OPL-CPLEX exercises for INF-MAT 3370

Solveig Bruvoll

1 Airline company

Solve exercise 1.2 in Vanderbei and use OPL-CPLEX to find the solution to the LP problem you formulated.

2 Unboundedness

Consider the following LP problem: Maximize $x_1 + x_2$ Subject to:

$$3x_1 + x_2 \ge 0$$
$$4 * x_1 \le 7$$
$$x_1 \ge 0$$

Can you find a feasible solution?

Solve the problem with CPLEX. What do you find? Explore the tab "Statistics". Try changing the .ops-file: Under "Preprocessing", change "Primal and dual reduction type" to "No primal and dual reductions". What happens if you run the problem again? Why?

Note: If your OPL-project does not contain an .ops-file, you may add one if you right-click on the project name and choose New→Settings.

3 Asset investment

You want to invest in assets, and have come up with 5 interesting companies. Now you want to find the optimal way to distribute your money between these companies. You check today's value of their assets and you create 6 possible

Company	Now	State 1	State 2	State 3	State 4	State 5	State 6
Algeta	62	75	60	62	63	61	62
Clavis	54	56	52	55	54	56	54
Statoil	146	147	151	143	149	141	147
Acergy	90	91	93	88	95	87	91
SAS	3.25	3.20	3.14	3.50	3.18	3.20	3.23

Table 1: The asset values.

States	1	2	3	4	5	6
Probability	5	20	5	25	15	30

Table 2: The probabilities of the states.

cases for their prices tomorrow. Each case is associated with a probability, and the probabilities sum to 1. This means you are certain that one of the cases will be true. The data is shown in tables 1 and 2.

a)

Use what you learned in compulsory project 1 to check whether it is possible to invest money such that you are guaranteed to gain money.

b)

Consider the following LP problem

$$v - \lambda \sum_{t=1}^{T} p_t u_t$$
subject to
$$v = \sum_{j=1}^{n} \sum_{t=1}^{T} r_{jt} p_t x_j$$

$$u_t \ge \sum_{j=1}^{n} r_{jt} x_j - v \quad (t \le T)$$

$$u_t \ge v - \sum_{j=1}^{n} r_{jt} x_j \quad (t \le T)$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j \ge 0 \quad (j \le n).$$

The (continuous, real) variables in (P) are u_1, u_2, \ldots, u_T, v , and x_1, x_2, \ldots, x_n . λ is a nonnegative real number.

The interpretation of this problem is as follows. Given assets 1, 2, ..., n (asset means investment possibility, like stocks (norsk: aksjer) or putting money in the bank). The returns on these assets are unknown and considered as random variables $R_1, R_2, ..., R_n$. (The return is nonnegative: if R = 0 the money is lost, if R = 1 you have the same amount as invested, and if

R > 1 you gain money, ...). We assume a discrete probability model: with probability p_t the returns are given by

$$R_1 = r_{1t}, \ R_2 = r_{2t}, \ \dots, \ R_n = r_{nt}.$$

Thus, there are T possible outcomes; they correspond to T different scenarios for the future development. The probabilities p_1, p_2, \ldots, p_T describe our belief in each of these scenarios, so therefore $\sum_t p_t = 1$.

Consider the investment vector $x = (x_1, x_2, ..., x_n)$ where x_j represents the fraction of your capital that you decide to invest in asset j. The (random) return on your investment is then the random variable

$$R(x) = \sum_{j=1}^{n} R_j x_j$$

which clearly depends on x.

Now, let p be a vector containing the probabilities in table 2. The matrix R is computed from table 1 in the following way: For each company, the value in each state is divided by the now-value for the company. Each column in R contains the ratios for one company, while each line in R contains the ratios in one state. Use $\lambda = 1$ and solve the LP problem to find the optimal investment strategy. Also try with a higher and a lower value for λ . What is the interpretation of λ ?

If you want to understand more of the theory behind this LP problem, you are welcome to study the compulsory problem from 2009.

c)

Either repeat the exercise using your own table of your favorite companies with cases you consider likely and with suitable probabilities, or change the tables 1 and 2 to what you consider more (or less) likely and observe the changes in the solution.