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CHAPTER 1

Splines and B-splines
an Introduction

In this first chapter, we consider the following fundamental problem: Given a set of points
in the plane, determine a smooth curve that approximates the points. The algorithm
for determining the curve from the points should be well suited for implementation on a
computer. That is, it should be efficient and it should not be overly sensitive to round-off
errors in the computations. We only consider methods that

involve a relatively small number of elementary arithmetic operations; this ensures that
the methods are efficient. The sensitivity of the methods to round-off errors is controlled
by insisting that all

the operations involved should amount to forming weighted averages of the given
points. This has the added advantage that the constructions are geometrical in nature
and easy to visualise.

In Section 1.1, we discuss affine and convex combinations and the convex hull of a set
of points, and relate these concepts to numerical stability (sensitivity to rounding errors),
while in

Section 1.2 we give a brief and very informal introduction to parametric curves. The
first method for curve construction, namely polynomial interpolation, is introduced in
Section 1.3. In Section 1.4 we show how to construct Bézier curves, and in Section 1.5
we generalise this construction to spline curves. At the outset, our construction of spline
curves is geometrical in nature, but in Section 1.6 we show that spline curves can be
written conveniently in terms of certain basis functions, namely B-splines. In the final
section, we relate the material in this chapter to the rest of the book.

1.1 Convex combinations and convex hulls

An important constraint on our study is that it should result in numerical methods that
will ultimately be implemented in floating point arithmetic on a computer. We should
therefore make sure that these methods are reasonably insensitive to the primary source
of problems, namely round-off errors and other numerical uncertainties that occur in

numerical computations. This requirement is often referred to by saying that the
methods should be numerically stable .
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Figure 1.1. Some points on the line (1 — A)e; + Aez and the corresponding values of .

1.1.1 Stable computations

One characteristic of numerical instabilities is that a chain of computations contain num-
bers of large magnitude even though the numbers that form the input to the computations,
and the final result, are not particularly large numbers. A simple way to avoid this is to
base the computations on computing weighted averages as in

c=(1-=Xecp + Aea. (1.1)

Here ¢; and ¢ are two given numbers and A a given weight in the range [0, 1]. The result
of the computation is the number ¢ which must lie between ¢; and co as averages always
do. A special example is of course computation of the mean between two numbers, ¢ =
(c1+¢2)/2. A computation on the form (1.1) is often referred to as a convex combination,
and c is often said to be a convex combination of ¢; and cy. If all our computations are
convex combinations, all intermediate results as well as the final result must be within the
numerical range of the input data, thereby indicating that the computations are reasonably
stable . It is overly optimistic to hope that we can do all our computations by forming
convex combinations, but convex combinations will certainly be a guiding principle.

1.1.2 The convex hull of a set of points
Convex combinations make sense for vectors as well as for real numbers. If ¢; = (z1,y1)
and ¢ = (z2,y2) then a convex combination of ¢; and ¢z is an expression on the form

c=(1—-XNe1 + Ae, (1.2)

where the weight A is some number in the range 0 < A < 1. This expression is usually
implemented on a computer by expressing it in terms of convex combinations of real
numbers,

(z,y) = ((1 = N)z1 + Aza, (1 — Ny + Ay2),

where (z,y) = c.
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Figure 1.2. Determining the convex hull of three points.

Sometimes combinations on the form (1.1) or (1.2) with A < 0 or A > 1 are required.
A combination of ¢; and ¢ as in (1.2) with no restriction on A other than A € R is called
an affine combination of ¢; and cy. As A takes on all real numbers, the point ¢ in (1.2)
will trace out the whole straight line that passes through ¢; and cs. If we restrict A to lie
in the interval [0, 1], we only get the part of the line that lies between ¢; and ¢y. This is
the convex hull , or the set of all weighted averages, of the two points. Figure 1.1 shows
two points ¢; and ¢ and the line they define, together with some points on the line and
their corresponding values of .

We can form convex and affine combinations in any space dimension, we just let ¢;
and co be points in the appropriate space. If we are working in R” for instance, then ¢;
and c2 have n components. In our examples we will mostly use n = 2, as this makes the
visualisation simpler.

Just as we can take the average of more than two numbers, it is possible to form convex
combinations of more than two points. If we have n points (c;)"_;, a convex combination
of the points is an expression on the form

c=Aci+ X e+ -+ ey

where the n numbers \; sum to one, > " ; A; = 1, and also satisfy 0 < \; < 1 for ¢ = 1,
2, ..., n. As for two points, the convex hull of the points (¢;)?_; is the set of all possible
convex combinations of the points.

It can be shown that the convex hull of a set of points is the smallest convex set
that contains all the points (recall that a set is convex if the straight line connecting any
two points in the set is always completely contained in the set). This provides a simple
geometric interpretation of the convex hull. As we have already seen, the convex hull
of two points can be identified with the straight line segment that connects the points,
whereas the convex hull of three points coincides with the triangle spanned by the points,
see Figure 1.2. In general, the convex hull of n points is the n-sided polygon with the points
as corners. However, if some of the points are contained in the convex hull of the others,
then the number of edges is reduced correspondingly, see the examples in Figure 1.3.
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(a) Two points. ) Three points.
(¢) Four points. ) Five points.
(e) Five points. ) Five points.

Figure 1.3. Examples of convex hulls (shaded area) of points (black dots).
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(a) (b)

Figure 1.4. A function (a) and a parametric curve (b).

1.2 Some fundamental concepts

Our basic challenge in this chapter is to construct a curve from some given points in the
plane. The underlying numerical algorithms should be simple and efficient and preferably
based on forming repeated convex combinations as in (1.1). To illustrate some fundamental
concepts let us consider the case where we are given two points ¢y = (xg,yo) and ¢; =
(x1,y1) (we always denote points and vectors by bold type). The most natural curve to
construct from these points is the straight line segment which connects the two points.
In Section 1.1.2 we saw that this line segment coincides with the convex hull of the two
points and that a point on the line could be represented by a convex combination, see
(1.2). More generally we can express this line segment as

t; —t t—to
Co C
t1 — to t1 —to

q(t | co,cr3to, t1) = 1 for t € [to, t1]. (1.3)
Here ty and t1 are two arbitrary real numbers with ¢y < t1. Note that the two coefficients
add to one,

h—t t—to _,

ti—to  ti—to

and each of them is nonnegative as long as ¢ is in the interval [to,?1]. The expression in
(1.3) is therefore a convex combination of ¢y and ¢;. In fact, if we set A = (t —to)/(t1 —to)
then (1.3) becomes (1.2).

A representation of a line as in (1.3), where we have a function that maps each real
number to a point in R?, is an example of a parametric representation. The line can also
be expressed as a linear function

y:f(x)_$1—l‘ T — X0

= Yo Y1
Tr1 — X0 Tr1 — X0

but here we run into problems if zg = z1, i.e., if the line is vertical. Vertical lines can only
be expressed as x = ¢ (with each constant ¢ characterising a line) if we insist on using
functions. In general, a parametric representation can cross itself or return to its starting
point, but this is impossible for a function, which always maps a real number to a real
number, see the two examples in Figure 1.4.

In this chapter we only work with parametric representations in the plane, and we will
refer to these simply as (parametric) curves. All our constructions start with a set of points,
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from which we generate new points, preferably by forming convex combinations as in (1.2).
In our examples the points lie in the plane, but we emphasise again that the constructions
will work for curves in any space dimension; just replace the planar points with points
with the appropriate number of components. For example, a line in space is obtained
by letting ¢p and ¢; in (1.3) be points in space with three components. In particular,
we can construct a function by letting the points be real numbers. In later chapters we
will work mainly with functions since the core of the spline theory is independent of the
space dimension. The reason for working with planar curves in this chapter is that the
constructions are geometric in nature and particularly easy to visualise in the plane.

In (1.3) the two parameters to and ¢; are arbitrary except that we assumed ty < ;.
Regardless of how we choose the parameters, the resulting curve is always the same. If
we consider the variable ¢ to denote time, the parametric representation q(t | co, ¢1;to, t1)
gives a way to travel from cg to ¢;. The parameter tg gives the time at which we start
at ¢y and t1 the time at which we arrive at ¢;. With this interpretation, different choices
of tg and ¢; correspond to different ways of travelling along the line. The speed of travel
along the curve is given by the tangent vector or derivative

Cl1 — (¢
t1 —to

q'(t|co,c1;to, t1) =

)

while the scalar speed or velocity is given by the length of the tangent vector

c = - 2 — 2
f1 =% t1 —to

If t1 —tp is small (compared to |e1 — ¢gl), then we have to travel quickly to reach ¢; at time
t1 whereas if t1 — g is large then we have to move slowly to arrive at ¢ exactly at time ¢;.
Note that regardless of our choice of ty and t1, the speed along the curve is independent
of t and therefore constant. This reflects the fact that all the representations of the line
given by (1.3) are linear in ¢.

This discussion shows how we must differentiate between the geometric curve in ques-
tion (a straight line in our case) and the parametric representation of the curve. Loosely
speaking, a curve is defined as the collection of all the different parametric representations
of the curve. In practise a curve is usually given by a particular parametric represent-
ation, and we will be sloppy and often refer to a parametric representation as a curve.
The distinction between a curve and a particular parametric representation is not only of
theoretical significance. When only the geometric shape is significant we are discussing
curves and their properties. Some examples are the outlines of the characters in a font
and the level curves on a map. When it is also significant how we travel along the curve
(how it is represented) then we are talking about a particular parametric representation
of the underlying geometric curve, which in mathematical terms is simply a vector valued
function. An example is the path of a camera in a computer based system for animation.

1.3 Interpolating polynomial curves

A natural way to construct a curve from a set of given points is to force the curve to
pass through the points, or interpolate the points, and the simplest example of this is the
straight line between the points. In this section we show how to construct curves that
interpolate any number of points.
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(a) t=(0,1,2). (0,0.5,2).
(c) t=(0,1,2). (0,0.5,2).

Figure 1.5. Some examples of quadratic interpolation.

1.3.1 Quadratic interpolation of three points

How can we construct a curve that interpolates three points? In addition to the three
given interpolation points ¢y, ¢; and co we also need three parameters (ti)?zo. We first
construct the two straight lines g 1 (t) = q(t | co, c1;t0,t1) and qy 1 (t) = q(t | c1, c2;t1, t2).
If we now form the weighted average

ty —t t—to

qo2(t) = q(t | co, 1, c2;5t0,t1,t2) = ———qq 1 () + ——qy 1 (t),
ty — to ts — to

we obtain a curve that is quadratic in ¢, and it is easy to check that it passes through the
given points as required,
do2(to) = qo,1(to) = co,

ta — 11
t1
P T q0,1(t) +

qo2(t2) = q11(t2) = ca.

ty — 1 t —to

= C+ CZC,
q,(t1) ts —to 1 ts — 1o 1 1

t —to
to — 1o

qoo(t1) =

Four examples are shown in Figure 1.5, with the interpolation points (¢;)?_, given
as black dots and the values of the three parameters t = (ti)fzo shown below each plot.
The tangent vector at the end of the curve (at t = t9) is also displayed in each case.
Note that the interpolation points are the same in plots (a) and (b), and also in plots
(c) and (d). When we only had two points, the linear interpolant between the points was
independent of the values of the parameters ty and ¢1; in the case of three points and
quadratic interpolation the result is clearly highly dependent on the choice of parameters.
It is possible to give qualitative explanations of the results if we view q072(t) as the position
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at time ¢ of someone travelling along the curve. In the first two plots the given points
are quite uniformly spaced and the uniform distribution of parameters in plot (a) seems
to connect the points with a 'nice’ curve. In plot (b) the value of ¢; has been lowered,
leaving more ‘time’ for travelling from ¢; to co than from ¢y to ¢; with the effect that the
curve bulges out between c; and co. This makes the journey between these points longer
and someone travelling along the curve can therefore spend the extra time allocated to
this part of the ‘journey’. The curves in Figure 1.5 (c¢) and (d) can be explained similarly.
The interpolation points are the same in both cases, but now they are not uniformly
distributed. In plot (a) the parameters are uniform which means that we must travel
much faster between ¢; and ¢y (which are far apart) than between ¢y and ¢; (which are
close together). The result is a curve that is almost a straight line between the last two
points and bulges out between the first two points. In plot (d) the parameters have been
chosen so as to reflect better the geometric spacing between the points, and this gives a
more uniformly rounded curve.

1.3.2 General polynomial interpolation

To construct a cubic curve that interpolates four points we follow the same strategy that
was used to construct the quadratic interpolant. If the given points are (Ci)g’:o we first
choose four parameters t = (t;)?_,. We then form the two quadratic interpolants

qo2(t) = q(t | co, €1, ca5t0, 11, 12),
q12(t) = q(t | c1,c2, c3;5t1, 12, 13),

and combine these to obtain the cubic interpolant gy 5(t),

ty —t

qo3(t) = HqO,Q(t) +

3 — 1o
At to this interpolant agrees with g o(t0) = co and at t3 it agrees with q; 5(t3) = c3. At an
interior point ¢; it is a convex combination of g (¢;) and q; ;(¢;) which both interpolate
c; at t;. Hence we also have q 5(t;) = ¢; for i = 1 and i = 2 so q 3 interpolates the four
points (¢;)3_, as it should.

Some examples of cubic interpolants are shown in Figure 1.6, and the same interpola-
tion points are used in (a) and (b), and (c) and (d) respectively. The qualitative comments
that we made about the quadratic interpolants also apply here. The pleasing shape of the
curve in Figure 1.6 (a) is quite natural since both the interpolation points and parameters
are quite uniformly spaced. However, by adjusting the parameters, quite strange beha-
viour can occur, even with these ‘nice’ interpolation points. In (b) there is so much time
to ‘waste’ between ¢; and ¢y that the curve makes a complete loop. In (¢) and (d) we see
two different approaches to jumping from one level in the data to another. In (c) there is
too much time to be spent between ¢y and ¢;, and between co and c3, the result being
bulges between these points. In Figure 1.6 (d) there is too much time between ¢; and c2
leading to the two big wiggles and almost straight lines between ¢y and ¢1, and ¢2 and c3
respectively.

The general strategy for constructing interpolating curves should now be clear. Given
d+1 points (¢;){ and parameters (t;)%_, the curve g 4 of degree d that satisfies g 4(t;) =



1.3. INTERPOLATING POLYNOMIAL CURVES 11

N

(a) t=1(0,1,2,3). (0,0.3,2.7,3
(c) (0,0.75,2.25, 3). (0,0.3,2.8,3).

Figure 1.6. Some examples of cubic interpolation.

cj for j =0, ..., dis constructed by forming a convex combination between the two curves
of degree d — 1 that interpolate (¢;){=g and (¢;)%,

t—to

t) + ﬁ‘h,d—l(t)- (1.4)
d—to

Qo.a(t) = —
If we expand out this equation we find that g 4(t) can be written
qO,d(t) = COZO,d(t) + Clglyd(t) + -4 Cdgd,d(t)7 (1.5)

where the functions {gz‘,d}?:o are the Lagrange polynomials of degree d given by

t—t
tia(t) = H (t —t]-) (1.6)
0<j<d *
J#i

It is easy to check that these polynomials satisfy the condition

1, ifk=1i,
Cia(ty) = { )

0, otherwise,

which is necessary since q 4(tx) = cx.
The complete computations involved in computing gy 4(t) is summarised in the follow-
ing algorithm.
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Co
o
Go,1 t1-to
vt
)
Go,2 to—to C1
vt 0t
)
Go;3 t3—to 01,1 to-ty
@t
ty ty,
Q1,2 t3—t1 [
vt
by
O3\ 1 t3-tz

Figure 1.7. Computing a point on a cubic interpolating curve.

Algorithm 1.1 (Neville-Aitken method). Let d be a positive integer and let the d + 1

points (¢;)L, be given together with d+ 1 strictly increasing parameter values t = (t;)%_,.

There is a polynomial curve q 4 of degree d that satisfies the conditions
QO7d(ti) = C; fOI’iZO, 1, ceey d,

and for any real number t the following algorithm computes the point qq 4(t). First set

q;o(t) =c; fori=0,1, ..., d and then compute
- t—t;
4, ()= Q1 () + ——q11,1(t)
tz—‘rr — 1 tz—i—r —t

fori=0,1,...,d—randr=1,2,...,d.

The computations involved in determining a cubic interpolating curve are shown in the
triangular table in Figure 1.7. The computations start from the right and proceed to the
left and at any point a quantity g; , is computed by combining, in an affine combination,
the two quantities at the beginning of the two arrows meeting at g, ,. The expression
between the two arrows is the denominator of the weights in the affine combination while
the two numerators are written along the respective arrows.

Two examples of curves of degree five are shown in Figure 1.8, both interpolating the
same points. The wiggles in (a) indicate that ¢; — ¢ty and tg — t5 should be made smaller
and the result in (b) confirms this.

It should be emphasised that choosing the correct parameter values is a complex prob-
lem. Our simple analogy with travelling along a road may seem to explain some of the
behaviour we have observed, but to formalise these observations into a foolproof algorithm
for choosing parameter values is a completely different matter. As we shall see later, se-
lection of parameter values is also an issue when working with spline curves.
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(a) t=1(0,1,2,3,4,5). (b) t=(0,0.5,2,3,4.5,5).

Figure 1.8. Two examples of interpolation with polynomial curves of degree five.

The challenge of determining good parameter values is not the only problem with
polynomial interpolation. A more serious limitation is the fact that the polynomial de-
gree is only one less than the number of interpolation points. In a practical situation
we may be given several thousand points which would require a polynomial curve of an
impossibly high degree. To compute a point on a curve of degree d requires a number of
multiplications and additions that are at best proportional to d (using the Newton form
of the interpolating polynomial); the algorithm we have presented here requires roughly
d? additions and multiplications. If for example d = 1000, computer manipulations like
plotting and interactive editing of the curve would be much too slow to be practical, even
on today’s fast computers. More importantly, it is well known that round-off errors in the
computer

makes numerical manipulations of high degree polynomials increasingly (with the de-
gree) inaccurate. We therefore need alternative ways to approximate a set of points by a
smooth curve.

1.3.3 Interpolation by convex combinations?
In the interpolation algorithm for polynomials of degree d, Algorithm 1.1, the last step is
to form a convex combination between two polynomials of degree d — 1,
tg—1
ta — o

t—to
Qoa-1(1) + —a1,4-1(1).
tq — to

qoq(t) =

More precisely, the combination is convex as long as ¢ lies in the interval [to, t4]. But if the
algorithm is based on forming convex combinations, any point on the final curve should be
within the convex hull of the given interpolation points. By merely looking at the figures
it is clear that this is not true, except in the case where we only have two points and the
interpolant is the straight line that connects the points. To see what is going on, let us
consider the quadratic case in detail. Given the points (¢;)%_, and the parameters (t;)2_,
we first form the two straight lines

t1—t t—to
t) = c c 1.7
CIo,1( ) t—to 0 th—to 1, (1.7)
to —t t—t
t) = 1.8
ql,l( ) ty —tlcl + ty —tlc% ( )
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(a) Two points on the curve. (b) Thirty points on the curve.

Figure 1.9. The geometry of quadratic interpolation.

and from these the quadratic segment

ty —t t—to

) = — t — t). 1.9
02(t) 1 _tOQO,l( ) + % _tO‘I1,1( ) (1.9)

The combination in (1.7) is convex as long as t is in [¢p, 1], the combination in (1.8) is
convex when t lies within [t1, 2], and the combination in (1.9) is convex when ¢ is restricted
to [to, t2]. But in computing g »(t) we also have to compute qq(t) and q; 1(t), and one
of these latter combinations will not be convex when ¢ is in [to, t2] (except when ¢ = 7).
The problem lies in the fact that the two line segments are defined over different intervals,
namely [to,t1] and [¢1,t2] that only has ¢; in common, so t cannot be in both intervals
simultaneously. The situation is illustrated in Figure 1.9.

In the next section we shall see how we can construct polynomial curves from points in
the plane by only forming convex combinations. The resulting curve will then lie within
the convex hull of the given points, but will not interpolate the points.

1.4 Bézier curves

The curve construction method that we consider in this section is an alternative to poly-
nomial interpolation and produces what we call Bézier curves. Bézier curves are also
polynomial curves and for that reason not very practical, but they avoid the problem of
wiggles and bulges because all computations are true convex combinations. It also turns
out that segments of Bézier curves can easily be joined smoothly together to form more
complex shapes. This avoids the problem of using curves of high polynomial degree when
many points are approximated. Bézier curves are a special case of the spline curves that
we will construct in Section 1.5.

1.4.1 Quadratic Bézier curves

We have three points in the plane ¢y, ¢; and ¢z, and based on these points we want to
construct a smooth curve, by forming convex combinations of the given points. With
polynomial interpolation this did not work because the two line segments (1.7) and (1.8)
are defined over different intervals. The natural solution is to start by defining the two
line segments over the same interval, say [0, 1] for simplicity,

P11(t) =p(t | co,c1) = (1 —t)co + tey, (1.10)
P21(t) =p(t | c1,¢e2) = (1 —t)ey +tea. (1.11)
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(a)

Figure 1.10. A Bézier curve based on three points.

(a) (b)

Figure 1.11. Two examples of quadratic Bézier curves.

(The curves we construct in this section and the next are related and will be denoted
by p to distinguish them from the interpolating curves of Section 1.3.) Now we have no
problem forming a true convex combination,

Poo(t) =p(t | co,c1,¢2) = (1 —t)py 1 (t) + 1Py (t). (1.12)

The construction is illustrated in Figure 1.10 (a). In Figure 1.10 (b), where we have
repeated the construction for 15 uniformly spaced values of t, the underlying curve is
clearly visible.

If we insert the explicit expressions for the two lines in (1.10) and (1.11) in (1.12) we
find

p2’2(t) = (1 — t)260 + 2t(1 — t)Cl + t202 = bo’g(t)CO + bl’g(t)cl + b2’2(t)c2. (1.13)

This is called a quadratic Bézier curve; the points (Ci)?:() are called the control points of
the curve and the piecewise linear curve connecting the control points is called the control
polygon of the curve. Two examples of quadratic Bézier curves with their control points
and control polygons are shown in Figure 1.11 (the two sets of interpolation points in
Figure 1.5 have been used as control points).

Some striking geometric features are clearly visible in Figures 1.10 and 1.11. We note
that the curve interpolates ¢y at ¢ = 0 and ¢ at ¢ = 1. This can be verified algebraically
by observing that bp2(0) = 1 and b1 2(0) = b2 2(0) = 0, and similarly by (1) = 1 while
bo2(1) = b12(1) = 0. The line from ¢y to ¢; coincides with the direction of the tangent to
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(a) (b)

Figure 1.12. Constructing a Bézier curve from four points.

the curve at t = 0 while the line from ¢; to ¢o coincides with the direction of the tangent
at t = 1. This observation can be confirmed by differentiating equation (1.13). We find

P32(0) = 2(e1 — ), Pho(1) = 2(c2 — c1).
The three polynomials in (1.13) add up to 1,
(L-t?+2t(1—t)+t*=(1—t+1)* =1,

and since ¢ varies in the interval [0, 1], we also have 0 < b;2(t) < 1 for i =0, 1, 2. This
confirms that py »(t) is a convex combination of the three points (¢;). The geometric
interpretation of this is that the curve lies entirely within the triangle formed by the three
given points, the convex hull of ¢y, ¢; and cs.

1.4.2 Bézier curves based on four and more points

The construction of quadratic Bézier curves generalises naturally to any number of points
and any polynomial degree. If we have four points (ci)g’zo we can form the cubic Bézier
curve p; 5(t) = p(t | o, €1, 2, c3) by taking a weighted average of two quadratic curves,

P33(t) = (1 —t)pyo(t) +tpso(t).

If we insert the explicit expressions for p, 5(t) and ps 4(t), we find
P3s(t) = (1—t)%co + 3t(1L — t)%er + 3t*(1 — t)ep + toes.

The construction is illustrated in Figure 1.12. Figure (a) shows the construction for
a given value of ¢, and in Figure (b) the cubic and the two quadratic curves are shown
together with the lines connecting corresponding points on the two quadratics (every
point on the cubic lies on such a line). The data points are the same as those used in
Figure 1.6 (a) and (b). Two further examples are shown in Figure 1.13, together with
the control points and control polygons which are defined just as in the quadratic case.
The data points in Figure 1.13 are the same as those used in Figure 1.6 (c) and (d). In
Figure 1.13 (b) the control polygon crosses itself with the result that the underlying Bézier
curve does the same.

To construct Bézier curves of degree d, we start with d + 1 control points (ci)?zo,
and form a curve p,4(t) = p(t | co,...,cq) based on these points by taking a convex
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(a) (b)

Figure 1.13. Two examples of cubic Bézier curves.

combination of the two Bézier curves pg_; 41 and p, 4_; of degree d — 1 which are based
on the control points (ci)fz_ol and (c;)L, respectively,

Paat) = (1 = )pg_1,4-1(t) + tPggq_1(t).

If we expand out we find by an inductive argument that

Paa(t) =boa(t)eo + - + bga(t)cq, (1.14)

where

As in the quadratic case we have
bo,a(t) + bra(t) + -+ bga(t) = (1 —t+ )4 =1

and 0 < b; 4(t) < 1 for any ¢ in [0,1] and 0 < 4 < d. For any ¢ in [0, 1] the point p, 4()
therefore lies in the convex hull of the points (ci)glzo. The curve interpolates the first and
last control points and the tangent at ¢ = 0 points in the direction from ¢y to ¢; and the
tangent at t = 1 points in the direction from c4;_1 to cg,

Pya(0) =d(er —co),  Pya(l) =d(ca—ci1). (1.15)

5

As in the quadratic and cubic cases the piecewise linear curve with the control points as
vertexes is called the control polygon of the curve.

The complete computations involved in computing a point on a Bézier curve are given
in Algorithm 1.2 and depicted graphically in the triangular table in Figure 1.14.
Algorithm 1.2. Let d be a positive integer and let the d + 1 points (¢;)L, be given.
The point p, 4(t) on the Bézier curve p 4 of degree d can be determined by the following
computations. First set p; ((t) = ¢; fori =0, 1, ..., d and then compute p, 4(t) by

i (t) =1 =t)p;1,1(t) +tp; 1 (t)

fori=r,...,dandr=1,2,...,d.
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Figure 1.14. Computing a point on a cubic Bézier curve.

(a) (b)

Figure 1.15. Two Bézier curves of degree five.
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(a) (b)

Figure 1.16. Different forms of continuity between two segments of a cubic Bézier curve.

Two examples of Bézier curves of degree five are shown in Figure 1.15. The curve in
Figure (a) uses the interpolation points of the two curves in Figure 1.8 as control points.

We have defined Bézier curves on the interval [0, 1], but any nonempty interval would
work. If the interval is [a, b] we just have to use convex combinations on the form

b—t t—a

c:b_aco b—a

C1

instead. Equivalently, we can use a linear change of parameter; if p, 4(t) is a Bézier curve
on [0, 1] then
Paa(s) = Paa((t —a)/(b—a))

is a Bézier curve on [a, b].

1.4.3 Composite Bézier curves

By using Bézier curves of sufficiently high degree we can represent a variety of shapes.
However, Bézier curves of high degree suffer from the same shortcomings as interpolating
polynomial curves:

1. As the degree increases, the complexity and therefore the processing time increases.

2. Because of the increased complexity, curves of high degree are more sensitive to
round-off errors.

3. The relation between the given data points (¢;)%, and the curve itself becomes less
intuitive when the degree is large.

Because of these shortcomings it is common to form complex shapes by joining together
several Bézier curves, most commonly of degree two or three. Such composite Bézier
curves are also referred to as Bézier curves.

A Bézier curve of degree d consisting of n segments is given by n sets of control points
(chy...,ei) . It is common to let each segment be defined over [0,1], but it is also
possible to form a curve defined over the interval [0,n] with segment i defined on the
interval [i — 1,4]. By adjusting the control points appropriately it is possible to ‘glue’
together the segments with varying degrees of continuity. The minimal form of continuity
is to let cffl = cf) which ensures that segments ¢ — 1 and ¢ join together continuously as
in Figure 1.16 (a). We obtain a smoother join by also letting the tangents be continuous
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at the join. From (1.15) we see that the tangent at the join between segments i — 1 and @
will be continuous if

An example is shown in Figure 1.16 (b).

Quadratic Bézier curves form the basis for the TrueType font technology, while cubic
Bézier curves lie at the heart of PostScript and a number of draw programs like Adobe
Tllustrator. Figure 1.17 shows one example of a complex Bézier curve. It is the letter S
in the Postscript font Times Roman, shown with its control polygon and control points.
This is essentially a cubic Bézier curve, interspersed with a few straight line segments.
Each cubic curve segment can be identified by the two control points on the curve giving
the ends of the segment and the two intermediate control points that lie off the curve.

1.5 A geometric construction of spline curves

The disadvantage of Bézier curves is that the smoothness between neighbouring polynomial
pieces can only be controlled by choosing the control points appropriately. It turns out
that by adjusting the construction of Bézier curves slightly, we can produce pieces of
polynomial curves that automatically tie together smoothly. These piecewise polynomial
curves are called spline curves.

1.5.1 Linear spline curves

The construction of spline curves is also based on repeated averaging, but we need a slight
generalisation of the Bézier curves, reminiscent of the construction of the interpolating
polynomials in Section 1.3. In Section 1.3 we introduced the general representation (1.3)
for a straight line connecting two points. In this section we use the same general repres-
entation, but with a different labelling of the points and parameters. If we have two points
c1 and ¢y we now represent the straight line between them by

ts —t t —to
(&5} C
ts — to ts — to

p(t| c1,co5ta,t3) = 2, t € [t2, 3], (1.16)

provided t3 < t3. By setting t2 = 0 and t3 = 1 we get back to the linear Bézier curve.
The construction of a piecewise linear curve based on some given points (¢;) ; is

quite obvious; we just connect each pair of neighbouring points by a straight line. More

specifically, we choose n numbers (ti)?;; with ¢; < t;41 for i =2, 3, ..., n, and define the
curve f by

p(t | e, eita, ), t € [ta,t3),

p(t ‘ CQ,Cg;tg,t4), t e [tg,t4),

£(t) = : : (1.17)

P(t ‘ cn—1>cn;tn’tn+l)) t e [tnatn—‘rl]-

The points (c;)!_, are called the control points of the curve, while the parameters t =
(ti)?;;, which give the value of ¢ at the control points, are referred to as the knots, or knot
vector, of the curve. If we introduce the piecewise constant functions B;(t) defined by

]-7 t; <t < ti-‘rlv
B;o(t) = 1.18
() {0, otherwise, ( )



1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES

.

Figure 1.17. The letter S in the Postscript font Times Roman.
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Figure 1.18. Construction of a segment of a quadratic spline curve.

and set p; 1 (t) = p(t | ¢i—1, i3, tiv1), we can write f(t) more succinctly as

Ft) = Zpi,l(t)Bi,O(t)' (1.19)
=2

This construction can be generalised to produce smooth, piecewise polynomial curves of
higher degrees.

1.5.2 Quadratic spline curves

In the definition of the quadratic Bézier curve, a point on p, 5(t) is determined by taking
three averages, all with weights 1 — ¢ and ¢ since both the two line segments (1.10) and
(1.11), and the quadratic curve itself (1.12), are defined with respect to the interval [0, 1].
The construction of spline functions is a hybrid between the interpolating polynomials of
Section 1.3 and the Bézier curve of Section 1.4 in that we retain the convex combinations,
but use more general weighted averages of the type in (1.16). To construct a spline curve
based on the three control points ¢;, ¢z, and c3, we introduce four knots (¢;)?_,, with
the assumption that to < t3 < t4 < t5. We represent the line connecting ¢; and ¢y by
p(t | c1,co;ta,ty) for t € [ta, t4], and the line connecting ¢y and e3 by p(t | ¢z, cs3;t3,t5)
for ¢ € [ts,t5]. The reason for picking every other knot in the representation of the line
segments is that then the interval [ts,?4] is within the domain of both segments. This
ensures that the two line segments can be combined in a convex combination to form a
quadratic curve,

ty —t
ty—t3

t—1t
p(t|ci,coita,ta) + p(t| ca,caita,ts) (1.20)

p(t| 1, ez, e35t2,t3, 4, t5) = P—

with ¢ varying in [ts, t4]. Of course we are free to vary t throughout the real line R since
p is a polynomial in ¢, but then the three combinations involved are no longer all convex.
The construction is illustrated in Figure 1.18. Note that if to =t3 =0 and t4 = t5 = 1 we
are back in the Bézier setting.

The added flexibility provided by the knots to, t3, t4 and t5 turns out to be exactly
what we need to produce smooth, piecewise quadratic curves, and by including sufficiently
many control points and knots we can construct curves of almost any shape. Suppose
we have n control points (¢;)}; and a sequence of knots (ti)?fg that are assumed to be

increasing except that we allow to = t3 and t,+1 = t,+2. We define the quadratic spline



1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 23

(a) (b)

()

Figure 1.19. A quadratic spline curve (c¢) and its two polynomial segments (a) and (b).

curve f(t) by

p(t | c1,co,c3;5t9,t3,t4,t5), ts <t <ty,
p(t | c2, 3,433, 4, t5,16), ty <t < ts,

f=3""" | (1.21)

P(t | Cn—2,Cn—1,Cnitp_1,tn,tni1, tn+2)7 tn <t <tns1.

An example with n = 4 is shown in Figure 1.19. Part (a) of the figure shows a quadratic
curve defined on [t3,t4] and part (b) a curve defined on the adjacent interval [t4,%5]. In
part (c) the two curves in (a) and (b) have been superimposed in the same plot, and,
quite strikingly, it appears that the curves meet smoothly at ¢t4. The precise smoothness
properties of splines will be proved in Section 3.2.3 of Chapter 3; see also exercise 6.

By making use of the piecewise constant functions {B; ¢} 5 defined in (1.18) and the
abbreviation p; 5(t) = p(t | ¢i—2, ¢ci—1, ¢i;ti1,ti, tiv1, tire), we can write f(t) as

Ft) = Zpi,Q(t)Bi,O(t)- (1.22)
=3

Two examples of quadratic spline curves are shown in Figure 1.20. The control points
are the same as those in Figure 1.13. We observe that the curves behave like Bézier curves
at the two ends.

1.5.3 Spline curves of higher degrees

The construction of spline curves can be generalised to arbitrary polynomial degrees by
forming more averages. A cubic spline segment requires four control points ¢;_3, ¢;_o,
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(a) (b)

Figure 1.20. Two quadratic spline curves, both with knots ¢ = (0,0,0,1,2,2,2).

¢i_1, ¢;, and six knots (tj);i‘f-_Q which must form a nondecreasing sequence of numbers

with ¢; < t;11. The curve is the average of two quadratic segments,

p(t | ci—3,ci—2,¢Ci1,Cisti—a, tim1, tis tig1, tiga, tigs) =

tia1 —t
er717(75 | ¢i—3,€Ci—2, Ci—1;ti—o, ti—1, tit1, tigo)+
tiv1 — 1
t—t;
———p(t| ci2,cio1,¢i5ti1,tis tiva, tiys), (1.23)
tiv1 — 1

with ¢ varying in [¢;,t;4+1]. The two quadratic segments are given by convex combinations
of linear segments on the two intervals [t;—1,t;1+1] and [t;, t;12], as in (1.20). The three line
segments are in turn given by convex combinations of the given points on the intervals
[ti—2,tit1], [ti—1,tire] and [t;, t;+3]. Note that all these intervals contain [¢;,;41] so that
when ¢ varies in [t;,t;41] all the combinations involved in the construction of the cubic
curve will be convex. This also shows that we can never get division by zero since we have
assumed that ¢; < t;41.

The explicit notation in (1.23) is too cumbersome, especially when we consider spline
curves of even higher degrees, so we generalise the notation in (1.19) and (1.22) and set

pi7k;7s(t) - p(t ’ c’i*kv LU 7ci7 t’i*k+17 L 7ti7 ti+$7 L 7ti+k‘+871)7 (124)

for positive s and r, assuming that the control points and knots in question are given.
The first subscript i in p; ., indicates which control points and knots are involved (in
general we work with many spline segments and therefore long arrays of control points
and knots), the second subscript k& gives the polynomial degree, and the last subscript s,
gives the gap between the knots in the computation of the weight (t —t;)/(ti+s —ti). With
the abbreviation (1.24), equation (1.23) becomes

t—t;
tiv1 — 1

tiol —t
Piz1(t) = ———p; 1220) +

ti—l—l _ ti 1,2,2( )

Note that on both sides of this equation, the last two subscripts sum to four. Similarly,
if the construction of quadratic splines given by (1.20) is expressed with the abbreviation
given in (1.24), the last two subscripts add to three. The general pattern is that in the
recursive formulation of spline curves of degree d, the last two subscripts always add to
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Figure 1.21. Computing a point on a cubic spline curve.

d + 1. Therefore, when the degree of the spline curves under construction is fixed we can
drop the third subscript and write p; ;, ¢ = P; .-

The complete computations involved in computing a point on the cubic segment p; 5(t)
can be arranged in the triangular array shown in Figure 1.21 (all arguments to the p;
have been omitted to conserve space). The labels should be interpreted as in Figure 1.7.

A segment of a general spline curve of degree d requires d + 1 control points (Cj);":if d
and 2d knots (tj);i‘f_ 441 that form a nondecreasing sequence with ¢; < t;+1. The curve is
a weighted average of two curves of degree d — 1,

tiy1 —1

Piat) = Pi—1.d-1(t) + Pia—1(t) (1.25)

tit1 — 1 tit1 — 1

Because of the assumption ¢; < t;41 we never get division by zero in (1.25). The two
curves of degree d — 1 are obtained by forming similar convex combinations of curves of
degree d — 2. For example,

tipo —t t—t

Pia1(t) = ———Pi_14-0(t) + ———D; 0 (t),

t1+2 tz tz+2 tz
and again the condition ¢; < t;11 saves us from dividing by zero. At the lowest level we
have d line segments that are determined directly from the control points,

tivd—t t—t;
pja(t) = ———cj 1+ cj
3,1 tiva— 1 J tird—1; J
for j =i—d+1, ..., i The denominators in this case are t;+1 — t;_g11, - --, tird — ti,

all of which are positive since the knots are nondecreasing with ¢; < t;11. As long as
t is restricted to the interval [t;,Z;11], all the operations involved in computing p; 4()
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(a) (b)

Figure 1.22. Two cubic spline curves, both with knots ¢t = (0,0,0,0,1,2,3,3,3, 3).

are convex combinations. The complete computations are summarised in the following
algorithm.

Algorithm 1.3. Let d be a positive integer and let the d + 1 points (Cj);":i—d be given

together with the 2d knots t = (tj);iidﬂ- The point p; 4(t) on the spline curve p; 4 of
degree d is determined by the following computations. First set p,,(t) = c¢; for j =i —d,

i—d—+1,...,14 and then compute

t—t

ljtd—rs+1 — 1
titd—rt1 — 15

pj(t) = Pj-1,-1(t) + Pjr—1(t) (1.26)

titd—r+1 — tj
foryj=i—d+r,...,iandr=1,2,...,d.
n+d

A spline curve of degree d with n control points (¢;);; and knots (t;);"5" is given by
Par1,4(t) T € [tar1,taral;
Par2,4(t), t€ [tara,tars);

f(t) =

pn,d(t)v te [tna tn+1]v

where as before it is assumed that the knots are nondecreasing and in addition that
t; <tiy1 fori=d+1, ..., n. Again we can express f in terms of the piecewise constant
functions given by (1.18),

n
Ft)= > p;a(t)Bio(t). (1.27)
i=d+1
It turns out that spline curves of degree d have continuous derivatives up to order d — 1,
see Section 3.2.3 in Chapter 3.
Figure 1.22 shows two examples of cubic spline curves with control points taken from
the two Bézier curves of degree five in Figure 1.15. Again we note that the curves behave
like Bézier curves at the ends because there are four identical knots at each end.

1.5.4 Smoothness of spline curves

The geometric construction of one segment of a spline curve, however elegant and numer-
ically stable it may be, would hardly be of much practical interest was it not for the fact
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(a) (b)

Figure 1.23. A quadratic spline with a double knot at the circled point (a) and a cubic spline with a double knot
at the circled point (b).

that it is possible to smoothly join together neighbouring segments. We will study this
in much more detail in Chapter 3, but will take the time to state the exact smoothness
properties of spline curves here.

m—+d

Theorem 1.4. Suppose that the number t; 1 occurs m times among the knots (tj)j:ifw

with m some integer bounded by 1 < m < d+ 1, i.e.,
ti <tiv1 ="+ ="titm < titm+1-

Then the spline function f(t) = p; 41(t)Bio(t) + Pitm.a1 () Bitmo(t) has continuous de-
rivatives up to order d — m at the join t;11.

This theorem introduces a generalisation of our construction of spline curves by per-
mitting t;11, ..., ti+m to coalesce, but if we assume that m = 1 the situation corresponds
to the construction above. Theorem 1.4 tells us that in this standard case the spline curve
f will have d continuous derivatives at the join t;,1: namely f, f', ..., F971 will all be
continuous at t;41. This means that if the knots are all distinct, then a linear spline will
be continuous, a quadratic spline will also have a continuous first derivative, while for a
cubic spline even the second derivative will be continuous. Examples of spline curves with
this maximum smoothness can be found above.

What happens when m > 17 Theorem 1.4 tells us that each time we add a knot at
t;+1 the number of continuous derivatives is reduced by one. So a quadratic spline will
in general only be continuous at a double knot, whereas a cubic spline will be continuous
and have a continuous derivative at a double knot.

This ability to control the smoothness of a spline by varying the multiplicity of the
knots is important in practical applications. For example it is often necessary to represent
curves with a sharp corner (discontinuous derivative). With a spline curve of degree d this
can be done by letting the appropriate knot occur d times. We will see many examples of
how the multiplicity of the knots influence the smoothness of a spline in later chapters.

Two examples of spline curves with reduced smoothness are shown in Figure 1.23.
Figure (a) shows a quadratic spline with a double knot and a discontinuous derivative
at the encircled point, while Figure (b) shows a cubic spline with a double knot and a
discontinuous second derivative at the encircled point.
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1.6 Representing spline curves in terms of basis functions

In Section 1.4 we saw that a Bézier curve g of degree d with control points (Ci)g:o can
be written as a linear combination of the Bernstein polynomials {b; 4}%_, with the control
points as coefficients, see (1.14). In this section we want to develop a similar representation
for spline curves.

If we have n control points (¢;)?_, and the n +d — 1 knots t = (t;)7*4 for splines of
degree d; we have seen that a typical spline can be written

Ft) =Y pia®)Bio(t),  tE€ [tayr,tnp1], (1.28)
i=d+1

where {B; o}, are given by (1.18). When this representation was introduced at the
end of Section 1.5.3 we assumed that t411 < tgio < -+ < tp41 (although the end knots
were allowed to coincide). To accommodate more general forms of continuity, we know
from Theorem 1.4 that we must allow some of the interior knots to coincide as well. If for
example ¢; = t;41 for some ¢ with d+1 <7 < n+1, then the corresponding segment p; ; is
completely redundant and (1.25) does not make sense since we get division by zero. This
is in fact already built into the representation in (1.28), since B;(t) is identically zero in
this case, see (1.18). A more explicit definition of B; ¢ makes this even clearer,

1, t, <t< tz‘+1,
Bi’o(t) =40, t<tiort>tiq1, (1.29)
0,

ti = tiy1.

The representation (1.28) is therefore valid even if some of the knots occur several times.
The only complication is that we must be careful when we expand out p; ; according to
(1.25) as this will give division by zero if ¢; = t;11. One might argue that there should be
no need to apply (1.25) if ¢; = ¢;11 since the result is zero anyway. However, in theoretical
developments it is convenient to be able to treat all the terms in (1.28) similarly, and
this may then lead to division by zero. It turns out though that this problem can be
circumvented quite easily by giving an appropriate definition of ‘division by zero’ in this
context, see below.

Let us now see how f can be written more directly in terms of the control points. By
making use of (1.25) we obtain

n

£ = 3 (e (0Bio() + i (BBio()

imdt1 LT ti tiv1 —t;
n—1

t—1 tito —t

- Z <71B¢,o(t) + LBHLo(t))pi,d_l(t)—i— (1.30)
i—d ti-i-l — 1 ti+2 — ti—i—l
i=d+1
lat2 —1 t—t
O Byt 0(t)Pa g1 (£) + " B0 ()P i (8).
tate — tdpr tni1l —tn

This is a typical situation where we face the problem of division by zero if ¢; = t;41 for
some 4. The solution is to declare that ‘anything divided by zero is zero’ since we know
that if ¢; = t;41 the answer should be zero anyway.



1.6. REPRESENTING SPLINE CURVES IN TERMS OF BASIS FUNCTIONS 29

In (1.30) we have two ‘boundary terms’ that complicate the expression. But since ¢ is
assumed to lie in the interval [tg11,%,+1] we may add the expression

t—tg

togo —t
tgr1 —tq

Bao(t)Pa,q—1(t) + Bry1,0(t)Pp a-1(t)

b1 — thtt

which is identically zero as long as ¢ is within this [t441, tn+1]. By introducing the functions

t—t; tig —t
Bji(t) = ———Bio(t) + ————Bij10(t) (1.31)
tiv1 —t; tito — tit1
fori=d, ..., n, we can then write f as

F() = Pia-1()Bir(t).
i=d

This illustrates the general strategy: Successively apply the relations in (1.26) in turn and
rearrange the sums until we have an expression where the control points appear explicitly.
The functions that emerge are generalisations of B; 1 and can be defined recursively by

t—1;

_ tivrt1 —t
Ligr — t

'BiJrl,rfl(t)? (132)

B; -(t
”ﬂ( ) ti+r+1 — 1

B;r_1(t) +
for r =1, 2, ..., d, starting with B, o as defined in (1.18). Again we use the convention
that ‘anything divided by zero is zero’. It follows by induction that B;,(t) is identically
zero if t; = tij,41 and By, (t) =0if t <t; or t > t;1,41, see exercise 7.

To prove by induction that the functions defined by the recurrence (1.32) appear in
the process of unwrapping all the averaging in (1.26), we consider a general step. Suppose
that after » — 1 applications of (1.26) we have

ft)= Z Pid—ry1(t)Bir-1(t).

i=d+2—r
One more application yields
n
bir — t—t;
0= (i OB+ P (0B ()
i—dt2—r 1+r ) 1+ %
n—1
t—1; t; 1—t
= Z tli_lt‘Bi,r—l(t) + %Bz#lm—l(t))pi,d—r(t)‘i‘
i—dt2—r 1+r 7 i+r+1 1+1
lagt2 — 1t t—1tn

Bd+2—r,r—l (t)pd—l—l—r,d—r (t) + Bnﬂ"—l (t)pmd—T (t) !

td+2 - td+2fr tn-i—r —tn

Just as above we can include the boundary terms in the sum by adding

t—tgr1r
ta+1 — ta+1—r

tn—i—r—i—l —t

Bat1—rr—1()Pay1-ra—r(t) + Bni1.r-1(6)Py,q-r (1)

tn+7‘+1 - tn+1

which is zero since B;,_1(t) is zero when t < t; or t > t;4,. The result is that

F&) = > Piar)Bis(t).

i=d+1-r
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After d—1 steps we have f(t) = > i 5 P; 1 4—1(t)Bi,a—1(t). In the last application of (1.26)
we recall that p; () = ¢;j for j =i—d, ..., i. After rearranging the sum and adding zero
terms as before we obtain

ft) = Z ¢iBia(t).
i=1

But note that in this final step we need two extra knots, namely ¢; and ¢, 441 which are
used by By 4—1 and B,y 4—1, and therefore also by B; 4 and B,, 4. The value of the spline
in the interval [t411,tn+1] is independent of these knots, but it is customary to demand
that t1 <t and t,4441 > t,1q to ensure that the complete knot vector ¢t = (tz-)?;rld+1 is a
nondecreasing sequence of real numbers.

The above discussion can be summarised in the following theorem.

Theorem 1.5. Let (c;)!"_, be a set of control points for a spline curve f of degree d, with

nondecreasing knots (ti)ii1d+17

Ft) =Y piat)Bio(t)

i=d+1
where p; 4 is given recursively by
tiry —t t—t
Pig—ri1(t) = 7———Di1a-r(t) + ——Di g (t) (1.33)
t’L-‘r’f‘ —t tz—i—v" —t
fori=d—r+1,...,n,andr =d,d—1, ..., 1, while p; o(t) = ¢; fori =1, ..., n. The
functions {B; o}i_, , are given by
1, t;<t<ti,
Bio(t) = i (1.34)
0, otherwise.

The spline f can also be written
Ft)=>_eiBia(t) (1.35)
i=1

where B; g is given by the recurrence relation

t—1;

t; —1
e Bia(t). (1.36)
titd — ti

tit1+d — it

B;q(t) = B;a-1(t) +

In both (1.33) and (1.36) possible divisions by zero are resolved by the convention that
‘anything divided by zero is zero’. The function B; 4 = B; 4+ is called a B-spline of degree
d (with knots t).

B-splines have many interesting and useful properties and in the next chapter we will
study these functions in detail.
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1.7 Conclusion

Our starting point in this chapter was the need for efficient and numerically stable methods
for determining smooth curves from a set of points. We considered three possibilities,
namely polynomial interpolation, Bézier curves and spline curves. In their simplest forms,
all three methods produce polynomial curves that can be expressed as

where d is the polynomial degree, (a;)%, are the coefficients and {F;}¢_, are the basis
polynomials. The difference between the three methods lie in the choice of basis poly-
nomials, or equivalently, how the given points relate to the final curve. In the case of
interpolation the coefficients are points on the curve with the Lagrange polynomials as
basis polynomials. For Bézier and spline curves the coefficients are control points with
the property that the curve itself lies inside the convex hull of the control points, while
the basis polynomials are the Bernstein polynomials and (one segment of) B-splines re-
spectively. Although all three methods are capable of generating any polynomial curve,
their differences mean that they lead to different representations of polynomials. For our
purposes Bézier and spline curves are preferable since they can be constructed by forming
repeated convex combinations. As we argued in Section 1.1, this should ensure that the
curves are relatively insensitive to round-off errors.

The use of convex combinations also means that the constructions have simple geo-
metric interpretations. This has the advantage that a Bézier curve or spline curve can
conveniently be manipulated interactively by manipulating the curve’s control points, and
as we saw in Section 1.4.3 it also makes it quite simple to link several Bézier curves
smoothly together. The advantage of spline curves over Bézier curves is that smoothness
between neighbouring polynomial pieces is built into the basis functions (B-splines) instead
of being controlled by constraining control points according to specific rules.

In the coming chapters we are going to study various aspects of splines, primarily
by uncovering properties of B-splines. This means that our point of view will be shifted
somewhat, from spline curves to spline functions (each control point is a real number),
since B-splines are functions. However, virtually all the properties we obtain for spline
functions also make sense for spline curves, and even tensor product spline surfaces, see
Chapters 6 and 7.

We were led to splines and B-splines in our search for approximation methods based
on convex combinations. The method which uses given points (c;);_; as control points for
a spline as in

f(t)=>_ciBia(t) (1.37)
=1

is often referred to as Schoenberg’s variation diminishing spline approzimation. This is a
widely used approximation method that we will study in detail in Section 5.4, and because
of the intuitive relation between the spline and its control points the method is often used
in interactive design of spline curves. However, there are many other spline approximation
methods. For example, we may approximate certain given points (b;)7"; by a spline curve

(2
that passes through these points, or we may decide that we want a spline curve that
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approximates these points in such a way that some measure of the error is as small as
possible. To solve these kinds of problems, we are faced with three challenges: we must
pick a suitable polynomial degree and an appropriate set of knots, and then determine
control points so that the resulting spline curve satisfies our chosen criteria. Once this
is accomplished we can compute points on the curve by Algorithm 1.3 and store it by
storing the degree, the knots and the control points. We are going to study various spline
approximation methods of this kind in Chapter 5.

But before turning to approximation with splines, we need to answer some basic ques-
tions: Exactly what functions can be represented as linear combinations of B-splines as
in (1.37)7 Is a representation in terms of B-splines unique, or are there several choices of
control points that result in the same spline curve? These and many other questions will
be answered in the next two chapters.

Exercises for Chapter 1

1.1 Recall that a subset A of R"” is said to be conver if whenever we pick two points in
A, the line connecting the two points is also in A. In this exercise we are going to
prove that the convex hull of a finite set of points is the smallest convex set that
contains the points. This is obviously true if we only have one or two points. To
gain some insight we will first show that it is also true in the case of three points
before we proceed to the general case. We will use the notation CH(ey,...,¢,) to
denote the convex hull of the points ¢y, ..., c,.

a) Suppose we have three points ¢, c2 and c3. We know that the convex hull of
c1 and ¢ is the straight line segment that connects the points. Let ¢ be a point
on this line, i.e.,

c= (1 — )\)Cl + Aes (138)
for some A with 0 < A < 1. Show that any convex combination of ¢ and
c3 is a convex combination of ¢;, co and c3. Explain why this proves that
CH(ey, €2, ¢3) contains the triangle with the three points at its vertexes. The
situation is depicted graphically in Figure 1.2.

b) It could be that CH(ey, o, c3) is larger than the triangle formed by the three
points since the convex combination that we considered above was rather spe-
cial. We will now show that this is not the case.

Show that any convex combination of ¢;, co and c3 gives rise to a convex
combination on the form (1.38). Hint: Show that if ¢ is a convex combination
of the three points, then we can write

c=\ici + Xaca + Ascs
= (1 — )\3)& + Azcs,

where € is some convex combination of ¢; and ¢3. Why does this prove that the
convex hull of three points coincides with the triangle formed by the points?
Explain why this shows that if B is a convex set that contains ¢1, ¢z and c3
then B must also contain the convex hull of the three points which allows us
to conclude that the convex hull of three points is the smallest convex set that
contains the points.
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1.2

1.3

1.4

1.5

c)

The general proof that the convex hull of n points is the smallest convex set
that contains the points is by induction on 7. We know that this is true for
n =2 and n = 3 so we assume that n > 4. Let B be a convex set that contains
ci, ..., ¢y. Use the induction hypothesis and show that B contains any point
on a straight line that connects ¢, and an arbitrary point in CH(ey, ..., ¢cp-1).

From what we have found in (c) it is not absolutely clear that any convex
set B that contains ¢1, ..., ¢, also contains all convex combinations of the
points. To settle this show that any point ¢ in CH(e,...,¢,) can be written
c =X+ (1= MN)e, for some A in [0, 1] and some point € in CH(ey, ..., cp—1).
Hint: Use a trick similar to that in (b).

Explain why this lets us conclude that CH(ey,...,c,) is the smallest convex
set that contains ¢y, ..., c;,.

Show that the interpolatory polynomial curve g 4(t) given by (1.4) can be written
as in (1.5) with ¢; 4 given by (1.6).

Implement Algorithm 1.1 in a programming language of your choice. Test the code
by interpolating points on a semicircle and plot the results. Perform four tests, with

3? 77

11 and 15 uniformly sampled points. Experiment with the choice of parameter

values (¢;) and try to find both some good and some bad approximations.

Implement Algorithm 1.2 in your favourite programming language. Test the program
on the same data as in exercise 3.

In this exercise we are going to write a program for evaluating spline functions. Use
whatever programming language you prefer.

a)

b)

Implement Algorithm 1.3 in a procedure that takes as input an integer d (the
degree), d + 1 control points in the plane, 2d knots and a parameter value ¢.

If we have a complete spline curve f = """ | ¢;B; 4 with knots ¢t = (ti)?jldﬂ

that we want to evaluate at ¢ we must make sure that the correct control points
and knots are passed to the routine in (a). If

tu S t < tu—l—l (139)
then (¢;)i_ —a and (ti)f:j_ 441 are the control points and knots needed in (a).
Write a procedure which takes as input all the knots and a value ¢ and gives as
output the integer p such that (1.39) holds.

Write a program that plots a spline function by calling the two routines from (a)
and (b). Test your program by picking control points from the upper half of the
unit circle and plotting the resulting spline curve. Use cubic splines and try with
n =4, n =8 and n = 16 control points. Use the knots ¢ = (0,0,0,0,1,1,1,1)
when n = 4 and add the appropriate number of knots between 0 and 1 when
n is increased. Experiment with the choice of interior knots when n = 8 and
n = 16. Is the resulting curve very dependent on the knots?

1.6 Show that a quadratic spline is continuous and has a continuous derivative at a single

knot.
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1.7 Show by induction that B; 4 depends only on the knots t;, t;11, ..., tiyq+1. Show
also that B; 4(t) =0if t <t; or t > t;yq41.
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