higher staff turnover.  Finally, Ozkaya (2012) shows that metrics derived from DSMs can be 

used to assess the value of “re-factoring” designs with poor architectural properties.  

In a recent case study, Lagerström et al. (2013) use DSMs to study a firm’s enterprise 

architecture, in which a large number of interdependent software applications have relationships 

with other types of components, such as business groups, schemas, servers, databases and other 

technology infrastructure elements.  In this paper, we formalize and extend this approach, by 

showing how measures derived from an IT architecture DSM predict IT agility. 

4.1 Design Structure Matrices and Direct Coupling 

A DSM is a way of representing a network.  Rows and columns of the matrix denote 

nodes in the network; off-diagonal entries indicate direct dependencies between the nodes.  In 

the analysis of IT architecture, the rows, columns, and main diagonal elements of a DSM 

correspond to the components in the system—in our case, business groups and technical 

resources associated with the architecture (e.g., applications, databases, etc.). The main diagonal 

elements are set to one (indicating that components “depend on” themselves).  Linkages between 

components are represented by off-diagonal entries (also set to one) and indicate that a direct 
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coupling relationship exists between two components, as defined previously.  Specifically, if 

component A is coupled with component B, then any change made to A may affect B. 

As a matter of convention, usage (i.e., dependency) proceeds from row to column in our 

DSMs, hence coupling proceeds from column to row.  That is, reading down the column of a 

component in a DSM reveals all of the other components that directly depend upon it.  The focal 

component is directly coupled with all of the dependent components.  Hence the levels of direct 

coupling (and direct dependency) for a component can be read directly from the DSM.   

Specifically, for the ith component in a system, the level of direct coupling (DC) can be found by 

summing the entries in the ith column.   The level of direct dependency (DD) can be found by 

summing the entries in the ith row.2  In general, the measures of DC and DD will be different 

unless all of the dependencies for a focal component are symmetric. If usage is symmetric (i.e., 

A uses B and B uses A), then off-diagonal entries in the DSM will be symmetric around the 

main diagonal, and measures of direct coupling and direct dependency will be the same. 

4.2 Design Structure Matrices and Indirect Coupling 

Using a DSM, we can also analyze the indirect dependencies between components, 

which reflect the potential for changes to propagate in a system via a “chain” of dependencies.  

Suppose, for example, component A is coupled with component B and component B is coupled 

with component C.  Then a change to A may affect C through its impact on B.  To identify the 

indirect couplings and dependencies in a system, we apply the procedure of transitive closure to 

the direct DSM and set all positive entries equal to one. The result is called the “visibility” 

matrix (MacCormack et al., 2006; Baldwin et al., 2014).  The visibility matrix captures all direct 

and indirect dependencies between components.  In a similar fashion to the direct dependency 

                                                
2 In prior work, we used the symbol DFI (Direct Fan-In) to denote the level of direct coupling for a component, and 
DFO (Direct Fan-Out) to represent the level of direct dependency for a component. 
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DSM, the level of direct and indirect coupling for a component (AC) is captured in the column 

sums of the visibility matrix. The level of direct and indirect dependency (AD) for each 

component is captured in the row sums of the visibility matrix.3 

The density of the visibility matrix, called Propagation Cost, measures the level of 

indirect coupling for the system as a whole.  Intuitively, the greater the density of the visibility 

matrix, the more ways there are for changes to propagate in the system, and thus the higher the 

potential cost to change it.  Large differences in propagation cost have been observed across 

systems of similar size and function (MacCormack et al., 2006).  These differences are predicted, 

in part, by the structure of the developing organization (MacCormack et al, 2012). Empirical 

evidence suggests that refactoring efforts aimed at making a design more modular can lower 

propagation cost substantially (MacCormack et al., 2006; Akaikine, 2009). In combination, these 

findings suggest that for many systems, architecture is not dictated solely by system function, but 

is affected by both organizational constraints and the objectives of the system designers. 

4.3 Design Structure Matrices and Cyclic Coupling 

Measures of visibility can be used to identify “cyclic groups” of components, each of 

which is directly or indirectly connected to all others in the group.  Mathematically, members of 

the same cyclic group all have the same AC and AD measures, as defined above, given they are 

all connected directly or indirectly to each other.  Thus we can identify cyclic groups in a system 

by sorting on these measures after performing a transitive closure on the direct dependency DSM 

and setting all positive entries equal to one (Baldwin et al., 2014).  Large cyclic groups are 

problematic for system designers, given that changes to a component may propagate via a chain 

of dependencies to many other components.  In such a structure, the presence of cyclicality 

                                                
3 In prior work, we used the symbol VFI (Visibility Fan-In) to represent all direct and indirect couplings for a 
component and the symbol VFO (Visibility Fan-Out) to represent all direct and indirect dependencies. 
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means that there is no guarantee that the design process (or a design change) will converge on a 

globally acceptable solution that satisfies all components. 

The components in a system can be classified into groups according to the levels of 

coupling and dependency they exhibit, as captured by AC and AD.  Specifically, Baldwin et al. 

(2014) use DSMs to analyze the structure of 1286 releases from 17 distinct software 

applications. They find the majority of systems exhibit a “core-periphery” structure, 

characterized by a single dominant cyclic group of components (the “Core”) that is large relative 

to the system as a whole as well as to other cyclic groups.  They show the components in such 

systems can be divided into four groups – Core, Peripheral, Shared and Control – that share 

similar properties.  Core components are members of the largest cyclic group, and have high 

levels of direct and indirect coupling (AC) and dependency (AD).   Shared components have 

only high levels of direct and indirect coupling (AC), i.e., they are “used”, directly or indirectly, 

by many other components. Control components have only high levels of direct and indirect 

dependency (AD), i.e., they “use”, directly or indirectly, many other components.  Peripheral 

components have low levels of both direct and indirect coupling (AC) and dependency (AD).  In 

such systems, dependencies flow from Control components, through Core components, to Shared 

components.  This is the main “flow of control” in a system.  Peripheral components lie outside 

the main flow of control, thus are loosely coupled to the rest of the system. 

4.4 Design Structure Matrices and Centrality 

The asymmetry of dependency relationships between components in many technical 

systems makes it difficult to use typical measures of network centrality, which are based upon 

the notion of the “path length” between, or the “closeness” of, two components. For example, 

suppose A is coupled with B, but not vice versa. The path length from A to B is 1; however, the 
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path length from B to A is undefined or infinite.  Thus, the most commonly applied measures 

from social network theory must be adapted for use in networks with directional dependencies. 

In contrast, a DSM allows us to determine the flow of control in a system and hence the 

direction in which changes are likely to propagate.  In particular, we can distinguish between 

systems that are hierarchical in nature (i.e., there exists a strict ordering of coupled components) 

versus those that are cyclical in nature (i.e., the coupled components are mutually 

interdependent).  Hierarchy and cyclicality are critical constructs for understanding how changes 

might propagate in complex systems.  DSMs reveal these characteristics. 

Given the preceding discussion, in this study we examine measures of centrality only for 

those components that are part of the same cyclic group, and for which the dependency structure 

is symmetrical.  As a consequence, our analysis of centrality as a coupling mechanism is limited 

only to specific parts of the firm’s IT Architecture where these assumptions are met. 

4.5 Design Structure Matrices and Layering 

In a layered architecture, convention determines the ordering of layers from top to 

bottom.  One can place the “users” in higher layers and the objects of use in lower layers or vice 

versa.  Most EA layer diagrams, for example, display users at the top.  In constructing DSMs, 

however, we depart from this practice, and place users below the components that they use.  Our 

reason for doing this is based upon the concept of “design sequence” as described below. 

When used as a planning tool in a design process, a DSM indicates a possible sequence 

of design tasks, i.e., which components should be designed before which others (Steward, 1981; 

Eppinger et al, 1994). In general, it is intuitive and desirable to place the first design tasks at the 

top of a DSM, with later tasks below. In sum, the first components to be designed should be 

those that other components depend upon.  For example, suppose that component B uses 
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component A.   Then A’s design should be complete before B’s design is begun.  Reversing this 

ordering runs the risk that B will have to be redesigned to comply with unforeseen changes in A. 

Reflecting this discussion, we place the “most used” layers at the top of the DSM and the 

“users” of these layers at the bottom of the DSM. This convention ensures that design rules and 

requirements, which affect many subsequent design choices, will always appear at the top of the 

DSM (i.e., they should be completed early in a design process).  Hence components at the top of 

the DSM will have high levels of direct and indirect coupling  (AC) and components at the 

bottom of the DSM will have high levels of direct and indirect dependency (AD).    Critically, in 

cases where the system layers are not known a priori, the visibility matrix can be sorted using 

AC and AD to reveal the hierarchical relationships among different layers and components. 

5.  Measuring IT Architecture 

Our study site is the research division of a US biopharmaceutical company with over 

1,000 employees (“BioPharma”) founded in the 1990’s.4  At this company, “IT service owners” 

are responsible for divisional information systems, and provide project management, systems 

analysis, and limited programming services to the organization. Data on IT architecture 

components and the dependencies between them were collected through a combination of 

manual and automated methods.  To identify components, we examined strategy documents and 

interviewed the IT director and IT service owners.  To identify dependencies, IT service owners 

were asked to input architectural information into a repository. This information was 

supplemented by the use of automated open-source and custom tools that monitored server and 

network traffic. The resulting data on processes and communication links was aggregated to the 

                                                
4 The data for this study was gathered as part of a doctoral dissertation.   However, only part of the data collected 
was described and analyzed in the dissertation.  Hence this paper uses both i) previously unreported data, and ii) data 
described and published in the dissertation, albeit to test a different set of research hypotheses (see Dreyfus, 2009).  
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level of individual components, and added to the repository. Importantly, many links discovered 

using these automated tools had been overlooked by, or were unknown to, IT service owners.  

This indicates that the theoretical (i.e., documented) IT architecture can deviate substantially 

from the actual architecture “in use,” validating the broader motivation for our work.  

We captured data on 407 IT architecture components.  The components are divided into: 

eight “business groups;” 191 “software applications;” 92 “schemas;” 49 “application servers;” 47 

“database instances;” and 20 “database hosts”. These components form a layered architecture, 

typical of modern information systems, as we show later.  Note that “business groups” are 

organizational units not technical objects. The dependence of particular business groups on 

specific software applications and infrastructure is integral to studies of enterprise architecture. 

While our focus in this paper is on IT architecture, we capture data on business groups so that we 

can analyze the implications of our findings for specific organizational units.  (We did not 

capture data on business strategy or processes, which are also features of enterprise architecture.) 

We captured data on 1,157 dependencies between components.  In particular, this firm 

gathered information on four types of dependency between components – uses, communicates 

with, runs on, and instantiates. Business units use applications; Applications communicate with 

each other, use schemas, and run on application servers. Schemas in turn instantiate database 

instances that run on database hosts. Importantly, of these dependency types, “uses”, 

“instantiates” and “runs on” possess a specific direction (i.e., they are asymmetric).  In contrast, 

“communicates with” is a bi-directional (i.e., symmetric) dependency.  

For a subset of components – specifically, software applications – we collected survey 

data on the cost of change, to test propositions about the impact of component coupling on IT 

agility.  This data and our empirical tests are described in section six. 
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5.1. BioPharma’s IT Architecture 

A DSM showing BioPharma’s IT Architecture is shown in Figure 3. The matrix is binary 

with marks in the off-diagonal cells indicating a direct dependency from row to column, hence a 

direct coupling from column to row.  White space indicates there is no direct dependency 

between elements. To set the order of layers we use knowledge of the logical relationships 

between components.  Usage flows from business groups (at the bottom) to applications, from 

applications to schemas and application servers, from schemas to database instances and from 

database instances to database hosts (at the top). Within layers, we order components using the 

component ID, an arbitrary numbering scheme. Note that “communicates with,” the dependency 

captured between software applications in our data, is bi-directional, hence the marks in the rows 

and columns of this layer are symmetric around the main diagonal. 

Figure 3: DSM Displaying BioPharma’s Layered IT Architecture 
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As noted above, measures of direct coupling can be read directly from this DSM.  

Summing column entries gives the direct coupling (DC) of a component.  Summing row entries 

gives the direct dependency (DD) of a component. White space to the right of a layer indicates 

that components in this layer do not depend on layers below. White space to the left of a layer 

indicates that components in this layer do not depend on layers above. 

On the whole, this DSM suggests that the IT architecture displays a good separation of 

concerns: for the most part, schemas act as an interface between applications and the database 

instances and hosts. Schemas are also efficiently managed: one schema may serve several 

applications and one application may make use of several schemas. There are two exceptions, 

however, as indicated by the two circles, where specific applications appear to directly use a 

database instance or a database host. These exceptions may indicate poor encapsulation, non-

standard practices, or measurement errors, and hence would be worth investigating further. 

We note that this DSM combines several diagrams and matrices that are part of the 

TOGAF enterprise architecture framework (TOGAF, 2009). The mapping from business groups 

to applications (at the bottom of the DSM) corresponds to the “Application/Organization 

Matrix.” The square submatrix of applications corresponds to the “Application Interaction 

Matrix” (AIM). The mapping from applications to schemas and servers (to the left of the AIM) 

corresponds to the “Application Technology Matrix.” Finally, the mapping from schemas to 

database instances and database instances to database hosts contains the information needed to 

construct the “Application/Data Matrix,” while also showing how the use of data by applications 

operates through particular schemas and database instances.  Hence DSMs represent an 

analytical technique by which EA frameworks such as TOGAF can be made more operational.   
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The Application Interaction Matrix (AIM) is the largest submatrix in this DSM.  It shows 

the dependencies that are related to interactions between software applications. In this dataset, 

dependencies between applications are captured by the term “communicates with,” which does 

not possess directionality (i.e., we do not know which application requests a computation and 

which performs it). Hence the AIM is symmetric.  In general however, capturing information on 

directionality is desirable.  In particular, one application may always ask for a computation, and 

another may always supply the result. This distinction is lost if dependencies are assumed 

symmetric. However, if applications switch roles, sometimes requesting computational services 

and sometimes supplying results, a symmetric dependency would, in fact, be warranted. 

5.2 Measuring Component Coupling 

Figure 3 displays the layered structure of the IT architecture, but does not reveal other 

important architectural characteristics such as indirect coupling, cyclic coupling, hierarchy, or 

the presence of “Core” and “Peripheral” components.   Matrix operations can be applied to the 

DSM to analyze these additional features.  As noted earlier, the transitive closure of the matrix 

reveals indirect dependencies among components in addition to the direct dependencies 

(Sharman et al., 2002; Sharman and Yassine, 2004; MacCormack et al., 2006). 

We constructed the Visibility Matrix for BioPharma, and applied the classification 

methodology described in Baldwin et al. (2014) to the resulting data for AC and AD (Table 1).  

We find that the firm’s IT architecture has a core-periphery structure, with 132 “Core” 

components (i.e., 132 members in the largest cyclic group).  Furthermore, all of the Core 

components in the system are software applications (however, not all software applications are 

Core; some are in the Periphery).  Each of the layers in the IT architecture displayed in Figure 3 

has some components that are part of the “main flow” and others in the Periphery. In total, two-
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thirds of the components are part of the main flow and one-third is in the Periphery. We believe 

managers will find this type of classification scheme useful to set priorities, allocate resources, 

analyze costs, and understand potential differences in resource productivity. 

Table 1: Distribution of Components in the Architecture by Layer and by Category. 
 

 Shared Core Control Periphery 
Database hosts 8 0 0 12 

Database instances 15 0 0 32 
Application servers 27 0 0 22 

Schemas 83 0 0 9 
Software application 0 132 0 59 

Business groups 0 0 7 1 
TOTAL 272 135 

Percent of Total 66% 34% 
 

Figure 4 shows a reorganized view of BioPharma’s DSM, organized first, by type of 

component (i.e., Shared, Core, Periphery, Control) and second, by layer.  We call this the “core-

periphery” view of the IT architecture.  Components in Shared, Core or Control categories are 

directly or indirectly connected to all Core components (and potentially, to other components not 

in the Core).  This represents the main flow of control in the system.  Thus each main-flow 

component is connected to at least 132 other components. In contrast, the highest level of 

indirect connectivity for any peripheral component is only 7. Assuming component coupling is 

related to the cost of change, main-flow components will cost more to change, on average, than 

Peripheral components.  We investigate this argument below. 
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Figure 4:  Reorganized DSM showing Main Flow and Peripheral Components. 
 

 

6. Predicting IT Agility 

In the previous section, we show that BioPharma’s IT architecture is comprised of 

components with different levels of coupling.  In complex systems, heterogeneous levels of 

component coupling are the rule, not the exception (e.g., Lagerström, et al. 2014; Baldwin et al., 

2014; Akaikine, 2010; Sturtevant, 2013). However, little empirical evidence exists about how 

different measures of coupling relate to the costs of change for a system’s components. These 

costs determine the agility of a firm, with respect to evolving and adapting its IT systems. 

In this section, we test our propositions about the relationship between measures of 

component coupling and IT agility – defined as the cost of IT change.  Our analysis focuses on a 
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subset of the components for which information on the cost of change was available.  

Specifically, we predict the cost of change for software applications, using measures of coupling 

derived from the DSM.  Focusing on one layer in the firm’s IT architecture (i.e., as opposed to 

multiple layers) allows us to i) identify a specific respondent for data collection, ii) request 

quantitative data from respondents, and iii) ensure the data is comparable across components. 

As we note earlier, dependency relationships between software applications are defined 

to be symmetric in our dataset.  Hence it is not possible to explore the impact of differences 

between direct coupling (DC) and direct dependency (DD), nor differences in the hierarchical 

classification of components (a symmetric DSM contains only Core and Peripheral components, 

and no Shared or Control components).  In general however, our method allows for the 

exploration of these issues, where the dependencies between components are asymmetric.    

6.1 Dependent Variable: The Cost of Change for Software Applications 

The cost to change each application was assessed via a survey sent to IT service owners. 

Respondents were asked to estimate the time, in person-years, to perform four IT operations:  

deploy, upgrade, replace and decommission.  Operations were defined as follows: A component 

is deployed when it is put into production for the first time; a component is upgraded when it is 

replaced by a new version of the same component; a component is replaced when the existing 

component is removed from the information system and a new component with similar 

functionality is added to the information system; a component is decommissioned when it is 

removed from the information system (Baldwin and Clark, 2000). Given the uncertainty in 

estimating point values, respondents were asked to consider whether the effort for each operation 

fell within specific ranges, predetermined in a pilot-test with participants. 5 

                                                
5 Specifically, respondents were asked to estimate whether the effort (in person-years) required for each operation 
fell into one of six buckets:  <0.10, 0.10-0.249, 0.25-0.49, 0.50-0.99, 1.00-1.99, and > 2.00. (Dreyfus, 2009). 
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We received survey responses for 99 of the 191 software applications. The change cost 

estimates ranged from less than one-person-month to over two-person-years.  Respondents could 

also indicate that the time to perform a given operation was unknown. Applications for which all 

change costs were unknown were removed from the dataset, resulting in a final sample of 77 

applications.6  For these 77 applications, we combined the change cost estimates for all four 

operations into a single measure, by calculating the mean change cost for those operations where 

a response was provided.  The Cronbach’s alpha for this aggregate measure was 0.78.7 

6.2 Independent Variables: Measures of Component Coupling 

All measures of coupling were calculated from a subset of the IT Architecture DSM 

containing only the 191 software applications.  Measures of direct coupling (DC) for each 

component were calculated by summing entries in the columns of the direct dependency DSM.  

Measures of direct and indirect coupling (AC) for each component were calculated by summing 

entries in the columns of the visibility DSM.  (Given dependencies between software 

applications are symmetric, the measures for coupling and dependency are identical.)  

Components that are members of cyclic groups were determined by inspecting the visibility 

DSM to identify those with equal levels of AC.  We identified one very large cyclic group, 

containing 132 applications, which we call the “Core” (Baldwin et al, 2014) and two very small 

cyclic groups, comprising four and two applications respectively.  The remaining 53 applications 

were not coupled to any others (i.e., they were in the “Periphery”).  Of the 77 applications for 

which we have change cost data, 58 were part of the Core, and 19 were part of the Periphery. 

                                                
6 In prior work, Dreyfus (2009) and Dreyfus and Wyner (2011) use different screening criteria, resulting in a smaller 
sample of 62 responses for analysis. We discuss the sensitivity of our results to different screening criteria later. 
7 Where the estimate of change cost for an operation was missing, we substitute the mean level of change cost for 
that operation from all respondents to calculate Cronbach’s alpha.  Other ways of treating missing values result in a 
minimum value for alpha of 0.66 (acceptable) to a maximum value of 0.89 (extremely good). 
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As noted earlier, our final measure of component coupling, Centrality, is only defined for 

components that are members of the same cyclic group (i.e., components in the Core).  For our 

empirical tests, we used a common social network measure called “Closeness Centrality,” found 

by calculating the minimum path length from each component to all other Core components, 

summing the path lengths, and taking the inverse of this sum (Bounova and de Weck, 2012).  

The higher this metric, the more “central” is the component within the Core. 

6.3 Control Variables 

IT change costs may be affected by a number of factors that are unrelated to architecture, 

including the source of the component, the users of the component, its internal structure, and 

whether it was the focus of active development at the time of the survey. In addition, the 

respondent’s experience with a given component might affect the appraisal of change cost in a 

systematic way. Hence data on the following variables were collected and included as controls: 

(1) Vendor indicates whether an application is developed by a vendor (1) or in-house (0). 

One component missing data for this variable was assigned a value of 0.5.8 

(2) Client indicates whether an application is accessed by end-users (1) or not (0). 

(3) Comp indicates whether an application is focused on computation (1) or not (0).  

(4) N-Tier indicates whether an application has an N-tier architecture (1) or some other 

type of architecture, such as client-server or monolithic (0). 

(5) Active indicates whether, at the time of the survey, the component was being actively 

enhanced (1) or was in maintenance mode (0). 

(6) Res-Exp measures the respondent’s experience with the application in question (less 

than one year = 1; 1 – 5 years = 2; More than 5 years =3). 

                                                
8 Omitting the one application with no data provided about vendor did not change the results. 
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6.4 Descriptive Statistics 

Table 2 presents descriptive data and a correlation matrix for our sample of software 

applications.  Of note, indirect and cyclic coupling could not be identified as separate constructs 

in this dataset, given they are 100% convergent.  This dynamic occurs because our final sample 

of 77 applications is divided strictly into two groups:  58 members of the Core (i.e., the largest 

cyclic group), which have the same level of indirect coupling; and 19 members of the Periphery, 

which have no coupling to other components.  This empirical finding is driven by the particular 

properties of our dataset.  Most significantly, dependencies for software applications are 

symmetric in our data, increasing the overall level of coupling, and the probability that a 

component is a member of a cyclic group. While indirect coupling and cyclic coupling are often 

correlated (Baldwin et al, 2014) they represent distinct theoretical constructs, possess distinct 

measures, and will not, in general, converge to such a degree.   

Returning to Table 2, consistent with our hypotheses, direct coupling (DC), indirect 

coupling (AC) and cyclical coupling (CORE) are correlated with component change cost. 

Furthermore, direct coupling is correlated with indirect and cyclic coupling (r = 0.52). 

Significantly, for applications in the CORE (i.e., that are mutually dependent, with n=58), we 

find closeness centrality (CENT) is not correlated with change cost.9  But as expected, closeness 

centrality and direct coupling are strongly correlated (r = 0.73).  Among the control variables, 

Active components have higher change costs. Vendor provided components have lower 

centrality, are more likely to be Active and perform computations, and less likely to have N-tier 

architectures. Finally, components with N-tier architectures have higher levels of coupling. 

                                                
9 We note that some authors use a value of 0 to capture the centrality of components that are not part of the same 
network (i.e., that are not in the Core).  The motivation is that this denotes an infinite path length to other 
components (the inverse of infinity being zero).  If we adopt this approach, assigning a centrality measure of 0 to all 
Peripheral components, we unsurprisingly find a strong correlation between CORE and Centrality (r=0.96).  In 
essence, centrality becomes a construct that is indistinguishable from indirect and cyclic coupling. 
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Table 2 Descriptive Statistics and Correlation Matrix 
	  

	  
Mean	   St.Dev	   N	   COST	   DC	   AC	   CORE	   Vendor	   Client	   Comp	   N-‐Tier	   Active	   Res-‐Exp	   CENT	  

COST	   2.35	   1.33	   77	   1	   0.32**	   0.32**	   0.32*	   -‐0.21	   -‐0.02	   -‐0.09	   0.16	   0.33**	   0.09	   0.13	   	  

DC	   3.58	   2.83	   77	   0.32**	   1	   0.52***	   0.52***	   -‐0.19	   0.1	   0.01	   0.39***	   0.21	   -‐0.08	   0.73***	   	  

AC	   99.68	   56.48	   77	   0.32**	   0.52***	   1	   1.0***	   -‐0.17	   0.11	   -‐0.04	   0.37***	   0.06	   -‐0.19	   n/a	   	  

CORE	   0.75	   0.43	   77	   0.32**	   0.52***	   1***	   1	   -‐0.17	   0.11	   -‐0.04	   0.37***	   0.06	   -‐0.19	   n/a	   	  

Vendor	   0.41	   0.49	   77	   -‐0.21	   -‐0.19	   -‐0.17	   -‐0.17	   1	   -‐0.06	   0.39***	   0.52***	   0.35**	   0.1	   -‐0.4**	   	  

Client	   0.71	   0.45	   77	   -‐0.02	   0.1	   0.11	   0.11	   -‐0.06	   1	   0.15	   0.27*	   0.05	   -‐0.11	   0.16	   	  

Comp	   0.39	   0.49	   77	   -‐0.09	   0.01	   -‐0.04	   -‐0.04	   0.39***	   0.15	   1	   -‐0.21	   -‐0.05	   0.12	   0.00	   	  

N-‐Tier	   0.53	   0.5	   77	   0.16	   0.39***	   0.37***	   0.37***	   -‐0.52***	   0.27*	   -‐0.21	   1	   0.08	   -‐0.14	   0.43***	   	  

Active	   0.26	   0.44	   77	   0.33**	   0.21	   0.06	   0.06	   0.35**	   0.05	   -‐0.05	   0.08	   1	   0.18	   0.23	   	  

Res-‐Exp	   2.04	   0.84	   77	   0.09	   -‐0.08	   -‐0.19	   -‐0.19	   0.1	   -‐0.11	   0.12	   -‐0.14	   0.18	   1	   0.11	   	  

CENT	   2.29	   0.34	   58	   0.13	   0.73***	   n/a	   n/a	   -‐0.4**	   0.16	   0.00	   0.43***	   0.23	   0.11	   1	   	  

*	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 
6.5 Empirical Results 

We test our hypotheses by running OLS regressions predicting the impact of measures of 

coupling on component change costs.  The results of our models are presented in Table 3.  

Model 1 contains only controls, showing two are significant: Vendor provided applications tend 

to have lower change costs and Active applications tend to have higher change costs.  The 

control variables alone explain 19% of the variation in change cost across the 77 applications. 

Our first hypothesis, H1 predicts that direct coupling is associated with change cost, a 

relationship supported by the correlations reported above. In Model 2 however, which includes 

control variables, we find that DC is only a marginal predictor of change cost (p= .06). This 

model explains 21% of the variation in change cost across applications.  Our second and third 

hypotheses (H2/H3), as noted above, use measures that cannot be distinguished from each other.  

Hence we explore these hypotheses using only the binary measure of CORE membership.  In 

Model 3, we find that CORE is a strong predictor of change cost (p = .005).  This model explains 

25% of the variation in change cost across components, providing support for both H2 and H3.  

Finally, in Model 4, we include both DC and CORE, but find only CORE is significant. This 
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model again explains 25% of the variation in change cost across applications, the same as in 

Model 3.  However, we note that the F-statistic declines from 4.71 to 4.13.  In sum, H1 is only 

partially supported by our results; H2/H3 are strongly supported but cannot be distinguished 

separately; and H5 is not supported. In this dataset, indirect and/or cyclic coupling appears to be 

the dominant mechanism that explains the relationship between IT Architecture and IT Agility. 

Adding direct coupling to a model that includes CORE only makes the model worse.   

Table 3 Regression Models predicting Change Cost 

Sample	   All	  Software	  Applications	   	  	   Core	  Applications	  
Model	   1	   2	   3	   4	   	  	   5	   6	  
Constant	   2.58***	   2.29***	   1.90***	   1.86***	   	  	   3.21***	   4.96***	  
Vendor	   -‐1.33**	   -‐1.21**	   -‐1.30***	   -‐1.26**	   	  	   -‐1.51**	   -‐1.80***	  
Client	   -‐.18	   -‐.15	   -‐.15	   -‐.15	   	  	   -‐.62	   -‐.64†	  
Comp	   .31	   .20	   .25	   .21	   	  	   .28	   .41	  
N-‐Tier	   -‐.25	   -‐.40	   -‐.52	   -‐.55	   	  	   -‐.49	   -‐.38	  
Active	   1.58***	   1.40***	   1.50***	   1.44***	   	  	   1.96***	   2.20***	  
Res-‐Exp	   .02	   .05	   .10	   .10	   	  	   .02	   .04	  
DC	   	  	   .09†	   	   .04	   	  	   	   	  	  
CORE	   	  	   	   .91**	   0.81*	   	  	   	   	  	  
CENT	   	  	   	   	   	   	  	   	   -‐.80	  
	  	   	  	   	   	   	   	  	   	   	  	  
Adj.	  R-‐square	   0.19	   0.21	   0.25	   0.25	   	  	   0.27	   0.28	  
F-‐Statistic	   3.89**	   3.85***	   4.71***	   4.13***	   	  	   4.44***	   4.15***	  
Observations	   77	   77	   77	   77	   	  	   58	   58	  
†	  p<0.1,	  *	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  
	  

In models 5 and 6, we analyze only the 58 components in the Core, for which a value of 

closeness centrality can be calculated.   All components in this group are members of the same 

cyclic group, and have the same level of direct and indirect coupling (AC).  Hence we do not 

include measures of indirect or cyclic coupling in these models.  Model 5 contains only control 

variables, and produces results consistent with model 1. Model 6 includes the measure of 

closeness centrality, which is not significant.  We therefore reject H4. 
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6.6 Robustness Checks 

We performed a number of checks to assess whether our results were sensitive to other 

assumptions or specifications of variables. First, we note that our basic specification did not 

control for the size of components, a variable that could plausibly affect the cost of changes. 

Data on component size (measured by the number of lines of code and files in each) was 

available for a subsample of 60 applications.  We ran our models on this smaller sample, 

including size variables as controls. In these tests, the control variables including size were 

insignificant, while the results for our explanatory variables were consistent with those reported 

above. (The significance levels of all variables declined as a result of the decrease in sample size 

and statistical power.)  We next conducted a test to explore the possibility that transformations of 

direct coupling might better predict change cost, given this variable has a skewed distribution 

and is truncated at zero. Specifically, we included the log of direct coupling in models, instead of 

its raw value.  We found the transformed variable had more explanatory power than the raw 

variable (i.e., its use improved the results in Model 2). However, it still explained less of the 

variation in change cost than CORE, and was insignificant when included in a model with 

CORE.  Finally, we explored whether direct coupling, or the log of this measure, contribute to 

explaining the variation in change cost among Core components (as we did for centrality). 

Appendix A reports the results of three models predicting change cost, the first being a model 

with controls, the second adding direct coupling, and the third adding the log of direct coupling. 

Direct coupling is not statistically significant in any model. This suggests that in this dataset, 

CORE is the most parsimonious and powerful variable that predicts the cost of change.  Neither 

direct coupling, nor centrality, contributes additional explanatory power in our models. 
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7. Discussion 

The main contribution of this paper is in developing and testing theory about the 

underlying mechanisms through which IT Architecture impacts IT Agility.  In particular, we 

focus on exploring this relationship at the level of the individual components in the architecture.  

We develop measures for the amount of coupling between components, and show that these 

measures predict the cost of change for software applications.  Our final model explains over 

25% of the variation in the cost of change for the components we examine. 

Our work suggests that the dominant mechanism through which IT Architecture 

influences IT Agility is related to the level of indirect and/or cyclic coupling in the system. Once 

the variation in change cost explained by this measure is accounted for, other measures of 

coupling add no further power.  This implies a firm’s agility to adapt its IT infrastructure is 

driven mainly by the potential for changes to propagate from one component to others via chains 

of dependencies.  Critically, such data is not visible from inspection of a component’s “nearest 

neighbors” in the IT Architecture.  It represents “hidden structure” that can only be revealed by a 

comprehensive analysis of the coupling that exists throughout a system (Baldwin et al, 2014).     

This finding lends support to the methods we employ, which reveal all pathways between 

system components along which potential changes may propagate.  Specifically, we used Design 

Structure Matrices (DSMs), a novel network-based analytical technique, which allows us to i) 

identify discrete layers in the IT architecture associated with different types of component, and; 

ii) capture data on the dependencies between components; hence to assess their relative levels of 

coupling and position within the architecture.  DSMs help us to characterize the layered, modular 

IT architectures required in the modern digital-age firm (Yoo et al, 2010; Tilson et al, 2010).   
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Our work helps to bridge the gap between EA and IT Architecture research.  In 

particular, by including organizational units in our analysis, we can explore the link between the 

heterogeneous levels of coupling observed across the IT architecture, and the impact of this 

heterogeneity in terms of agility.  Specifically, in the firm we study, seven of the eight business 

groups “depend upon” applications that are part of the Core, which tend to be more costly to 

change (see Table 1).  In contrast, the remaining business group is not coupled to any application 

in the Core, and hence can adapt its IT systems at lower cost and with greater speed.  Prior work 

suggests that agility has multiple dimensions, the relative importance of each which depends on 

the context (Sambamurthy et al, 2003). Our work disentangles which parts of an IT Architecture 

facilitate agility and which do not, critical for assessing whether a firm can consistently develop 

the new capabilities that it needs to compete in an increasingly dynamic business environment. 

For managers, our methodology provides a picture of the actual instantiated architecture 

that they possess, as opposed to high level conceptual representations found in documents 

depicting a firm’s IT architecture.  The insights thereby generated should prove useful in several 

ways, including i) helping to plan the allocation of resources to different components, based 

upon predictions of the relative ease/difficulty of change; ii) monitoring the evolution of an 

architecture over time, as new components and/or dependencies are introduced (e.g., when a new 

firm is acquired) and; iii) identifying opportunities to improve the architecture, for example, by 

reducing coupling, and hence reducing the cost to change specific components. 

Ironically, in this era of “big data,” the lack of appropriately granular data may be the 

largest barrier to the systematic investigation of IT architecture using our methodology. At a 

minimum, firms need to capture data on the coupling and dependencies between different 

components in the architecture, and the way that these linkages evolve over time. To fully use 
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this data, they must also systematically capture data on the cost of change for components over 

time. In most organizations with which we have worked, this type of data does not exist. In some, 

efforts have been made to collect this data manually.  However, there are many challenges 

associated with this approach, including a lack of incentives to provide accurate and timely 

information.  In this study, we found substantial omissions in the data collected via survey, in 

comparison to the automated tools used to uncover system dependencies. In essence, firms may 

not know the “real” IT architecture that they possess.  Eppinger and Browning (2012) state: “for 

most product DSM models, the data collection requires at least some amount of direct discussion 

with subject matter experts in order to draw out the tacit and system-level knowledge that may 

not be captured in the documentation.” However, manual methods of dependency extraction are 

labor-intensive, and limit the scale, precision and accuracy of analyses. The solution is to 

develop automated ways to detect and capture relationships between components in the IT 

architecture.  This implies the need for investment by firms that wish to adopt these methods.    

Our work opens up the potential for further research to explore the relationship between 

IT architecture and performance.  In this study, features of our dataset made it difficult to 

disentangle the effects of indirect and cyclic coupling, given these were convergent. However, in 

other settings, this will not always be true.  We believe it important to study these mechanisms 

further, to fully understand the relationships they have with measures of IT change.  Further, 

while we focused only on software applications in our analysis of change cost, our methods can 

be extended to look at the cost of change for other system components.  For example, with the 

increasing importance of data in IT systems, it would be valuable to explore the impact of 

coupling on the cost of change for databases.  We also believe work might usefully focus on the 

relationship between coupling and other (i.e., non-cost) performance measures.  For example, 
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does modularity require trade-offs?  And if so, what measures may be negatively impacted? 

Finally, studies across different organizations might reveal how measures of IT architecture 

impact firm-level performance.  This area is most promising, given prior literature argues there is 

a strong linkage between certain types of IT architecture and firm-level agility.  One might ask, 

for example, whether loosely coupled architectures, in general, facilitate a rapid response to 

unpredictable business challenges?  Or are there subtle nuances to account for, with respect to 

different layers in the architecture (e.g., is the use of shared databases – with the patterns of 

coupling that this demands – a best practice)?  Our methodology allows us to answer such 

questions with a robust approach that can be replicated consistently across studies. 

Of course, our study is subject to a number of limitations that must be considered when 

assessing the generalizability of results.  In particular, while our unit of analysis is a component 

in the IT architecture (of which we have 400+ observations in this dataset), the data to test our 

theoretical propositions comes from a single firm.  Hence additional empirical work is needed to 

validate that our results hold for other firms.  We may find that different types of firm, or 

different managerial processes within similar firms, can influence the results that we find.  

Furthermore, questions remain as to the different types of layers and components that should be 

included in an analysis of IT architecture, as well as the types of coupling between them.  For 

example, different types of dependency (e.g., “uses” versus “communicates with”) may have 

more or less importance in predicting different dimensions of performance and agility.   And 

there may be important intermediate variables (e.g., the use of standards; see Tiwana and 

Konsynski, 2010) that mediate the relationship between component coupling and change cost.  

Ultimately, we hope our work provides a platform to enable future research to answer these and 

other important questions about the relationship between IT architecture and IT agility. 
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Appendix A:  Models Predicting Change Cost only for Core Components 
 
Sample	   Core	  Applications	  
Model	   1	   2	   3	   4	  
Constant	   3.21***	   3.15***	   3.16***	   4.96***	  
Vendor	   -‐1.51**	   -‐1.49**	   -‐1.50**	   -‐1.80***	  
Client	   -‐.62	   -‐.61	   -‐.61	   -‐.64	  
Comp	   .28	   .26	   .27	   0.41	  
N-‐Tier	   -‐.49	   -‐.50	   -‐.49	   -‐.38	  
Active	   1.96***	   1.93***	   1.94***	   2.20***	  
Res-‐Exp	   .02	   .03	   .03	   .04	  
DC	   	   3.15	   	   	  	  
Ln	  (DC)	   	   	   .05	   	  	  
CENT	   	   	   	   -‐.80	  
	   	   	   	   	  
Adj.	  R-‐
square	  

0.27	   0.25	   0.25	   0.28	  

F-‐Statistic	   4.44***	   3.75**	   3.74**	   4.15***	  
Observations	   58	   58	   58	   58	  
†	  p<0.1,	  *	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 
 


