
IN
F 5150

INF5150 INFUIT Haugen / Stølen 1

Refinement III

Ketil Stølen



IN
F 5150

INF5150 INFUIT Haugen / Stølen 2

Topics

 Weak sequencing
 Negative behaviour (refuse, veto, assert)
 Refinement (pragmatics of refining interactions)



IN
F 5150

INF5150 INFUIT Haugen / Stølen 3

Weak sequencing

 Combine interaction fragments by seq
 Definition of weak sequencing of trace sets:
 s1≿s2 denotes the set of all traces that may be 

constructed by selecting one trace t1 from s1 and one 
trace t2 from s2 and combining them in such a way that for 
each lifeline, the events from t1 comes before the events 
from t2.

 Note: if s1 or s2 is empty then s1≿s2 is also empty
 Remember: if the message hello is sent from l1 to l2, then 

the event !hello occurs on l1 and ?hello occurs on l2



IN
F 5150

INF5150 INFUIT Haugen / Stølen 4

Weak sequencing of trace sets

Alice

hello

goodbye

Bob

<!h,?h,!g,?g>

<!h,!g,?h,?g>

<!h,?h> ≳

=

<!g,?g>

s1 s2

Red events occur on Alice, 
blue events on Bob

s1 ≳ s2 is the set of positive 
traces for the diagram

s1

s2



IN
F 5150

INF5150 INFUIT Haugen / Stølen 5

Weak sequencing of interaction obligations

 (p1,n1)≿(p2,n2) ≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))

 Traces composed exclusively by positive traces become 
positive

 Traces composed with at least one negative trace 
become negative



IN
F 5150

INF5150 INFUIT Haugen / Stølen 6

Formal semantics of seq

 [[d1 seq d2]] ≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

 seq is the implicit composition operator
 oi is shorthand for (pi, ni)
 Note: For better readability we give the binary versions of 

the operators in this presentation. N-ary versions are 
used in the paper.



IN
F 5150

INF5150 INFUIT Haugen / Stølen 7

Note

 A trace is not necessarily 
negative even if a prefix of it is 
negative

 The total trace must be 
considered when categorizing it 
as positive, negative or 
inconclusive

cancel(appointment) followed by 
appointmentCancelled() followed by nothing 

is negative

cancel(appointment) followed by 
appointmentCancelled() followed 
by the positive traces of Payment 

is positive



IN
F 5150

INF5150 INFUIT Haugen / Stølen 8

The pragmatics of weak sequencing

 Be aware that by weak sequencing
– a positive sub-trace followed by a positive sub-trace is positive
– a positive sub-trace followed by a negative sub-trace is negative
– a negative sub-trace followed by a positive sub-trace is negative
– a negative sub-trace followed by a negative sub-trace is negative
– the remaining trace combinations are inconclusive

 Remember the definition:
(p1,n1)≿(p2,n2) ≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))



IN
F 5150

INF5150 INFUIT Haugen / Stølen 9

opt and skip

 [[opt d]] ≝ [[skip alt d]]

 [[skip]] ≝ {({<>},{})}
– A single interaction obligation where only the empty trace <> is 

positive and the set of negative traces is empty



IN
F 5150

INF5150 INFUIT Haugen / Stølen 10

Specifying negative behaviour: refuse

 [[refuse d]] ≝ {({},p∪n) ∣ (p,n)∈[[d]]}
 All interaction obligations in 

[[refuse d]] have empty positive sets
 This means that all interaction 

obligations in [[d1 seq (refuse d2)]] 
have empty positive sets
– and the same applies to 

[[(refuse d1) seq d2]]

Player Coin

flip

sd Heads

heads

tails

alt

refuse

 [[Heads]] = {({<!f, ?f, !h, ?h>}, {<!f, ?f, !t, ?t>})}



IN
F 5150

INF5150 INFUIT Haugen / Stølen 11

Specifying negative behaviour: veto

 [[veto d]] ≝ [[skip alt (refuse d)]]
 ... which means that

[[veto d]] = {({<>},p∪n) ∣ (p∪n)∈[[d]]}

 [[Heads]] = {({<!f, ?f, !h, ?h>, <!f, ?f>} , {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

veto



IN
F 5150

INF5150 INFUIT Haugen / Stølen 12

Specifying negative behaviour : assert

 By using assert, all inconclusive traces 
are redefined as negative

 This ensures that for each interaction 
obligation, at least one of its positive 
traces will be implemented in the final 
implementation

 [[assert d]] ≝ {(p,n∪(ℋ\p )) ∣ (p,n)∈[[d]]}

Player Coin

flip

sd Heads

heads
assert

 [[Heads]] = {({<!f, ?f, !h, ?h>}, n)}
 n = all traces where the first event on the lifeline of Player is !f and the first 

event on the lifeline of Coin is ?f except the trace <!f, ?f, !h, ?h>



IN
F 5150

INF5150 INFUIT Haugen / Stølen

appointmentMade() may not occur here

noAppointment() may not occur instead 
of appointmentMade() here

noAppointment () is the only message 
that may occur here

From 0 to 
4 iterations 
(with seq 
between)

Negative behaviour

13

veto



IN
F 5150

INF5150 INFUIT Haugen / Stølen 14

veto or refuse?

 Should doing nothing be 
possible in the otherwise 
negative situation?
– If yes, use veto
– If no, use refuse

It is OK to do nothing between no() and 
appointmentSuggestion(time)

It is not OK to do nothing after yes()

veto



IN
F 5150

INF5150 INFUIT Haugen / Stølen 15

when to use assert?

Sending noAppointment() is 
the only acceptable 
response to the no() 
message at this point

veto



IN
F 5150

INF5150 INFUIT Haugen / Stølen 16

The pragmatics of negation

 To effectively constrain the implementation, the 
specification should include a reasonable set of negative 
traces

 Use refuse when specifying that one of the alternatives in 
an alt-construct represents negative traces

 Use veto when the empty trace (i.e. doing nothing) should 
be positive, as when specifying a negative message in an 
otherwise positive scenario

 Use assert on an interaction fragment when all positive 
traces for that fragment have been described
– Use assert with caution!



IN
F 5150

INF5150 INFUIT Haugen / Stølen 17

The pragmatics of refining interactions



IN
F 5150

INF5150 INFUIT Haugen / Stølen 18

The use of supplementing

 Inconclusive trace are recategorized as either 
positive or negative (for an interaction obligation)

 New situations are considered
– adding fault tolerance
– new user requirements
– ...

 Typically used in early phases



IN
F 5150

INF5150 INFUIT Haugen / Stølen 19

Supplementing of interaction obligations

 (p,n) ⇝s (p’,n’) ≝ p⊆p’∧ n⊆n’

Positive

Negative

InconclusiveSupplementing



IN
F 5150

INF5150 INFUIT Haugen / Stølen 20

Supplementing of specifications

 d ⇝s d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o ⇝s o’
 d’ is a supplementing of d if

– for every interaction obligation o in [[d]] there is at least one interaction 
obligation o’ in [[d’]] such that o’ is a supplementing of o

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]: s s s

s s s



IN
F 5150

INF5150 INFUIT Haugen / Stølen 21

Example of supplementing

Positive
Negative



IN
F 5150

INF5150 INFUIT Haugen / Stølen 22

The pragmatics of supplementing

 Use supplementing to add positive or negative traces to 
the specification

 When supplementing, all of the original positive traces 
must remain positive, and all of the original negative 
traces must remain negative

 Do not use supplementing on the operand of an assert
– no traces are inconclusive in the operand



IN
F 5150

INF5150 INFUIT Haugen / Stølen 23

Narrowing

 Reduce underspecification by redefining positive traces 
as negative

 For example adding guards, or replacing a guard with a 
stronger one
– traces where the guard is false become negative

 (p,n) ⇝n (p’,n’) ≝ p’⊆p∧ n’=n∪(p\p’)
 d ⇝n d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o ⇝n o’

Positive

Negative

Inconclusive Narrowing



IN
F 5150

INF5150 INFUIT Haugen / Stølen 24

Example of narrowing

For each operand, traces where the 
guard is false become negative



IN
F 5150

INF5150 INFUIT Haugen / Stølen 25

The pragmatics of narrowing

 Use narrowing to remove underspecification by redefining 
positive traces as negative

 In cases of narrowing, all of the original negative traces 
must remain negative

 Guards may be added to an alt-construct as a legal 
narrowing step

 Guards may be added to an xalt-construct as a legal 
narrowing step

 Guards may be narrowed, i.e. the refined condition must 
imply the original one



IN
F 5150

INF5150 INFUIT Haugen / Stølen 26

The use of detailing

 Reducing the level of abstraction by structural 
decomposition
– One or more lifelines are decomposed

 The positive and the negative traces are the same, 
except that
– internal communication is hidden at the abstract level
– events occurring on a composed lifeline at the abstract level occur 

instead on one of the sub-component lifelines



IN
F 5150

INF5150 INFUIT Haugen / Stølen 27

Example of detailing

Internal 
communication

Components of 
AppSystem



IN
F 5150

INF5150 INFUIT Haugen / Stølen 28

The pragmatics of detailing

 Use detailing to increase the level of granularity of the 
specification by decomposing lifelines

 When detailing, document the decomposition by creating 
a mapping L from the concrete to the abstract lifelines

 When detailing, make sure that the refined traces are 
equal to the original ones when abstracting away internal 
communication and taking the lifeline mapping into 
account



IN
F 5150

INF5150 INFUIT Haugen / Stølen 29

The use of general refinement

 A combination of supplementing, narrowing and detailing
– (not necessarily all three)

 Allows all positive traces to become negative, while 
previously inconclusive traces become positive

 To ensure that a trace must be present in the final 
implementation we need an interaction obligation where 
all other traces are negative



IN
F 5150

INF5150 INFUIT Haugen / Stølen 30

General refinement (of sets of interaction obligations)
 d ⇝ d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o ⇝ o’
 d’ is a general refinement of d if

– for every interaction obligation o in [[d]] there is at least one 
interaction obligation o’ in [[d’]] such that o’ is a general 
refinement of o

 New interaction obligations may also be added
– that do not refine any obligation at the abstract level

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:



IN
F 5150

INF5150 INFUIT Haugen / Stølen 31

The pragmatics of general refinement

 Use general refinement to perform a combination of 
supplementing, narrowing and detailing in a single step

 To define that a particular trace must be present in an 
implementation use xalt and assert to characterize an 
obligation with this trace as the only positive one and all 
other traces as negative



IN
F 5150

INF5150 INFUIT Haugen / Stølen 32

Compositionality

 A refinement operator ⇝ is compositional if it is
– reflexive: d⇝d
– transitive: d⇝d’∧ d’⇝d’’ ⇒ d⇝d’’
– the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ⇝ :

 d⇝d’ ⇒ refuse d ⇝ refuse d’
 d⇝d’ ⇒ veto d ⇝ veto d’
 d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 alt d2 ⇝ d1’ alt d2’
 d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 xalt d2 ⇝ d1’ xalt d2’
 d1⇝ d1’∧ d2⇝ d2’ ⇒ d1 seq d2 ⇝ d1’ seq d2’

 Transitivity allows stepwise development
 Monotonicity allow different parts of the specification to be refined 

separately
 Supplementing, narrowing, detailing, general refinement and limited 

refinement are all compositional 


	Refinement III
	Topics
	Weak sequencing
	Weak sequencing of trace sets
	Weak sequencing of interaction obligations
	Formal semantics of seq
	Note
	The pragmatics of weak sequencing
	opt and skip
	Specifying negative behaviour: refuse
	Specifying negative behaviour: veto
	Specifying negative behaviour : assert
	Negative behaviour
	veto or refuse?
	when to use assert?
	The pragmatics of negation
	The pragmatics of refining interactions
	The use of supplementing
	Supplementing of interaction obligations
	Supplementing of specifications
	Example of supplementing
	The pragmatics of supplementing
	Narrowing
	Example of narrowing
	The pragmatics of narrowing
	The use of detailing
	Example of detailing
	The pragmatics of detailing
	The use of general refinement
	General refinement (of sets of interaction obligations)
	The pragmatics of general refinement
	Compositionality

