Least Squares Problems

Tom Lyche

University of Oslo

Norway

Overdetermined Equations

- Given $A^{m,n}$ and $b \in \mathbb{R}^m$.
- **•** The system Ax = b is over-determined if m > n.
- This system has a solution if $b \in \text{Span}(A)$, the column space of A, but normally this is not the case and we can only find an approximate solution.
- A general approach is to choose a vector norm $\|\cdot\|$ and find x which minimizes $\|Ax b\|$.
- We will only consider the Euclidian norm here.

The Least Squares Problem

- Given A^{m,n} and b ∈ ℝ^m with m ≥ n ≥ 1. The problem to find x ∈ ℝⁿ
 that minimizes $||Ax b||_2$ is called the least squares problem.
- A minimizing vector x is called a least squares solution of Ax = b.

Example 1

$$\begin{array}{l} x_1 = 1 \\ x_1 = 1, \quad A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{x} = [x_1], \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \\ x_1 = 2 \end{array}$$

Our approach is to minimize the least squares sum $\|Ax - b\|_{2}^{2} = (x_{1} - 1)^{2} + (x_{1} - 1)^{2} + (x_{1} - 2)^{2}.$

- Setting the first derivative with respect to x_1 equal to zero we obtain $2(x_1 - 1) + 2(x_1 - 1) + 2(x_1 - 2) = 0$ or $6x_1 - 8 = 0$ or $x_1 = 4/3$
- The second derivative is positive (it is equal to 6) and x = 4/3 is a global minimum.

Linear regression

• Given *m* points $(t_i, y_i)_{i=1}^m$ in the (t, y) plane.

Example:

 $(t_i, y_i)_{i=1}^5 = [(1, 1.4501), (2, 1.7311), (3, 3.1068), (4, 3.9860), (5, 5.3913)]$

- Find a straight line $y(t) = x_1 + tx_2$ such that $y_i = x_1 + t_i x_2$ all *i*.
- We obtain a least squares problem with

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots \\ 1 & t_m \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \|A\mathbf{x} - \mathbf{b}\|_2^2 = \sum_{i=1}^m (x_1 + t_i x_2 - y_i)^2.$$

Recall result on orthogonal projection

Theorem(Best Approximation) Let S be a subspace in a real or complex inner product space $(\mathcal{V}, \mathbb{F}, \langle \cdot, \cdot, \rangle)$. Let $x \in \mathcal{V}$, and $p \in S$. The following statements are equivalent

1.
$$\langle \boldsymbol{x} - \boldsymbol{p}, \boldsymbol{s} \rangle = 0$$
, for all $\boldsymbol{s} \in \boldsymbol{S}$.

2.
$$\|x - s\| > \|x - p\|$$
 for all $s \in \mathcal{S}$ with $s \neq p$.

Existence and Uniqueness

Theorem 1. The least squares problem always has a solution. The solution is unique if and only if A has linearly independent columns.

- *Proof.* We apply the inner product setup with $\mathcal{V} = \mathbb{R}^n$, the usual inner product in \mathbb{R}^n , \mathcal{S} equals $\text{Span}(A) := \{A \boldsymbol{x} : \boldsymbol{x} \in \mathbb{R}^n\}$, the column space of A, and $\boldsymbol{x} = \boldsymbol{b}$.
 - \checkmark The inner product norm is the Euclidian norm $\|\cdot\|_2$.
 - Let p be the orthogonal projection of b into C(A). Since $p \in \text{Span}(A)$ there is an $x^* \in \mathbb{R}^n \text{ such that } Ax^* = p.$

If $x \in \mathbb{R}^n$ and $x \neq x^*$ then $s := Ax \in \text{Span}(A)$ and by the best approximation theorem $\| b - Ax^* \|_2 = \| b - p \|_2 < \| b - s \|_2$.

Since p is unique and $Ax^* = p$ the least squares problem has a unique solution if and only if A has linearly independent columns.

Characterization of any least squares solution

By the best approximation theorem $\langle \boldsymbol{b} - \boldsymbol{p}, \boldsymbol{s} \rangle = 0$ for all $\boldsymbol{s} \in \text{Span}(A)$ and we see that $\boldsymbol{b} - \boldsymbol{p}$ belongs to the orthogonal complement $\text{Span}(A)^{\perp}$ of A. We now recall:

Theorem 2. The orthogonal complement of the column space of a matrix $A \in \mathbb{R}^{m,n}$ is the null space of A^T . In symbols

$$Span(A)^{\perp} = Ker(A^T) := \{ \boldsymbol{y} \in \mathbb{R}^m : A^T \boldsymbol{y} = \boldsymbol{0} \}.$$
(1)

It follows that x^* minimizes $||Ax - b||_2$ if and only if $b - Ax^*$ belongs to $\text{Span}(A)^{\perp}$ or $A^T(b - Ax^*) = 0$.

We obtain the linear system $A^T A \boldsymbol{x}^* = A^T \boldsymbol{b}$

The Normal Equations

The least squares solution can be found by solving a linear system.

Theorem 3. Suppose $A \in \mathbb{R}^{m,n}$ with m > n and $b \in \mathbb{R}^m$. The following is equivalent

- 1. x^* minimizes $||Ax b||_2$.
- 2. $A^T A \boldsymbol{x}^* = A^T \boldsymbol{b}$. (normal equations)

The matrix $A^T A$ is nonsingular if and only if A has linearly independent columns.

Proof. The previous discussion shows that $1 \Leftrightarrow 2$. From an example in Chapter 8 we know that $A^T A$ is positive semidefinite and positive definite (and hence nonsingular) if and only if A has linearly independent columns.

The linear system $A^T A x = A^T b$ is called the normal equations.

An observation

- We show that minimizing $||Ax b||_2$ and $||Ax b||_2^2$ are equivalent. Define functions $f : \mathbb{R}^n \to [0, \infty)$, $\phi : [0, \infty) \to [0, \infty)$, and $g : \mathbb{R}^n \to [0, \infty)$ by
- **9** $f(x) := ||Ax b||_2$
- **9** $g(x) := \phi(f(x)) = ||Ax b||_2^2.$
- Then f has a global minimum at x^* if and only if g has a global minimum at x^* .
- **•** This follows since ϕ is strictly increasing.
- For if $h \neq 0$ then $g(x^* + h) g(x^*) = \phi(f(x^* + h)) \phi(f(x^*))$ so one difference is positive if and only the other is positive.

Linear Regression

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \min_{x_1 x_2} \sum_{i=1}^m (x_1 + t_i x_2 - y_i)^2.$$
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \quad y = \begin{bmatrix} 1.4501 \\ 1.7311 \\ 3.1068 \\ 3.9860 \\ 5.3913 \end{bmatrix} \quad \int_{0}^{0} \int_{$$

 $A^{T}A = \begin{bmatrix} 5 & 15 \\ 15 & 55 \end{bmatrix} \quad c = A^{T}y = \begin{bmatrix} 16.0620 \\ 58.6367 \end{bmatrix} \quad \begin{array}{c} 5x_{1} + 15x_{2} &= 16.0620 \\ 15x_{1} + 55x_{2} &= 58.6367 \end{array}$ $x_{1} = 0.0772 \\ x_{2} = 1.0451 \\ x_{2} = 1.0451 \\ x_{3} = A \setminus y$

Cholesky Factorization

- 1. Form the normal equations $B = A^T A$ and $c = A^T b$.
- 2. Find the Cholesky factorization $B = LL^T$ and find x.

1. for i=1:n	
for j=i:n	% Compute only one half of B
B(i,j)=A(:,i)'*A(:,j);	% mn(n+1) flops
end	
c(i)=A(:i)'*b;	% mn flops
end	
2.	n ³ /3 flops

Forming the normal equations requires $O(mn^2)$ flops and this represents more work than solving them.

Why not always use the normal equations?

- Forming $A^T A$ squares the condition number of A.
- If A is ill conditioned then A^TA will be severely ill conditioned
- Sometimes in applications A does not have full rank.
- Consider two other methods
- QR factorization
- Singular value decomposition

Squaring the Condition Number

The difference between the computed solution y of Bx = c and the exact solution x satisfies

$$\frac{1}{\operatorname{cond}_2(B)} \frac{\|r\|_2}{\|c\|_2} \le \frac{\|x - y\|_2}{\|x\|_2} \le \operatorname{cond}_2(B) \frac{\|r\|_2}{\|c\|_2},$$

where r = c - By. If $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ are the singular values of A then $\sigma_1^2, \sigma_2^2 \ldots, \sigma_n^2$ are the singular values of $B = A^T A$ and

$$\operatorname{cond}_2(B) = \frac{\sigma_1^2}{\sigma_n^2} = \left(\operatorname{cond}_2(A)\right)^2$$

For this reason one should not use Cholesky factorization to solve the least squares problem when *A* has a large condition number.

QR-factorization

Suppose *A* has full rank and that $A = Q_1R_1$ is a reduced QR-factorization of *A*, that is $Q_1 \in \mathbb{R}^{m,n}$ has orthonormal columns and $R_1 \in \mathbb{R}^{n,n}$ is nonsingular and upper triangular. Then

$$A^{T}Ax = A^{T}b \Rightarrow R_{1}^{T}Q_{1}^{T}Q_{1}R_{1}x = R_{1}^{T}Q_{1}^{T}b \Rightarrow R_{1}^{T}R_{1}x = R_{1}^{T}Q_{1}^{T}b.$$

Since R_1^T is nonsingular we find the least squares solution by solving the triangular system

$$R_1 x = Q_1^T b.$$

Example

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} -0.4472 & -0.6325 \\ -0.4472 & -0.3162 \\ -0.4472 & 0.0000 \\ -0.4472 & 0.3162 \\ -0.4472 & 0.6325 \end{bmatrix} * \begin{bmatrix} -2.2361 & -6.7082 \\ 0 & 3.1623 \end{bmatrix} = Q_1 R_1,$$

$$b = \begin{bmatrix} 1.4501\\ 1.7311\\ 3.1068\\ 3.9860\\ 5.3913 \end{bmatrix}, \quad c := Q_1^T b = \begin{bmatrix} -7.1831\\ 3.3048 \end{bmatrix}$$

$$R_1 x = c \Leftrightarrow \begin{array}{c} -2.2361 x_1 - 6.7082 x_2 = -7.1831\\ 3.1623 x_2 = 3.3048 \end{array} \Leftrightarrow \begin{array}{c} x_1 = 0.0772\\ x_2 = 1.0451 \end{array}.$$

Cholesky and Householder

Cholesky

- works only for full rank problems
- **squares the condition number of** A

Householder

- $O(2mn^2) n^3/6$ flops.
 - Can be used for rank deficient problems

Discussion:

- Cholesky more econimical
- QR factorization should be used for problems with large condition numbers
- Cholesky cannot be used for rank deficient problems

The Singular Value Decomposition (SVD)

Suppose $A = U\Sigma V^T = U_1 \Sigma_1 V_1^T$ is the SVD of $A \in \mathbb{R}^{m,n}$. Recall that if rank(A) = r then

• $AV_2 = 0$ and V_2 is an orthonormal basis for N(A)

The Pseudo-inverse of $A = U \Sigma V^T$

The pseudo-inverse of $A \in \mathbb{R}^{m,n}$ is a matrix $A^{\dagger} \in \mathbb{R}^{n,m}$ given by

$$A^{\dagger} := V \Sigma^{\dagger} U^{T} = V_{1} \Sigma_{1}^{-1} U_{1}^{T}, \text{ where } \Sigma^{\dagger} := \begin{bmatrix} \Sigma_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix}, \qquad (2)$$

Example:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = U\Sigma V^T = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$\Sigma^{\dagger} = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \quad A^{\dagger} = V\Sigma^{\dagger}U^{T} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0\\ 1 & 1 & 0 \end{bmatrix}$$

$A^{\dagger} := V \Sigma^{\dagger} U^T$

- Since Σ_1 is nonsingular A^{\dagger} is always defined.
- generalization of usual inverse. To see this note that

•
$$AA^{\dagger} = U_1 \Sigma_1 V_1^T V_1 \Sigma_1^{-1} U_1^T = U_1 U_1^T.$$

- $A^{\dagger}A = V_1 \Sigma_1^{-1} U_1^T U_1 \Sigma_1 V_1^T = V_1 V_1^T.$
- If $A \in \mathbb{R}^{n,n}$ is square and nonsingular then $U_1 = U$ and $V_1 = V$ and $AA^{\dagger} = A^{\dagger}A = I$. Thus A^{\dagger} is the usual inverse.

Analysis of LSQ using SVD

Define

$$\boldsymbol{c} := U^T \boldsymbol{b} = \begin{bmatrix} U_1^T \boldsymbol{b} \\ U_2^T \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \quad \boldsymbol{y} := V^T \boldsymbol{x} = \begin{bmatrix} V_1^T \boldsymbol{x} \\ V_2^T \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$\|\boldsymbol{b} - A\boldsymbol{x}\|_{2}^{2} = \|UU^{T}\boldsymbol{b} - U\Sigma V^{T}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{c} - \Sigma\boldsymbol{y}\|_{2}^{2} = \|\begin{bmatrix}\boldsymbol{c}_{1}\\\boldsymbol{c}_{2}\end{bmatrix} - \begin{bmatrix}\Sigma_{1} & 0\\ 0 & 0\end{bmatrix}\begin{bmatrix}\boldsymbol{y}_{1}\\\boldsymbol{y}_{2}\end{bmatrix}\|$$
$$= \|\begin{bmatrix}\boldsymbol{c}_{1} - \Sigma_{1}\boldsymbol{y}_{1}\\\boldsymbol{c}_{2}\end{bmatrix}\|_{2}^{2} = \|\boldsymbol{c}_{1} - \Sigma_{1}\boldsymbol{y}_{1}\|_{2}^{2} + \|\boldsymbol{c}_{2}\|_{2}^{2}.$$

We have $\|\boldsymbol{b} - A\boldsymbol{x}\|_2 \ge \|\boldsymbol{c}_2\|_2$ for all $\boldsymbol{x} \in \mathbb{R}^n$ with equality iff

$$\boldsymbol{x} = V \boldsymbol{y} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1} \boldsymbol{c}_1 \\ \boldsymbol{y}_2 \end{bmatrix} = A^{\dagger} \boldsymbol{b} + V_2 \boldsymbol{y}_2, \text{ for all } \boldsymbol{y}_2 \in \mathbb{R}^{n-r}.$$
 (3)

Projections

The general solution of $\min ||A\boldsymbol{x} - \boldsymbol{b}||_2$ is given by

$$\boldsymbol{x} = V\boldsymbol{y} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1} U_1^T \boldsymbol{b} \\ \boldsymbol{y}_2 \end{bmatrix} = A^{\dagger} \boldsymbol{b} + V_2 \boldsymbol{y}_2, \text{ for all } \boldsymbol{y}_2 \in \mathbb{R}^{n-r}.$$
(4)

- The solution is unique if and only if $V_1 = V$ that is if and only if r = rank(A) = n.
- Since $AV_2 = 0$ we have $A\boldsymbol{x} = AA^{\dagger}\boldsymbol{b} + AV_2\boldsymbol{y}_2 = AA^{\dagger}\boldsymbol{b}$
- $b_1 := AA^{\dagger}b = U_1U_1^Tb$ is the vector projection of b onto the column space Span(A) of A
- $\boldsymbol{b}_2 := \boldsymbol{b} \boldsymbol{b}_1 = (I U_1 U_1^T) \boldsymbol{b} = U_2 U_2^T \boldsymbol{b}$ is the vector projection of \boldsymbol{b} onto $N(A^T)$

The Minimal Norm Solution

Suppose *A* is rank deficient (r < n) and let $\boldsymbol{z} := V \boldsymbol{y} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1} U_1^T \boldsymbol{b} \\ \boldsymbol{y}_2 \end{bmatrix} = A^{\dagger} \boldsymbol{b} + V_2 \boldsymbol{y}_2$ with $\boldsymbol{y}_2 \in \mathbb{R}^{n-r}$ and nonzero. Let $\boldsymbol{x} = A^{\dagger} \boldsymbol{b}$ be the solution corresponding to $\boldsymbol{y}_2 = 0$. Then $\|\boldsymbol{z}\|_2^2 = \|A^{\dagger} \boldsymbol{b}\|_2^2 + \|\boldsymbol{y}_2\|_2^2 > \|\boldsymbol{x}\|_2^2$ The vector $\boldsymbol{x} = A^{\dagger} \boldsymbol{b}$ is the minimal norm solution to the LSQ problem.

Three Algorithms for solving LSQ

- Solving the normal equations by Cholesky factorization
- Using the QR-factorization of A
- Using the SVD of A

QR with column pivoting or SVD is used for rank deficient problems. (Non unique solutions)

Minimal norm solution by SVD

The minimimal norm solution is $\boldsymbol{x} = A^{\dagger} \boldsymbol{b} = V_1 \Sigma_1^{-1} U_1^T \boldsymbol{b}$.

- 1. Compute $A = U\Sigma V^T = U_1 \Sigma_1 V_1^T$, the SVD of A.
- 2. $c = U_1^T b$ rm flops

 3. $d = \Sigma_1^{-1} c$ r flops

 4. $x = V_1 d$ rn flops

This is a great method if the SVD of A is known.

Computing the SVD of $A \in \mathbb{R}^{m,n}$

- 1. Transform *A* to bidiagonal form using Householder reflections
- 2. Use the QR-method to find the singular values.
- 1. Transform *A* to bidiagonal form using Householder reflections
- 2. Use the QR-method to find the singular values.