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Overdetermined Equations
Given Am,n and b ∈ R

m.

The system Ax = b is over-determined if m > n.

This system has a solution if b ∈ Span(A), the column space of A,
but normally this is not the case and we can only find an approximate
solution.

A general approach is to choose a vector norm ‖·‖ and find x which
minimizes ‖Ax − b‖.

We will only consider the Euclidian norm here.
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The Least Squares Problem
Given Am,n and b ∈ R

m with m ≥ n ≥ 1. The problem to find x ∈ R
n

that minimizes ‖Ax − b‖2 is called the least squares problem.

A minimizing vector x is called a least squares solution of Ax = b.
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Example 1

x1 = 1

x1 = 1

x1 = 2

, A =









1

1

1









, x = [x1], b =









1

1

2









,

Our approach is to minimize the least squares sum
‖Ax − b‖2

2
= (x1 − 1)2 + (x1 − 1)2 + (x1 − 2)2.

Setting the first derivative with respect to x1 equal to zero we obtain
2(x1 − 1) + 2(x1 − 1) + 2(x1 − 2) = 0 or 6x1 − 8 = 0 or x1 = 4/3

The second derivative is positive (it is equal to 6) and x = 4/3 is a
global minimum.
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Linear regression
Given m points (ti, yi)

m
i=1

in the (t, y) plane.

Example:
(ti, yi)

5

i=1
= [(1, 1.4501), (2, 1.7311), (3, 3.1068), (4, 3.9860), (5, 5.3913)]
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0
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6

7

Find a straight line y(t) = x1 + tx2 such that yi = x1 + tix2 all i.

We obtain a least squares problem with

A =





1 t1
1 t2

...
...

1 tm



 b =





y1

y2

...
ym



 , ‖Ax − b‖2

2
=

m
∑

i=1

(x1 + tix2 − yi)
2.

Least Squares Problems – p. 5/26



Recall result on orthogonal projection
Theorem(Best Approximation) Let S be a subspace in a real or complex inner
product space (V , F, 〈·, ·, )〉. Let x ∈ V , and p ∈ S. The following
statements are equivalent

1. 〈x − p, s〉 = 0, for all s ∈ S.

2. ‖x − s‖ > ‖x − p‖ for all s ∈ S with s 6= p.

x

x-p

pS
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Existence and Uniqueness
Theorem 1. The least squares problem always has a solution. The solution is unique if

and only if A has linearly independent columns.

Proof. We apply the inner product setup with V = R
n, the usual inner product in

R
n, S equals Span(A) := {Ax : x ∈ R

n}, the column space of A, and x = b.

The inner product norm is the Euclidian norm ‖·‖2.

Let p be the orthogonal projection of b into C(A). Since p ∈ Span(A) there is an

x∗ ∈ R
n such that Ax∗ = p.

If x ∈ R
n and x 6= x∗ then s := Ax ∈ Span(A) and by the best approximation

theorem ‖b − Ax∗‖2 = ‖b − p‖2 < ‖b − s‖2.

Since p is unique and Ax∗ = p the least squares problem has a unique solution if and

only if A has linearly independent columns.
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Characterization of any least squares solution

By the best approximation theorem 〈b − p, s〉 = 0 for all s ∈ Span(A) and
we see that b − p belongs to the orthogonal complement Span(A)⊥ of A.
We now recall:

Theorem 2. The orthogonal complement of the column space of a matrix A ∈ R
m,n is

the null space of AT . In symbols

Span(A)⊥ = Ker(AT ) := {y ∈ R
m : AT y = 0}. (1)

It follows that x∗ minimizes ‖Ax − b‖2 if and only if b − Ax∗ belongs to
Span(A)⊥ or AT (b − Ax∗) = 0.

We obtain the linear system AT Ax∗ = AT b
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The Normal Equations
The least squares solution can be found by solving a linear system.

Theorem 3. Suppose A ∈ R
m,n with m > n and b ∈ R

m. The following is equivalent

1. x∗ minimizes ‖Ax − b‖2.

2. AT Ax∗ = AT b. (normal equations)

The matrix AT A is nonsingular if and only if A has linearly independent columns.

Proof. The previous discussion shows that 1 ⇔ 2. From an example in Chapter 8 we

know that AT A is positive semidefinite and positive definite (and hence nonsingular) if

and only if A has linearly independent columns.

The linear system AT Ax = AT b is called the normal equations.
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An observation
We show that minimizing ‖Ax − b‖2 and ‖Ax − b‖2

2
are equivalent.

Define functions f : R
n → [0,∞), φ : [0,∞) → [0,∞), and

g : R
n → [0,∞) by

f(x) := ‖Ax − b‖2

φ(t) = t2

g(x) := φ(f(x)) = ‖Ax − b‖2
2.

Then f has a global minimum at x∗ if and only if g has a global
minimum at x∗.

This follows since φ is strictly increasing.

For if h 6= 0 then g(x∗ + h) − g(x∗) = φ(f(x∗ + h)) − φ(f(x∗)) so one
difference is positive if and only the other is positive.

Least Squares Problems – p. 10/26



Linear Regression

A =





1 t1
1 t2
...

...
1 tm



 b =

[ y1

y2

...
ym

]

, min
x1x2

m
∑

i=1

(x1 + tix2 − yi)
2.

A =

[

1 1
1 2
1 3
1 4
1 5

]

y =

[

1.4501
1.7311
3.1068
3.9860
5.3913

]

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

ATA = [ 5 15
15 55

] c = AT y = [ 16.0620
58.6367

] 5x1+15x2 = 16.0620
15x1+55x2 = 58.6367

x1=0.0772
x2=1.0451

, x = A\y
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Cholesky Factorization

1. Form the normal equations B = AT A and c = AT b.

2. Find the Cholesky factorization B = LLT and find x.

1. for i=1:n
for j=i:n % Compute only one half of B

B(i,j)=A(:,i)’*A(:,j); % mn(n+1) flops
end
c(i)=A(:i)’*b; % mn flops

end

2. n3/3 flops

Forming the normal equations requires O(mn2) flops and
this represents more work than solving them.
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Why not always use the normal equations?

Forming AT A squares the condition number of A.

If A is ill conditioned then AT A will be severely ill
conditoned

Sometimes in applications A does not have full rank.

Consider two other methods

QR factorization

Singular value decomposition
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Squaring the Condition Number
The difference between the computed solution y of Bx = c

and the exact solution x satisfies

1

cond2(B)

‖r‖2

‖c‖2

≤ ‖x − y‖2

‖x‖2

≤ cond2(B)
‖r‖2

‖c‖2

,

where r = c − By. If σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are the singular
values of A then σ2

1, σ
2
2 . . . , σ2

n are the singular values of
B = AT A and

cond2(B) =
σ2

1

σ2
n

=
(

cond2(A)
)2

For this reason one should not use Cholesky factorization
to solve the least squares problem when A has a large
condition number.
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QR-factorization
Suppose A has full rank and that A = Q1R1 is a reduced
QR-factorization of A, that is Q1 ∈ R

m,n has orthonormal
columns and R1 ∈ R

n,n is nonsingular and upper triangular.
Then

ATAx = AT b ⇒ RT
1 QT

1 Q1R1x = RT
1 QT

1 b ⇒ RT
1 R1x = RT

1 QT
1 b.

Since RT
1 is nonsingular we find the least squares solution

by solving the triangular system

R1x = QT
1 b.
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Example

A =

[

1 1
1 2
1 3
1 4
1 5

]

=





−0.4472 −0.6325
−0.4472 −0.3162
−0.4472 0.0000
−0.4472 0.3162
−0.4472 0.6325



 ∗
[

−2.2361 −6.7082
0 3.1623

]

= Q1R1,

b =

[

1.4501
1.7311
3.1068
3.9860
5.3913

]

, c := QT
1 b =

[

−7.1831
3.3048

]

R1x = c ⇔ −2.2361x1−6.7082x2 = −7.1831
3.1623x2 = 3.3048

⇔ x1=0.0772
x2=1.0451

.
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Cholesky and Householder
Cholesky

O(mn2) flops

works only for full rank problems

squares the condition number of A

Householder

O(2mn2) − n3/6 flops.

Can be used for rank deficient problems

Discussion:

Cholesky more econimical

QR factorization should be used for problems with large condition
numbers

Cholesky cannot be used for rank deficient problems
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The Singular Value Decomposition (SVD)

Suppose A = UΣV T = U1Σ1V
T
1

is the SVD of A ∈ R
m,n. Recall that if

rank(A) = r then

Σ =
[

Σ1 0

0 0

]

Σ1 = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0,

U ∈ R
m,m, UT U = I, U = (U1, U2), U1 ∈ R

m,r, U2 ∈ R
m,m−r

V ∈ R
n,n, V T V = I, V = (V1, V2), V1 ∈ R

n,r, V2 ∈ R
n,n−r.

AV2 = 0 and V2 is an orthonormal basis for N(A)
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The Pseudo-inverse of A = UΣV T

The pseudo-inverse of A ∈ R
m,n is a matrix A† ∈ R

n,m given by

A† := V Σ†UT = V1Σ
−1

1
UT

1 , where Σ† :=
[

Σ
−1

1
0

0 0

]

, (2)

Example:

A =









1 1

1 1

0 0









= UΣV T =
1√
2









−1 −1 0

−1 1 0

0 0 1

















2 0

0 0

0 0









1√
2





−1 1

−1 −1





Σ† =





1

2
0 0

0 0 0



 , A† = V Σ†UT =
1

4





1 1 0

1 1 0




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A†
:= V Σ

†UT

Since Σ1 is nonsingular A† is always defined.

generalization of usual inverse. To see this note that

AA† = U1Σ1V
T
1 V1Σ

−1
1

UT
1 = U1U

T
1 .

A†A = V1Σ
−1
1

UT
1 U1Σ1V

T
1 = V1V

T
1 .

If A ∈ R
n,n is square and nonsingular then U1 = U and

V1 = V and AA† = A†A = I. Thus A† is the usual
inverse.
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Analysis of LSQ using SVD
Define

c := UT b =
[

UT

1 b

UT

2 b

]

= [ c1

c2
] , y := V T x =

[

V T

1 x

V T

2 x

]

= [ y1

y2
]

‖b − Ax‖2
2 = ‖UUT b − UΣV Tx‖2

2 = ‖c − Σy‖2
2 = ‖[ c1

c2
] −

[

Σ1 0
0 0

] [ y
1

y
2

]

‖2
2

= ‖
[

c1−Σ1y1

c2

]

‖2
2 = ‖c1 − Σ1y1‖2

2 + ‖c2‖2
2.

We have ‖b − Ax‖2 ≥ ‖c2‖2 for all x ∈ R
n with equality iff

x = V y = [ V1 V2 ]
[

Σ
−1

1
c1

y
2

]

= A†b+V2y2, for all y2 ∈ R
n−r. (3)
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Projections
The general solution of min‖Ax − b‖2 is given by

x = V y = [ V1 V2 ]
[

Σ
−1

1
UT

1 b
y

2

]

= A†b + V2y2, for all y2 ∈ R
n−r.

(4)

The solution is unique if and only if V1 = V that is if and
only if r = rank(A) = n.

Since AV2 = 0 we have Ax = AA†b + AV2y2 = AA†b

b1 := AA†b = U1U
T
1 b is the vector projection of b onto

the column space Span(A) of A

b2 := b − b1 = (I − U1U
T
1 )b = U2U

T
2 b is the vector

projection of b onto N(AT )
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The Minimal Norm Solution
Suppose A is rank deficient (r < n) and let

z := V y = [ V1 V2 ]
[

Σ
−1

1
UT

1 b
y

2

]

= A†b + V2y2 with y2 ∈ R
n−r and

nonzero. Let x = A†b be the solution corresponding to
y2 = 0. Then ‖z‖2

2 = ‖A†b‖2
2 + ‖y2‖2

2 > ‖x‖2
2 The vector

x = A†b is the minimal norm solution to the LSQ problem.
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Three Algorithms for solving LSQ
Solving the normal equations by Cholesky factorization

Using the QR-factorization of A

Using the SVD of A

QR with column pivoting or SVD is used for rank deficient
problems. (Non unique solutions)
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Minimal norm solution by SVD

The minimimal norm solution is x = A†b = V1Σ
−1
1

UT
1 b.

1. Compute A = UΣV T = U1Σ1V
T
1 , the SVD of A.

2. c = UT
1 b rm flops

3. d = Σ−1
1

c r flops

4. x = V1d rn flops

This is a great method if the SVD of A is known.
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Computing the SVD of A ∈ R
m,n

1. Transform A to bidiagonal form using Householder
reflections

2. Use the QR-method to find the singular values.

1. Transform A to bidiagonal form using Householder
reflections

2. Use the QR-method to find the singular values.
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