Least Squares Problems

Tom [Lyche](http://www.ifi.uio.no/)

University of Oslo

Norway

Overdetermined Equations

- Given $A^{m,n}$ and $\boldsymbol{b}\in\mathbb{R}^m$.
- The system $Ax=b$ is over-determined $f $m > n$.$
- This system has a solution if $\boldsymbol{b}\in \mathsf{Span}(A)$, the column space of $A,$ but normally this is not the case and we can only find an approximatesolution.
- A general approach is to choose a vector norm $\lVert \cdot \rVert$ and find x which minimizes $\|Ax-b\|.$
- We will only consider the Euclidian norm here.

The Least Squares Problem

- Given $A^{m,n}$ and $\boldsymbol{b}\in\mathbb{R}^m$ with $m\geq n\geq1.$ The problem to find $\boldsymbol{x}\in\mathbb{R}^n$ that minimizes $\|Ax-b\|_2$ is called the least squares problem. $_{\rm 2}$ is called the least squares problem.
- A minimizing vector \boldsymbol{x} is called a least squares solution of $A\boldsymbol{x}=\boldsymbol{b}$.

Example 1

$$
x_1 = 1
$$

\n $x_1 = 1$, $A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $x = [x_1]$, $b = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$,
\n $x_1 = 2$

Our approach is to minimize the least squares sum $||Ax - b||_2^2 = (x_1 - 1)^2 + (x_1 - 1)^2 + (x_1$ $\|\mathbf{x} - \mathbf{b}\|_2^2 = (x_1 - 1)^2 + (x_1 - 1)^2 + (x_1 - 2)^2.$

- Setting the first derivative with respect to x_1 equal to zero we obtain $2(x_1-1)+2(x_1-1)+2(x_1-2)=0$ or $6x_1-8=0$ or $x_1=4/3$
- The second derivative is positive (it is equal to 6) and $x=4/3$ is a global minimum.

Linear regression

Given m points $(t_i, y_i)_{i=1}^m$ $i=1$ $_1$ in the (t,y) plane.

Example:

 $(t_i,y_i)_i^5$ $i=1$ $_{1}$ = [(1, 1.4501), (2, 1.7311), (3, 3.1068), (4, 3.9860), (5, 5.3913)]

- Find a straight line $y(t) = x_1 + tx_2$ $_2$ such that $y_i = x_1+t_ix_2$ $_{2}$ all i_{\cdot}
- We obtain ^a least squares problem with

$$
A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots \\ 1 & t_m \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \|A\mathbf{x} - \mathbf{b}\|_2^2 = \sum_{i=1}^m (x_1 + t_i x_2 - y_i)^2.
$$

Recall result on orthogonal projection

Theorem(Best Approximation) Let $\mathcal S$ be a subspace in a real or complex inner product space $(\mathcal{V},\mathbb{F},\langle\cdot,\cdot,\cdot\rangle)$. Let $x\in\mathcal{V}$, and $\boldsymbol{p}\in\mathcal{S}.$ The following statements are equivalent

1. $\langle \boldsymbol{x}-\boldsymbol{p}, \boldsymbol{s}\rangle = 0, \quad$ for all $\boldsymbol{s}\in \boldsymbol{S}.$ 2. $||x-s|| > ||x-p||$ for all $s \in S$ with $s \neq p$. xx-pSp

Existence and Uniqueness

Theorem 1. The least squares problem always has ^a solution. The solution is unique if and only if A has linearly independent columns.

- *Proof.* $\quad \bullet \quad$ We apply the inner product setup with $\mathcal{V}=\mathbb{R}^n$, the usual inner product in $\mathbb{R}^n.$ ${\mathcal{S}}$ equals Span $(A):=\{A{\boldsymbol{x}}: {\boldsymbol{x}}\in\mathbb{R}^n\}$, the d , ${\mathcal S}$ equals Span $(A) := \{Ax : x \in \mathbb{R}^n\}$ $\{^{n}\},$ the column space of $A,$ and $\boldsymbol{x}=\boldsymbol{b}.$
- The inner product norm is the Euclidian norm $\left\Vert \cdot\right\Vert$ 2.
- Let \boldsymbol{p} be the orthogonal projection of \boldsymbol{b} into $\boldsymbol{C}(A)$. Since $\boldsymbol{p}\in\texttt{Span}(A)$ there is an \boldsymbol{x}^* $\mathbf{x}^* \in \mathbb{R}^n$ such that $A \boldsymbol{x}^*$ $\mathbf{p} = \mathbf{p}.$
- If $\boldsymbol{x}\in\mathbb{R}^n$ and $\boldsymbol{x}\neq\boldsymbol{x}^*$ then $\boldsymbol{s}:=A\boldsymbol{x}\in\texttt{Span}(A)$ and by the best approximation theorem $\|\bm{b}-A\bm{x}^*\|_2=\|\bm{b}-\bm{p}\|_2<\|\bm{b}-\bm{s}\|_2$ $\Vert \mathbf{k}^* \Vert_2=\Vert \boldsymbol{b}-\boldsymbol{p}\Vert_2<\Vert \boldsymbol{b}-\boldsymbol{s}\Vert_2.$

Since \boldsymbol{p} is unique and $A\boldsymbol{x}^* = \boldsymbol{p}$ the least square: $^{\ast}=p$ the least squares problem has a unique solution if and only if A has linearly independent columns. \Box

Characterization of any least squares solution

By the best approximation theorem $\langle \bm{b}-\bm{p}, \bm{s}\rangle = 0$ for all $\bm{s}\in \mathsf{Span}(A)$ and we see that $\bm{b}-\bm{p}$ belongs to the orthogonal complement Span $(A)^{\perp}$ of $A.$ We now recall:

<code>Theorem 2.</code> The orthogonal complement of the column space of a matrix $A\in\mathbb{R}^{m,n}$ is the null space of $A^T.$ In symbols

$$
\text{Span}(A)^{\perp} = \text{Ker}(A^T) := \{ \boldsymbol{y} \in \mathbb{R}^m : A^T \boldsymbol{y} = \boldsymbol{0} \}. \tag{1}
$$

It follows that \boldsymbol{x}^* minimizes $\|A\boldsymbol{x}-\boldsymbol{b}\|_2$ $\mathsf{Span}(A)^\perp$ or $A^T(\bm{b}-A\bm{x}^*)=\bm{0}.$ $_{2}$ if and only if $\bm{b}-A\bm{x}^{*}$ belongs to

We obtain the linear system $A^TA\boldsymbol{x}^*$ $^* = A^Tb$

The Normal Equations

The least squares solution can be found by solving ^a linear system.

Theorem 3. Suppose $A \in \mathbb{R}^{m,n}$ with $m > n$ and $\boldsymbol{b} \in \mathbb{R}^m$. The following is equivalent

- 1. \boldsymbol{x}^* minimizes $\|A\boldsymbol{x}-\boldsymbol{b}\|_2.$
- 2. $A^T A x^* = A^T b$. (normal equations)

The matrix A^TA is nonsingular if and only if A has linearly independent columns.

Proof. The previous discussion shows that $1 \Leftrightarrow 2.$ From an example in Chapter 8 we know that A^TA is positive semidefinite and positive definite (and hence nonsingular) if and only if A has linearly independent columns.

The linear system $A^T A \boldsymbol{x}=A^T\boldsymbol{b}$ is called the normal equations.

 \Box

An observation

- We show that minimizing $\|Ax-b\|_2$ Define functions $f:\mathbb{R}^n\to[0,\infty),\,\phi:[0,\infty)\to$ $_2$ and $\|Ax-b\|_2^2$ 2 $\frac{2}{2}$ are equivalent. $^{n}\rightarrow[0,\infty),\,\phi:[0,\infty)\rightarrow[0,\infty)$, and $g:\mathbb{R}^n$ $n \to [0, \infty)$ by
- $f(\boldsymbol{x}) := \|A\boldsymbol{x} \boldsymbol{b}\|_2$
- $\phi(t)=t^2$
- $g(\boldsymbol{x}) := \phi(f(\boldsymbol{x})) = \|A\boldsymbol{x} \boldsymbol{b}\|_2^2$ 2.
- Then f has a global minimum at \boldsymbol{x}^* if and only if g has a global minimum at $x^*.$
- This follows since ϕ is strictly increasing.
- For if $h\neq 0$ then $g(x^*)$ difference is positive if and only the other is positive. $^*+h)$ $-g(x^*)=\phi(f(x^*))$ $^*+h))$ $\phi(f(x^*))$ so one

Linear Regression

$$
A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \min_{x_1 x_2} \sum_{i=1}^m (x_1 + t_i x_2 - y_i)^2.
$$

$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{bmatrix} \quad y = \begin{bmatrix} 1.4501 \\ 1.7311 \\ 3.1068 \\ 5.3913 \end{bmatrix}.
$$

 A^T $A = \begin{bmatrix} 5 & 15 \\ 15 & 55 \end{bmatrix}$] $\begin{array}{cc} \end{array}$ $=A^T$ ${^T}y=[\frac{16.0620}{58.6367}]$]5 $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $_{\rm 1}{+}{\rm 15}$ $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $_2$ = 16.0620 $15x_1+55x_2 = 58.6367$ $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $_1{=}0.0772$ $x_1=0.0772$, $x=A\ y$

Cholesky Factorization

- 1. Form the normal equations $B=A^T$ ${}^{T}A$ and $c=A^{T}$ \overline{b} .
- 2. Find the Cholesky factorization $B = LL^T$ and find x .

Forming the normal equations requires $O(mn^2$ this represents more work than solving them. $^2)$ flops and

Why not always use the normal equations?

- Forming A^T ${}^{T}A$ squares the condition number of A .
- If A is ill conditioned then A^TA will be severely ill and it is an conditoned
- Sometimes in applications A does not have full rank.
- Consider two other methods
- **QR** factorization
- **Singular value decomposition**

Squaring the Condition Number

The difference between the computed solution y of Bx $\,=c$ and the exact solution x satisfies

$$
\frac{1}{\mathsf{cond}_2(B)} \frac{\|r\|_2}{\|c\|_2} \le \frac{\|x-y\|_2}{\|x\|_2} \le \mathsf{cond}_2(B) \frac{\|r\|_2}{\|c\|_2},
$$

where $r=c \sim$ \sim values of A then $\sigma_1^2, \sigma_2^2 \ldots, \sigma_n^2$ are the sir B_y . If $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$ are the singular 2 $\bar{1}, \sigma$: 2 $\overline{2} \cdots, \overline{\sigma}_r$ 2 $\, n \,$ $\frac{2}{n}$ are the singular values of $B=A^TA$ and

$$
\text{cond}_2(B) = \frac{\sigma_1^2}{\sigma_n^2} = \left(\text{cond}_2(A)\right)^2
$$

For this reason one should not use Cholesky factorizationto solve the least squares problem when A has a large
sendition number condition number.

QR**-factorization**

Suppose A has full rank and that $A = Q_1R_1$ is a reduced
OB fectorization of A, that is $Q_1 \in \mathbb{R}^{m,n}$ besont then expall QR -factorization of A , that is $Q_1 \in \mathbb{R}^{m,n}$ has orthonormal columns and $R_1 \in \mathbb{R}^{n,n}$ is nonsingular and upper triangular.
There Then

$$
A^T A x = A^T b \Rightarrow R_1^T Q_1^T Q_1 R_1 x = R_1^T Q_1^T b \Rightarrow R_1^T R_1 x = R_1^T Q_1^T b.
$$

Since R_1^T is nonsingular we find the least squares solution by solving the triangular system

$$
R_1 x = Q_1^T b.
$$

Example

$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -0.4472 & -0.6325 \\ -0.4472 & -0.3162 \\ -0.4472 & 0.0000 \\ -0.4472 & 0.3162 \\ -0.4472 & 0.6325 \end{bmatrix} * \begin{bmatrix} -2.2361 & -6.7082 \\ 0 & 3.1623 \end{bmatrix} = Q_1 R_1,
$$

$$
b = \begin{bmatrix} 1.4501 \\ 1.7311 \\ 3.1068 \\ 3.9860 \\ 5.3913 \end{bmatrix}, \quad c := Q_1^T b = \begin{bmatrix} -7.1831 \\ 3.3048 \end{bmatrix}
$$

 $R_1x = c \Leftrightarrow \begin{array}{c} -2.2361x_1 - 6.7082x_2 = -7.1831 \\ 3.1623x_2 = 3.3048 \end{array} \Leftrightarrow \begin{array}{l} x_1 = 0.0772 \\ x_2 = 1.0451 \end{array}.$

Cholesky and Householder

Cholesky

- works only for full rank problems
- squares the condition number of A

Householder

- $O(2mn^2$ $^{2})$ $- \, n^3$ $^3/6$ flops.
	- Can be used for rank deficient problems

Discussion:

- Cholesky more econimical
- QR factorization should be used for problems with large conditionnumbers
- Cholesky cannot be used for rank deficient problems

The Singular Value Decomposition (SVD)

Suppose $A=U\Sigma V^T$ $\mathsf{rank}(A) = r$ then $T=U_1\Sigma_1V_1^T$ 1 I_1^{T} is the SVD of $A\in \mathbb{R}^{m,n}.$ Recall that if

\n- $$
\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}
$$
\n- $\Sigma_1 = \text{diag}(\sigma_1, \ldots, \sigma_r), \ \sigma_1 \geq \cdots \geq \sigma_r > 0,$
\n- $U \in \mathbb{R}^{m, m}, \ U^T U = I, \ U = (U_1, U_2), \ U_1 \in \mathbb{R}^{m, r}, \ U_2 \in \mathbb{R}^{m, m-r}$
\n

- $V\in\mathbb{R}^{n,n},\;V^{T}$ $Y^T V = I, V = (V_1, V_2), V_1 \in \mathbb{R}^{n,r}, V_2 \in \mathbb{R}^{n,n-r}$.
- $AV_{2}=0$ and V_{2} is an orthonormal basis for $N(A)$

The Pseudo-inverse of $A=U\Sigma V^T$

The pseudo-inverse of $A\in \mathbb{R}^{m,n}$ is a matrix $A^\dagger\in \mathbb{R}^{n,m}$ given by

$$
A^{\dagger} := V \Sigma^{\dagger} U^T = V_1 \Sigma_1^{-1} U_1^T, \text{ where } \Sigma^{\dagger} := \begin{bmatrix} \Sigma_1^{-1} & 0\\ 0 & 0 \end{bmatrix}, \tag{2}
$$

Example:

$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = U\Sigma V^{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}
$$

$$
\Sigma^{\dagger} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A^{\dagger} = V \Sigma^{\dagger} U^{T} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}
$$

$A^{\dagger}:=V\Sigma^{\dagger}U^{T}$

- Since Σ_1 is nonsingular A^\dagger is always defined.
- **P** generalization of usual inverse. To see this note that

•
$$
AA^{\dagger} = U_1 \Sigma_1 V_1^T V_1 \Sigma_1^{-1} U_1^T = U_1 U_1^T
$$
.

- $A^\dagger A$ $A = V_1 \Sigma_1^{-1} U_1^T U_1 \Sigma_1 V_1^T = V_1 V_1^T.$
- If $A\in \mathbb{R}^{n,n}$ is square and nonsingular then $U_1=U$ and $V_1=V$ and $AA^\dagger=A^\dagger A=I.$ Thus A^\dagger is the usual inverse.

Analysis of LSQ using SVD

Define

$$
\boldsymbol{c} := U^T \boldsymbol{b} = \begin{bmatrix} U_1^T \boldsymbol{b} \\ U_2^T \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \quad \boldsymbol{y} := V^T \boldsymbol{x} = \begin{bmatrix} V_1^T \boldsymbol{x} \\ V_2^T \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
$$

$$
\|\boldsymbol{b} - A\boldsymbol{x}\|_2^2 = \|UU^T\boldsymbol{b} - U\Sigma V^T\boldsymbol{x}\|_2^2 = \|\boldsymbol{c} - \Sigma\boldsymbol{y}\|_2^2 = \|[\mathbf{c}_1] - [\frac{\Sigma_1}{0}\begin{bmatrix} 0 \\ 0 \end{bmatrix} [\mathbf{y}_1^1]\|_2^2
$$

= $\|[\mathbf{c}_1 - \Sigma_1\boldsymbol{y}_1]\|_2^2 = \|\boldsymbol{c}_1 - \Sigma_1\boldsymbol{y}_1\|_2^2 + \|\boldsymbol{c}_2\|_2^2$.

We have $\|\bm{b}-A\bm{x}\|_2$ $\|c_2\|_2$ $_2$ for all $\boldsymbol{x} \in \mathbb{R}^n$ with equality iff

$$
\boldsymbol{x} = V\boldsymbol{y} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1} \boldsymbol{c}_1 \\ \boldsymbol{y}_2 \end{bmatrix} = A^{\dagger} \boldsymbol{b} + V_2 \boldsymbol{y}_2, \text{ for all } \boldsymbol{y}_2 \in \mathbb{R}^{n-r}.
$$
 (3)

Projections

The general solution of $\min \|Ax$ $\boldsymbol{x}-\boldsymbol{b} \|_2$ is given by

$$
\boldsymbol{x} = V\boldsymbol{y} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^{-1} U_1^T \boldsymbol{b} \\ \boldsymbol{y}_2 \end{bmatrix} = A^\dagger \boldsymbol{b} + V_2 \boldsymbol{y}_2, \text{ for all } \boldsymbol{y}_2 \in \mathbb{R}^{n-r}.
$$
\n
$$
\tag{4}
$$

- The solution is unique if and only if $V_1=V$ that is if and
anly if x , rank(4) only if $r = \text{rank}(A) = n$.
- Since $AV_2 = 0$ we have $Ax = AA^{\dagger}b + AV_2y_2 = AA^{\dagger}b$
- $\bm{b}_1 := AA^\dagger \bm{b} = U_1 U_1^T \bm{b}$ is the vector projection of \bm{b} onto the column space Span (A) of A
- $\bm{b}_2 := \bm{b} \bm{b}_1 = (I U_1 U_1^T) \bm{b} = U_2 U_2^T \bm{b}$ is the vector projection of \bm{b} onto $N(A^T)$

The Minimal Norm Solution

Suppose A is rank deficient $(r < n)$ and let $\boldsymbol{z}:=V\boldsymbol{y}=\bigl[V_{1}$ $V_2\ \Big]\ \Big[\, \Sigma$ 1 1 $\,$ $\, T \,$ 1b \boldsymbol{y}_2 nonzero. Let $\boldsymbol{x}=A^{\dagger}\boldsymbol{b}$ be the solution corresponding to i $=A^\dagger \bm{b}+V_2\bm{y}_2$ $_2$ with $\bm{y}_2\in\mathbb{R}^n$ − r and $\boldsymbol{y}_2=0.$ Then $\|\boldsymbol{z}\|_2^2=\|A^\intercal \boldsymbol{b}\|_2^2+\|\boldsymbol{y}_2\|_2^2>\|\boldsymbol{x}\|_2^2$ The vecto الماري والمنافس المستنقص والمستقبل المستورة والأراد والمستقبل والمستنقص والمستنقص والمستنقص والمستنقص والمستنقص والمستنقصة $_2=0$. Then $\|{\boldsymbol{z}}\|_2^2$ $_2=$ $\|A^\dagger \bm{b}\|_2^2$ $\begin{array}{l} 2+ \|\boldsymbol{y}_2\|_2^2 \end{array}$ $_2^2>\|\boldsymbol{x}\|_2^2$ 2 $\frac{2}{2}$ The vector $\bm{x}=A^{\dagger}\bm{b}$ is the minimal norm solution to the LSQ problem.

Three Algorithms for solving LSQ

- Solving the normal equations by Cholesky factorization
- Using the ${\it QR}$ -factorization of A
- Using the SVD of A

QR with column pivoting or SVD is used for rank deficient problems. (Non unique solutions)

Minimal norm solution by SVD

The minimimal norm solution is $\bm{x}=A^{\dagger}\bm{b}=V_1\Sigma_1^{-1}$ $^{-1}_1U_1^T$ $_1^I$ \bm{b} .

- 1. Compute $A=U\Sigma V^T$ $T=U_1\Sigma_1V_1^T$ 1 \mathcal{T}_1^T , the SVD of A .
- 2. $c=U_1^T$ $\begin{smallmatrix}I\1 \end{smallmatrix}$ rm flops 3. $d = \Sigma_1^{-1}$ $_{1}$ $^{\scriptscriptstyle\top}$ c \boldsymbol{c} is a contract of the 4. $\boldsymbol{x}=V_1\boldsymbol{d}$ \boldsymbol{d} and a set of the contract of the con

This is a great method if the SVD of A is known.

$\mathbf{Computing}$ the SVD of $A \in \mathbb{R}^{m,n}$

- 1. Transform A to bidiagonal form using Householder
Finalisms reflections
- 2. Use the QR -method to find the singular values.
- 1. Transform A to bidiagonal form using Householder
معتلجة reflections
- 2. Use the QR -method to find the singular values.