
CHAPTER 4

Knot insertion

In Chapter 1 we were led to B-splines, defined via the recurrence relation, as a convenient
way to represent spline functions. In Chapters 2 and 3 we then established some of the
basic properties of splines, with the recurrence relation as the major tool. We have seen
that splines can be evaluated efficiently and stably, we have studied the smoothness of
splines, we have shown that B-splines are linearly independent and that they form a basis
for certain spaces of piecewise polynomials.

This chapter supplements the recurrence relation for B-splines with another very ver-
satile tool, namely the idea of knot insertion or knot refinement. We have already seen
that the control polygon of a spline provides a rough sketch of the spline itself. It turns
out that the control polygon approaches the spline it represents as the distance between
the knots of a spline is reduced, a fact that will be proved in Chapter 9. This indicates
that it is of interest to see how the B-spline coefficients of a fixed spline depend on the
knots.

Knot insertion amounts to what the name suggests, namely insertion of knots into an
existing knot vector. The result is a new spline space with more B-splines and therefore
more flexibility than the original spline space. This can be useful in many situations,
for example in interactive design of spline curves. It turns out that the new spline space
contains the original spline space as a subspace, so any spline in the original space can
also be represented in terms of the B-splines in the refined space. As mentioned above, an
important property of this new representation is that the control polygon will have moved
closer to the spline itself. This provides us with a new and very powerful tool both for
algorithmic manipulation and theoretical investigations of spline functions.

We start, in Section 9.4, by showing some simple examples of knot insertion. In
Section 4.2 we then develop algorithms for expressing the B-spline coefficients relative
to a refined knot vector in terms of the B-spline coefficients relative to the original knot
vector. It turns out that the B-spline coefficients of a spline are completely characterised
by three simple properties, and this is the topic of Section 4.3. This characterisation is
often useful for developing the theory of splines, and in Section 4.4 this characterisation
is used to obtain formulas for inserting one new knot into a spline function. Finally, in
Section 4.5, we make use of knot insertion to prove that the number of sign changes in a
spline is bounded by the number of sign changes in its control polygon; another instance
of the close relationship between a spline and its control polygon.
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Figure 4.1. A line segment represented as a linear spline with no interior knots (a), and with one interior knot (b).
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Figure 4.2. A piece of a parabola represented as a quadratic spline with no interior knots (a), and with one interior
knot (b).

4.1 The control polygon relative to different knot vectors

In this introductory section we will consider some examples of knot insertion with the
purpose of gaining an intuitive understanding of this important concept.

Figure 4.1 shows spline representations of a line segment. We all know that a straight
line is uniquely determined by two points and in (a) the line segment is represented by
its two end points. Although one may wonder what the point is, we can of course also
represent the line segment by cutting it into smaller pieces and represent each of these
pieces. This is what is shown in Figure 4.1 (b) where the line segment is represented by a
linear spline with an interior knot at 1 which in effect means that we are using a redundant
representation of three points to represent a line segment.

The redundancy in the representation is obvious and seems useless in the linear case.
But let us increase the degree and consider a quadratic example. Figure 4.2 shows part of
the parabola y = (4x−x2)/6 represented as a spline without interior knots in (a) and with
one interior knot in (b). In general, the representation in (b) requires a spline function
and its first derivative to be continuous at x = 1, whereas a jump is allowed in the second
derivative. The parabola in the figure is certainly continuous and has continuous first
derivative at x = 1, but the jump in the second derivative happens to be 0. We knot at
x = 1 is therefore redundant, but it has the nice effect of bringing the control polygon
closer to the spline. We shall see later that there may be many other good reasons for
inserting knots into a spline function.
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Figure 4.3. A cubic spline with one interior knot (a). In (b) the same spline is represented with two extra knots
(the knot at x = 1 is now double).

An example with a cubic spline is shown in Figure 4.3. The situation is the same as
before: The refined knot vector allows jumps in the second derivative at x = 1 and the
third derivative at x = 2, but the jumps may be 0. For the specific spline in (a) these
jumps are indeed 0, but one advantage of representing it in the refined spline space is that
the control polygon comes closer to the spline.

The examples have hopefully shown that insertion of knots can be useful; at the very
least it seems like it may be a useful tool for plotting splines. In the next sections we
are going to develop algorithms for computing the B-spline coefficients on a refined knot
vector and deduct various properties of the B-splines coefficients as functions of the knots.
A proof of the fact that the control polygon converges to the spline it represents as the
knot spacing goes to zero has to wait until Chapter 9.

4.2 Knot insertion

In this section we are going to develop two algorithms for computing the B-spline coef-
ficients of a given spline relative to a refined knot vector. The two algorithms for knot
insertion are closely related to Algorithms 2.20 and 2.21; in fact these two algorithms are
special cases of the algorithms we develop here.

4.2.1 Basic idea

Knot insertion is exactly what the name suggests: extension of a given knot vector by
adding new knots. Let us first define precisely what we mean by knot insertion, or knot
refinement as it is also called.

Definition 4.1. A knot vector t is said to be a refinement of a knot vector τ if any real
number occurs at least as many times in t as in τ .

Note that if t is a refinement of τ then τ is a subsequence of t, and this we will write
τ ⊆ t even though knot vectors are sequences and not sets. The term knot insertion is
used because in most situations the knot vector τ is given and t is obtained by ‘inserting’
knots into τ . A simple example of a knot vector and a refinement is given by

τ = (0, 0, 0, 3, 4, 5, 5, 6, 6, 6) and t = (0, 0, 0, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6).

Here two knots have been inserted at 2, one at 3 and one at 5.
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With some polynomial degree d given, we can associate the spline spaces Sd,τ and Sd,t

with the two knot vectors τ and t. When τ is a subsequence of t, the two spline spaces
are also related.

Lemma 4.2. Let d be a positive integer and let τ be a knot vector with at least d + 2
knots. If t is a knot vector which contains τ as a subsequence then Sd,τ ⊆ Sd,t.

Proof. Suppose first that both τ and t are d+1-regular knot vectors with common knots
at the ends. By the Curry-Schoenberg theorem (Theorem 3.25) we know that Sd,t contains
all splines with smoothness prescribed by the knot vector t. Since all knots occur at least
as many times in t as in τ , we see that at any knot, a spline f in Sd,τ is at least as smooth
as required for a spline in Sd,t. But then f ∈ Sd,τ and Sd,τ ⊆ Sd,t.

A proof in the general case where τ and t are not d + 1-regular with common knots at
the ends, is outlined in exercise 5.

Suppose that f =
∑n

j=1 cjBj,d,τ is a spline in Sd,τ with B-spline coefficients c = (cj).
If τ is a subsequence of t, we know from Lemma 4.2 that Sd,τ is a subspace of Sd,t so
f must also lie in Sd,t. Hence there exist real numbers b = (bi) with the property that
f =

∑m
i=1 biBi,d,t, i.e., the vector b contains the B-spline coefficients of f in Sd,t. Knot

insertion is therefore nothing but a change of basis from the B-spline basis in Sd,τ to the
B-spline basis in Sd,t.

Since Sd,τ ⊆ Sd,t, all the B-splines in Sd,τ are also in Sd,t. We can therefore write

Bj,d,τ =
m∑

i=1

αj,d(i)Bi,d,t, j = 1, 2, . . . , n, (4.1)

for certain numbers αj,d(i). In the matrix form we have used earlier this can be written

BT
τ = BT

t A, (4.2)

where BT
τ = (B1,d,τ , . . . , Bn,d,τ ) and BT

t = (B1,d,t, . . . , Bm,d,t) are row vectors, and the
m × n-matrix A =

(
αj,d(i)

)
is the basis transformation matrix. Using this notation and

remembering equation (4.2), we can write f in the form

f = BT
t b = BT

τ c = BT
τ Ac.

The linear independence of the B-splines in Sd,τ therefore means that b and c must be
related by

b = Ac, or bi =
n∑

j=1

ai,jcj for i = 1, 2, . . . , m. (4.3)

The basis transformation A is called the knot insertion matrix of degree d from τ to t
and we will use the notation αj,d(i) = αj,d,τ ,t(i) for its entries. The discrete function αj,d

has many properties similar to those of Bj,d, and it is therefore called a discrete B-spline
on t with knots τ .

To illustrate these ideas, let us consider a couple of simple examples of knot insertion
for splines.
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Figure 4.4. Refining a linear B-spline.

Example 4.3. Let us determine the transformation matrix A for splines with d = 0, when the coarse
knot vector is given by τ = (0, 1, 2), and the refined knot vector is t = (0, 1/2, 1, 3/2, 2) = (ti)

5
i=1. In this

case
Sd,τ = span{B1,0,τ , B2,0,τ} and Sd,t = span{B1,0,t, B2,0,t, B3,0,t, B4,0,t}.

We clearly have
B1,0,τ = B1,0,t + B2,0,t, B2,0,τ = B3,0,t + B4,0,t.

This means that the knot insertion matrix in this case is given by

A =

0
B@

1 0
1 0
0 1
0 1

1
CA .

Example 4.4. Let us also consider an example with linear splines. Let d = 1, and let τ and t be as in
the preceding example. In this case dim Sd,τ = 1 and we find that

B(x | 0, 1, 2) =
1

2
B(x | 0, 1/2, 1) + B(x | 1/2, 1, 3/2) +

1

2
B(x | 1, 3/2, 2).

The situation is shown in Figure 4.4. The linear B-spline on τ is a weighted sum of the three B-splines
(dashed) on t. The knot insertion matrix A is therefore the 3× 1-matrix, or row vector, given by

A =

0
@1/2

1

1/2

1
A .

4.2.2 Conversion between B-spline polynomials

We would obviously like to compute the B-spline coefficients on a refined knot vector by
computer and therefore need a detailed and efficient algorithm. For this we need to study
the matrix A in (4.2) and (4.3) in some more detail. We are going to use the strategy
of considering what happens on individual knot intervals, which has proved successful in
earlier chapters.

It will be helpful to specialise the linear algebra that led us to the two relations (4.2)
and (4.3) to the space πd of polynomials of degree d. Suppose we have two bases pT =
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(p0, . . . , pd) and qT = (q0, . . . , qd) of πd. We then know that there exists a nonsingular
matrix M of dimension d + 1 such that

pT = qT M . (4.4)

Let f be a polynomial of degree d with coefficients b relative to p and c relative to q.
Since f = pT b = qT Mb = qT c it follows that

c = Mb. (4.5)

Conversely, it is not difficult to see that if the representations of any polynomial in two
bases are related as in (4.5), then the bases must be related as in (4.4).

We are specially interested in polynomial bases obtained from B-splines. If u =
(ui)2d+2

i=1 is a knot vector with ud+1 < ud+2, the theory in Chapter 3 shows that the
corresponding B-splines form a basis for πd on the interval [ud+1, ud+2]. On this interval
the B-splines reduce to polynomials and therefore correspond to a polynomial basis Bu.
And as all polynomials, these basis polynomials are defined on the whole real line (they
can be computed for any x by always using µ = d + 1 in the spline evaluation algorithms
in Chapter 2).

Suppose now that we have another knot vector v = (vi)2d+2
i=1 with no relation to u.

This will give rise to a similar polynomial basis Bv, and these two bases must be related
by some matrix Mu,v,

BT
v = BT

uMu,v.

We want to find a formula for Mu,v and to do this we consider the representation of the
polynomial f(x) = (y−x)d where y is any real number. We know from Marsden’s identity
(Theorem 3.4) that the coefficients of f relative to the basis Bu are the dual polynomials
ρu = {ρi,u}d+1

i=1 where ρi,u(y) is given by

ρi,u(y) = (y − ui+1) · · · (y − ui+d).

The B-spline coefficients of f relative to Bv are given similarly by ρv, and the general
discussion above shows that the two sets of coefficients must be related by the matrix
Mu,v, as in (4.5),

ρv(y) = Mu,vρu(y).

The ith component of this equation is

ρi,v(y) =
(
Mu,v

)
i
ρu(y).

On the other hand we also know from Corollary 3.2 that

ρi,v(y) = (y − vi+1) · · · (y − vi+d) = R1(vi+1)R2(vi+2) · · ·Rd(vi+d)ρu(y),

where the matrices R1, . . . , Rd are the bidiagonal B-spline matrices given in Theorem 2.18,

Rk(x) = Rd+1
k,u (x) =



ud+2 − x

ud+2 − ud+2−k

x− ud+2−k

ud+2 − ud+2−k

. . . . . .

ud+1+k − x

ud+1+k − ud+1

x− ud+1

ud+1+k − ud+1

 .



4.2. KNOT INSERTION 81

Since the dual polynomials {ρi,u}d+1
i=1 are linearly indenpendent we therefore have(

Mu,v

)
i
= R1(vi+1)R2(vi+2) · · ·Rd(vi+d).

Let us sum up our findings so far.

Proposition 4.5. Let u = (ui)2d+2
i=1 and v = (vi)2d+2

i=1 be two knot vectors with ud+1 <
ud+2 and vd+1 < vd+2, and let Bu and Bv be the corresponding B-spline polynomials on
the intervals [ud+1, ud+2] and [vd+1, vd+2] respectively. Then the two polynomial bases are
related by

BT
v = BT

uMu,v (4.6)

where Mu,v is a square matrix of dimension d + 1 with rows given by(
Mu,v

)
i
= R1(vi+1)R2(vi+2) · · ·Rd(vi+d) (4.7)

for i = 1, . . . , d + 1. Here Rk(x) = Rd+1
k,u for k = 1, . . . , d are the B-spline matrices of the

interval [τ d+1, τ d+2] defined in Theorem 2.18.

Although the expression (4.7) is slightly more complicated than what we encountered
when developing algorithms for computing the value of splines and B-splines, those al-
gorithms can easily be adapted to computing the matrix Mu,v or converting from the rep-
resentation in terms of Bu to a representation in terms of Bv, see Algorithms 4.10 and 4.11
below. Note also that because of the symmetry in the construction, it is easy to find the
inverse of the matrix Mu,v,

M−1
u,v = Mv,u,

i.e., just reverse the roles of u and v.

4.2.3 Formulas and algorithms for knot insertion

We have seen how we can find formulas for conversion between two completely unrelated
B-spline bases. Let us now apply this to the special situation of knot insertion.

Suppose as before that we have two knot vectors τ and t with τ ⊆ t and a spline
function f =

∑
j cjBj,d,τ =

∑
i biBi,d,t which lies in Sd,τ and therefore also in Sd,t. Recall

from (4.1) and (4.2) that the two spaces are related by the basis transformation matrix A
whose (i, j)-entry we denote αj,d(i). In other words we have

bi =
n∑

j=1

αj,d(i)cj (4.8)

for i = 1, . . . , m, and

Bj,d,τ =
m∑

i=1

αj,d(i)Bi,d,t (4.9)

for j = 1, . . . , n. An important observation here is that a B-spline will usually consist of
several polynomial pieces and according to (4.9), all the pieces of a B-spline in Sd,τ must
be expressible as the same linear combination of the corresponding pieces of the B-splines
in Sd,t. An example should help to clarify this.
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Example 4.6. Suppose that d = 3 and that the knot vector τ = (0, 0, 0, 0, 1, 4, 4, 4, 4) has been refined
to t = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4). In S3,τ we then have the five B-splines {Bj,τ}5

j=1 and in S3,t we have

seven B-splines {Bi,t}7
i=1 (we have dropped the degree from the notation as it will remain fixed in this

example). Relation (4.9) therefore becomes

Bj,τ =

7X
i=1

αj(i)Bi,t (4.10)

for j = 1, . . . , 5. What does this really mean? It does of course mean that the B-splines in S3,τ are linear
combinations of the B-splines in S3,t. But a consequence of this is that each polynomial piece of Bj,τ can
be written as a linear combination of the corresponding pieces of the B-splines in S3,t.

Let us be more specific. The interval of interest is [0, 4] and a B-spline Bj,τ in S3,τ consists of two
polynomial pieces within this interval, one piece on [τ4, τ5] = [0, 1] which we denote B4

j,τ and one piece on

[τ5, τ6] = [1, 4] which we denote B5
j,τ . Similarly, a B-spline Bi,t in S3,t consists of four polynomial pieces

which we denote B4
i,t, B5

i,t, B6
i,t and B7

i,t. With this notation, we can elaborate more on the meaning of
relation (4.10).

If we restrict x to the interval [0, 1] we can write (4.10) as

B4
j,τ =

4X
i=1

αj(i)B
4
i,t

for j = 1, . . . , 5, since the other B-splines in S3,t vanish on this interval. If we ignore B5,τ , this is
just a relation between two polynomial bases on B-spline form for the interval [τ4, τ5], so we can use

Proposition 4.5 to determine the coefficients
�
αj(i)

�4
i,j=1

. We find that

0
BBB@

α1(1) α2(1) α3(1) α4(1)

α1(2) α2(2) α3(2) α4(2)

α1(3) α2(3) α3(3) α4(3)

α1(4) α2(4) α3(4) α4(4)

1
CCCA =

0
BBB@

R4
1(t2)R

4
2(t3)R

4
3(t4)

R4
1(t3)R

4
2(t4)R

4
3(t5)

R4
1(t4)R

4
2(t5)R

4
3(t6)

R4
1(t5)R

4
2(t6)R

4
3(t7)

1
CCCA

where R4
k = R4

k,τ (x) for k = 1, 2, 3 are B-spline matrices for the interval [τ4, τ5]. We can also determine�
α5(i)

�4
i=1

since B4
5,τ is identically zero. In fact the linear independence of the polynomials {B4

i,t}4
i=1 on

[0, 1] means that α5(i) = 0 for i = 1, 2, 3, 4.
If we move to the right, the next subinterval of τ is [τ5, τ6] = [1, 4] while the next subinterval of t is

[t5, t6] = [1, 2]. On the smallest common subinterval [1, 2] relation (4.10) reduces to

B5
j,τ =

5X
i=2

αj(i)B
5
i,t

for j = 1, . . . , 5. Similarly to the previous subinterval we can conclude that
�
α1(i)

�5
i=2

is zero since B5
1,τ

is identically zero on this interval. The remaining αj(i)s involved in the sum can be determined from
Proposition 4.5, 0

BBB@
α2(2) α3(2) α4(2) α5(2)

α2(3) α3(3) α4(3) α5(3)

α2(4) α3(4) α4(4) α5(4)

α2(5) α3(5) α4(5) α5(5)

1
CCCA =

0
BBB@

R5
1(t3)R

5
2(t4)R

5
3(t5)

R5
1(t4)R

5
2(t5)R

5
3(t6)

R5
1(t5)R

5
2(t6)R

5
3(t7)

R5
1(t6)R

5
2(t7)R

5
3(t8)

1
CCCA .

If we move further to the right we come to the interval [t6, t7] = [2, 3] which is a subinterval of
[τ5, τ6] = [1, 4]. Relation (4.10) now becomes

B5
j,τ =

6X
i=3

αj(i)B
6
i,t
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for j = 1, . . . , 5. Again we can conclude that α1(i) = 0 for i = 3, . . . , 6 while

0
BBB@

α2(3) α3(3) α4(3) α5(3)

α2(4) α3(4) α4(4) α5(4)

α2(5) α3(5) α4(5) α5(5)

α2(6) α3(6) α4(6) α5(6)

1
CCCA =

0
BBB@

R5
1(t4)R

5
2(t5)R

5
3(t6)

R5
1(t5)R

5
2(t6)R

5
3(t7)

R5
1(t6)R

5
2(t7)R

5
3(t8)

R5
1(t7)R

5
2(t8)R

5
3(t9)

1
CCCA .

We can move one more interval to the left, to [t7, t8] = [3, 4], which is also a subinterval of [τ5, τ6] = [1, 4].
On this interval we can conclude that α1(i) = 0 for i = 4, . . . , 7 and determine the part of A given by�
αj(i)

�7,5

i=4,j=2
.

Note that many of the entries in the matrix A are determined several times in this example simply
because a B-spline consists of several polynomial pieces. This is not really a problem as we will get the
same value (up to round-off) each time.

Example 4.6 makes an important point clear: Since (4.9) is a relation between piecewise
polynomials, the number αj(i) must be the coefficient multiplying Bi,t in the representa-
tion of Bj,τ , irrespective of which polynomial piece we consider. Therefore, by considering
relation (4.9) as a relation between polynomials on different intervals we get several pos-
sibilities for determining most entries in the matrix A. This leaves us with the question
of which polynomial pieces we should use to determine a certain entry in A. Theorem 4.7
uses a standard choice, but it is worth remembering that other choices are possible.

For simplicity we will make the assumption that τ = (τj)n+d+1
j=1 and t = (ti)m+d+1

i=1 are
both d+1-regular knot vectors with d+1 common knots at the two ends. Exercise 6 shows
that this causes no loss of generality. The technique in Example 4.6 works in general and
can be used to obtain an explicit formula for the knot insertion matrix A.

Theorem 4.7. Let the polynomial degree d be given, and let τ = (τj)n+d+1
j=1 and t =

(ti)m+d+1
i=1 be two d + 1-regular knot vectors with common knots at the ends and τ ⊆ t.

In row i of the knot insertion matrix A the entries are given by αj,d(i) = 0 for j < µ− d
and j > µ, where µ is determined by τµ ≤ ti < τµ+1 and

αd(i)T =
(
αµ−d,d(i), . . . , αµ,d(i)

)
=

{
1, if d = 0,

Rµ
1,τ (ti+1) · · ·Rµ

d,τ (ti+d), if d > 0,
(4.11)

and the matrix Rµ
k,τ is defined in Theorem 2.18. If f =

∑
j cjBj,d,τ is a spline in Sd,τ ,

with B-spline coefficients b in Sd,t, then bi is given by

bi =
µ∑

j=µ−d

αj,d(i)cj = Rµ
1,τ (ti+1) · · ·Rµ

d,τ (ti+d)cd, (4.12)

where cd = (cµ−d, . . . , cµ).

Proof. We note that (4.12) follows from the general discussion earlier in this chapter so
we focus on the proof of (4.11). For degree d = 0 this is easy so we focus on the general
case. We fix the integer i and are going to show how row no. i of A can be determined.
Row i consists of the numbers

(
αj(i)

)n

j=1
where αj(i) gives the coefficient of Bi,t in the

linear combination of the B-splines in Sd,t that make up Bj,τ , see (4.9). We will deduce
(4.11) by considering different polynomial pieces of the B-splines that are involved. Let µ



84 CHAPTER 4. KNOT INSERTION

be as stated in the theorem, and let ν be the largest integer such that tν = ti. We then
have the two bases of B-spline polynomials,

Bµ
τ = (Bµ

µ−d,τ , . . . , Bµ
µ,d)

T ,

Bν
t = (Bν

ν−d,t, . . . , B
ν
ν,t)

T .

The first basis consists of the polynomial pieces of the nonzero B-splines in Sd,τ on the
interval [τµ, τµ+1] and the other consists of the polynomial pieces of the nonzero B-splines
in Sd,t on the interval [tν , tν+1]. Note that the definition of ν means that Bν

i,t is one of
the B-spline polynomials in Bν

t . From Proposition 4.5 we know that these two bases are
related by a (d+1)× (d+1)-matrix Mτ ,t. Each row of this matrix is associated with one
of the B-spline polynomials in the basis Bν

t and the row associated with Bν
i,t is given by

Rµ
1,τ (ti+1) · · ·Rµ

d,τ (ti+d).

On other hand, we also know that the matrix Mτ ,t is a submatrix of the knot insertion
matrix A,

Mτ ,t =
(
αj(`)

)µ,ν

j=µ−d, `=ν−d
,

since the two bases Bµ
τ and Bν

t are part of the two B-spline bases for Sd,τ and Sd,t. In
particular we have (

αµ−d(i), . . . , αµ(i)
)

= Rµ
1,τ (ti+1) · · ·Rµ

d,τ (ti+d).

What remains is to prove that the other entries in row i of A are zero. Suppose that
j < µ−d. By the support properties of B-splines we must then have Bj,τ (x) = Bµ

j,τ (x) = 0
for x ∈ [tν , tν+1]. When x varies in this interval we have

0 = Bµ
j,τ (x) =

ν∑
`=ν−d

αj(`)Bν
`,t(x).

From the linear independence of the B-spline polynomials {B`,t}ν
`=ν−d we can then con-

clude that αj(`) = 0 for ` = ν− d, . . . , ν. In particular we have αj(i) = 0. The case j > µ
is similar.

Theorem 4.7 shows that the knot insertion matrix is banded: In any row, there are
first some zeros, then some nonzero entries, and then more zeros. As we have already
noted there are several possibilities when it comes to computing the nonzero entries since
a B-spline consists of different polynomial pieces which are all transformed in the same
way. In Theorem 4.7 we compute the nonzero entries in row i by considering the knot
interval in t which has ti as its left end and the knot interval in τ whose left end is closest
to ti. In general, there are many other possibilities. With i given, we could for example
choose µ by requiring that τµ+d ≤ ti+d+1 < τµ+d+1.

It should be noted that, in general, not all the d + 1 entries of row i of A given by
(4.11) will be nonzero. It is in fact quite easy to see that αj(i) will only be nonzero if the
whole support of Bi,t is a subset of the support of Bj,τ . More specifically, it can be shown
that if there are r new knots among ti+1, . . . , ti+d then there will be r + 1 nonzero entries
in row i of A.
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Note that if no new knots are inserted (τ = t) then the two sets of B-spline coefficients
c and b are obviously the same. Equation (4.12) then shows that

ci = Rµ
1,τ (τi+1) · · ·Rµ

d,τ (τi+d)cd. (4.13)

This simple observation will be useful later.
A couple of examples will illustrate the use of Theorem 4.7.

Example 4.8. We consider quadratic splines (d = 2) on the knot vector τ = (−1,−1,−1, 0, 1, 1, 1), and
insert two new knots, at −1/2 and 1/2 so t = (−1,−1,−1,−1/2, 0, 1/2, 1, 1, 1). We note that τ3 ≤ ti < τ4

for 1 ≤ i ≤ 4 so the first three entries of the first four rows of the 6× 4 knot insertion matrix A are given
by

α2(i) = R3
1,τ (ti+1)R

3
2,τ (ti+2)

for i = 1, . . . , 4. Since

R3
1,τ (x) =

�
−x 1 + x

�
, R3

2,τ (x) =

�
−x 1 + x 0
0 (1− x)/2 (1 + x)/2

�
,

we have from (4.11)

α2(i) =
1

2

�
2ti+1ti+2, 1− ti+1 − ti+2 − 3ti+1ti+2, (1 + ti+1)(1 + ti+2)

�
.

Inserting the correct values for ti+1 and ti+2 and adding one zero at the end of each row, we find that the
first four rows of A are given by 0

B@
1 0 0 0

1/2 1/2 0 0
0 3/4 1/4 0
0 1/4 3/4 0

1
CA .

To determine the remaining two rows of A we have to move to the interval [τ4, τ5) = [0, 1). Here we have

R4
1,τ (x) =

�
1− x x

�
R4

2,τ (x) =

�
(1− x)/2 (1 + x)/2 0

0 1− x x

�
,

so

a2(i) = R4
1,τ (ti+1)R

4
2,τ (ti+2) =

1

2

�
(1− ti+1)(1− ti+2), 1 + ti+1 + ti+2 − 3ti+1ti+2, 2ti+1ti+2

�
.

Evaluating this for i = 5, 6 and inserting one zero as the first entry, we obtain the last two rows as

�
0 0 1/2 1/2
0 0 0 1

�
.

To see visually the effect of knot insertion, let f = B1,2,τ − 2B2,2,τ + 2B3,2,τ − B4,2,τ be a spline in Sd,τ

with B-spline coefficients c = (1,−2, 2,−1)T . Its coefficients b = (bi)
6
i=1 are then given by

b = Ac =

0
BBBBB@

1 0 0 0
1/2 1/2 0 0
0 3/4 1/4 0
0 1/4 3/4 0
0 0 1/2 1/2
0 0 0 1

1
CCCCCA

0
B@

1
−2
2
−1

1
CA =

0
BBBBB@

1
−1/2
−1
1

1/2
−1

1
CCCCCA

.

Figure 4.5 (a) shows a plot of f together with its control polygons relative to τ and t. We note that
the control polygon relative to t is much closer to f and that both control polygons give a rough estimate
of f .

The knot insertion process can be continued. If we insert one new knot halfway between each old knot
in t, we obtain the new knot vector

t1 = (−1,−1,−1,−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4, 1, 1, 1).

A plot of f and its control polygon relative to this knot vector is shown in Figure 4.5 (b).
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(b)

Figure 4.5. A quadratic spline together with its control polygon relative to a coarse and a finer knot vector (a),
and the same spline as in (a) with its control polygon relative to an even more refined knot vector (b).

Example 4.9. Let us again consider quadratic splines on a uniform knot vector with multiple knots at
the ends,

τ = (τj)
n+3
j=1 = (3, 3, 3, 4, 5, 6, . . . , n, n + 1, n + 1, n + 1),

and form t by inserting one knot half way between each pair of old knots,

t = (ti)
2n+1
i=1 = (3, 3, 3, 7/2, 4, 9/2, 5, . . . , n, (2n + 1)/2, n + 1, n + 1, n + 1).

Since dim Sd,τ = n and dim Sd,t = 2n − 2, the knot insertion matrix A is now a (2n − 2)× n matrix. As
in Example 4.8 we find that the first three columns of the first four rows of A are

0
B@

1 0 0
1/2 1/2 0
0 3/4 1/4
0 1/4 3/4

1
CA .

To determine rows 2µ− 3 and 2µ− 2 with 4 ≤ µ ≤ n− 1, we need the matrices Rµ
1,τ and Rµ

2,τ which are
given by

Rµ
1,τ (x) =

�
µ + 1− x x− µ

�
, Rµ

2,τ (x) =

�
(µ + 1− x)/2 (x + 1− µ)/2 0

0 (µ + 2− x)/2 (x− µ)/2

�
.

Observe that τi = i for i = 3, . . . , n + 1 and ti = (i + 3)/2 for i = 3, . . . , 2n− 1. Entries µ− 2, µ− 1 and
µ of row 2µ− 3 are therefore given by

Rµ
1,τ (t2µ−2)R

µ
2,τ (t2µ−1) = Rµ

1,τ (µ + 1/2)Rµ
2,τ (µ + 1) =

�
1/2 1/2

��0 1 0
0 1/2 1/2

�
=
�
0 3/4 1/4

�
.

Similarly, entries µ− 3, µ− 2 and µ of row 2µ− 2 are given by

Rµ
1,τ (t2µ−1)R

µ
2,τ (t2µ) = Rµ

1,τ (µ + 1)Rµ
2,τ (µ + 3/2) =

�
0 1

��−1/4 5/4 0
0 1/4 3/4

�
=
�
0 1/4 3/4

�
.

Finally, we find as in Example 4.8 that the last three entries of the last two rows are

�
0 1/2 1/2
0 0 1

�
.
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The complete knot insertion matrix is therefore

A =

0
BBBBBBBBBBBBBBB@

1 0 0 0 . . . 0 0 0
1/2 1/2 0 0 . . . 0 0 0
0 3/4 1/4 0 . . . 0 0 0
0 1/4 3/4 0 . . . 0 0 0
0 0 3/4 1/4 . . . 0 0 0
0 0 1/4 3/4 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . 3/4 1/4 0
0 0 0 0 . . . 1/4 3/4 0
0 0 0 0 . . . 0 1/2 1/2
0 0 0 0 . . . 0 0 1

1
CCCCCCCCCCCCCCCA

.

The formula for αd(i) shows very clearly the close relationship between B-splines and
discrete B-splines, and it will come as no surprise that αj,d(i) satisfies a recurrence relation
similar to that of B-splines, see Definition 2.1. The recurrence for αj,d(i) is obtained by
setting x = ti+d in the recurrence (2.1) for Bj,d(x),

αj,d(i) =
ti+d − τj

τj+d − τj
αj,d−1(i) +

τj+1+d − ti+d

τj+1+d − τj+1
αj+1,d−1(i), (4.14)

starting with αj,0(i) = Bj,0(ti).
The two evaluation algorithms for splines, Algorithms 3.17 and 3.18, can be adapted

to knot insertion quite easily. For historical reasons these algorithms are usually referred
to as the Oslo algorithms.
Algorithm 4.10 (Oslo-Algorithm 1). Let the polynomial degree d, and the two d + 1-
regular knot vectors τ = (τj)n+d+1

j=1 and t = (ti)m+d+1
i=1 with common knots at the ends be

given. To compute the m×n knot insertion matrix A =
(
αj,d(i)

)m,n

i,j=1
from τ to t perform

the following steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.

1.2 Compute entries µ− d, . . . , µ of row i by evaluating

αd(i)T =
(
αµ−d,d(i), . . . , αµ,d(i)

)T =

{
1, if d = 0.

R1(ti+1) · · ·Rd(ti+d), if d > 0.

All other entries in row i are zero.

An algorithm for converting a spline from a B-spline representation in Sd,τ to Sd,t is
as follows.
Algorithm 4.11 (Oslo-Algorithm 2). Let the polynomial degree d, and the two d + 1-
regular knot vectors τ = (τj)n+d+1

j=1 and t = (ti)m+d+1
i=1 with common knots at the ends be

given together with the spline f in Sd,τ with B-spline coefficients c = (cj)n
j=1. To compute

the B-spline coefficients b = (bi)m
i=1 of f in Sd,t perform the following steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.
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1.2 Set cd = (cj)
µ
j=µ−d and compute bi by evaluating

bi =

{
cµ, if d = 0.

R1(ti+1) · · ·Rd(ti+d)cd, if d > 0.

4.3 B-spline coefficients as functions of the knots

Knot insertion allows us to represent the same spline function on different knot vectors.
In fact, any spline function can be given any real numbers as knots, as long as we also
include the original knots. It therefore makes sense to consider the B-spline coefficients as
functions of the knots, and we shall see that this point of view allows us to characterise
the B-spline coefficients completely by three simple properties.

Initially, we assume that the spline f =
∑n

j=1 cjBj,d,τ is a polynomial represented on
a d + 1-extended knot vector τ . On the knot interval [τµ, τµ+1) we know that f can be
written as

f(x) = R1(x) · · ·Rd(x)cd, (4.15)

where cd = (cµ−d, . . . , cµ)T , see Section 2.3. Since f is assumed to be a polynomial this
representation is valid for all real numbers x, although when x is outside [τµ, τµ+1) it is no
longer a true B-spline representation.

Consider the function

F (x1, . . . , xd) = R1(x1) · · ·Rd(xd)cd. (4.16)

We recognise the right-hand side of this expression from equation (4.12) in Theorem 4.7:
If we have a knot vector that includes the knots (x0, x1, . . . , xd, xd+1), then F (x1, . . . , xd)
gives the B-spline coefficient that multiplies the B-spline B(x | x0, . . . , xd+1) in the rep-
resentation of the polynomial f on the knot vector x. When f is a polynomial, it turns
out that the function F is completely independent of the knot vector τ that underlie the
definition of the R-matrices in (4.16). The function F is referred to as the blossom of f ,
and the whole theory of splines can be built from properties of this function.

4.3.1 The blossom

In this subsection we develop some of the properties of the blossom. We will do this
in an abstract fashion, by starting with a formal definition of the blossom. In the next
subsection we will then show that the function F in (4.16) satisfies this definition.

Definition 4.12. A function on the form f(x) = ax, where a is a real number, is called
a linear function. A function on the form f(x) = ax + b with a and b real constants is
called an affine function. A function of d variables f(x1, . . . , xd) is said to be affine if it
is affine viewed as a function of each xi for i = 1, . . . , d, with the other variables fixed.
A symmetric affine function is an affine function that is not altered when the order of the
variables is changed.

It is common to say that a polynomial p(x) = a+bx of degree one is a linear polynomial,
even when a is nonzero. According to Definition 4.12 such a polynomial is an affine
polynomial, and this (algebraic) terminology will be used in the present section. Outside
this section however, we will use the term linear polynomial.
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For a linear function of one variable we have

f(αx + βy) = αf(x) + βf(y), x, y ∈ R (4.17)

for all real numbers α and β, while for an affine function f with b 6= 0 equation (4.17)
only holds if α + β = 1. This is in fact a complete characterisation of affine functions: If
(4.17) holds with α + β = 1, then f is affine, see exercise 9.

A general affine function of 2 variables is given by

f(x1, x2) = ax2 + b = (a2x1 + b2)x2 + a1x1 + b1

= c0 + c1x1 + c2x2 + c1,2x1x2.
(4.18)

Similarly, an affine function of three variables is a function on the form

f(x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3 + c1,2x1x2 + c1,3x1x3 + c2,3x2x3 + c1,2,3x1x2x3.

In general, an affine function can be written as a linear combination of 2d terms. This
follows by induction as in (4.18) where we passed from one argument to two.

A symmetric and affine function satisfies the equation

f(x1, x2, . . . , xd) = f(xπ1 , xπ2 , . . . , xπd
),

for any permutation (π1, π2, . . . , πd) of the numbers 1, 2, . . . , d. We leave it as an exercise
to show that symmetric, affine functions of two and three variables can be written in the
form

f(x1, x2) = a0 + a1(x1 + x2) + a2x1x2,

f(x1, x2, x3) = a0 + a1(x1 + x2 + x3) + a2(x1x2 + x1x3 + x2x3) + a3x1x2x3.

We are now ready to give the definition of the blossom of a polynomial.
Definition 4.13. Let p be a polynomial of degree at most d. The blossom B[p](x1, . . . , xd)
of p is a function of d variables with the properties:

1. Symmetry. The blossom is a symmetric function of its arguments,

B[p](x1, . . . , xd) = B[p](xπ1 , . . . , xπd
)

for any permutation π1, . . . , πd of the integers 1, . . . , d.

2. Affine. The blossom is affine in each of its variables,

B[p](. . . , αx + βy, . . .) = αB[p](. . . , x, . . .) + βB[p](. . . , y, . . .)

whenever α + β = 1.

3. Diagonal property. The blossom agrees with p on the diagonal,

B[p](x, . . . , x) = p(x)

for all real numbers x.
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The blossom of a polynomial exists and is unique.

Theorem 4.14. Each polynomial p of degree d has a unique blossom B[p](x1, . . . , xd).
The blossom acts linearly on p, i.e., if p1 and p2 are two polynomials and c1 and c2 are
two real constants then

B[c1p1 + c2p2](x1, . . . , xd) = c1B[p1](x1, . . . , xd) + c2B[p2](x1, . . . , xd). (4.19)

Proof. The proof of uniqueness follows along the lines sketched at the beginning of this
section for small d. Start with a general affine function F of d variables

F (x1, . . . , xd) = c0 +
d∑

j=1

∑
1≤i1<···<ij≤d

ci1,...,ijxi1 · · ·xij .

Symmetry forces all the coefficients multiplying terms of the same degree to be identical.
To see this we note first that

F (1, 0, . . . , 0) = c0 + c1 = F (0, . . . , 1, . . . , 0) = c0 + ci

for all i with 1 ≤ i ≤ d. Hence we have c1 = · · · = cd. To prove that the terms of degree
j all have the same coefficients we use induction and set j of the variables to 1 and the
rest to 0. By the induction hypothesis we know that all the terms of degree less than j
are symmetric; denote the contribution from these terms by pj−1. Symmetry then gives

pj−1 + c1,2,...,j = pj−1 + c1,2,...,j−1,j+1 = · · · = pj−1 + cd−j+1,...,d.

From this we conclude that all the coefficients multiplying terms of degree j must be equal.
We can therefore write F as

F (x1, . . . , xd) = a0 +
d∑

j=1

aj

∑
1≤i1<···<ij≤d

xi1 · · ·xij , (4.20)

for suitable constants (aj)d
j=0. From the diagonal property F (x, . . . , x) = f(x) the coeffi-

cients (aj)d
j=0 are all uniquely determined (since 1, x, . . . , xd is basis for πd).

The linearity of the blossom with regards to p follows from its uniqueness: The right-
hand side of (4.19) is affine in each of the xi, it is symmetric, and it reduces to c1p1(x) +
c2p2(x) on the diagonal x1 = · · · = xd = x.

Recall that the elementary symmetric polynomials

sj(x1, . . . , xd) =
( ∑

1≤i1<···<ij≤d

xi1xi2 · · ·xij

)
/

(
d

j

)

that appear in (4.20) (apart from the binomial coefficient) agree with the B-spline coeffi-
cients of the polynomial powers,

σj
k,d = sj(τk+1, . . . , τk+d),
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see Corollary 3.5. In fact, the elementary symmetric polynomials are the blossoms of the
powers,

B[xj ](x1, . . . , xd) = sj(x1, . . . , xd) for j = 0, . . . , d.

They can also be defined by the relation

(x− x1) · · · (x− xd) =
d∑

k=0

(−1)d−k

(
d

k

)
sd−k(x1, . . . , xd)xk.

Note that the blossom depends on the degree of the polynomial in a nontrivial way. If
we consider the polynomial p(x) = x to be of degree one, then B[p](x1) = x1. But we can
also think of p as a polynomial of degree three (the cubic and quadratic terms are zero);
then we obviously have B[p](x1, x2, x3) = (x1 + x2 + x3)/3.

4.3.2 B-spline coefficients as blossoms

Earlier in this chapter we have come across a function that is both affine and symmetric.
Suppose we have a knot vector τ for B-splines of degree d. On the interval [τµ, τµ+1) the
only nonzero B-splines are Bd = (Bµ−d,d, . . . , Bµ,d)T which can be expressed in terms of
matrices as

Bd(x)T = R1(x) · · ·Rd(x).

If we consider the polynomial piece f = BT
d cd with coefficients cd = (cµ−d, . . . , cµ)T we

can define a function F of d variables by

F (x1, . . . , xd) = R1(x1) · · ·Rd(xd)cd. (4.21)

From equation(4.12) we recognise F (x1, . . . , xd) as the coefficient multiplying a B-spline
with knots x0, x1, . . . , xd+1 in the representation of the polynomial f .

Equation (3.7) in Lemma 3.3 shows that F is a symmetric function. It is also affine in
each of its variables. To verify this, we note that because of the symmetry it is sufficient
to check that it is affine with respect to the first variable. Recall from Theorem 2.18 that
R1 = R1,τ is given by

R1(x) =
(

τµ+1 − x

τµ+1 − τµ
,

x− τµ

τµ+1 − τµ

)
which is obviously an affine function of x.

The function F is also related to the polynomial f in that F (x, . . . , x) = f(x). We
have proved the following lemma.
Lemma 4.15. Let f =

∑µ
j=µ−d cjBj,d be a polynomial represented in terms of the B-

splines in Sd,τ on the interval [τµ, τµ+1), with coefficients cd = (cµ−d, . . . , cµ)T . Then the
function

F (x1, . . . , xd) = R1(x1) · · ·Rd(xd)cd

is symmetric and affine, and agrees with f on the diagonal,

F (x, . . . , x) = f(x).

Lemma 4.15 and Theorem 4.14 show that the blossom of f is given by

B[f ](x1, . . . , xd) = R1(x1) · · ·R1(xd)cd.

Blossoming can be used to give explicit formulas for the B-spline coefficients of a spline.
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Theorem 4.16. Let f =
∑n

j=1 cjBj,d,τ be a spline on a d + 1-regular knot vector τ =
(τj)n+d+1

j=1 . It’s B-spline coefficients are then given by

cj = B[fk](τj+1, . . . , τj+d), for k = j, j + 1, . . . , j + d, (4.22)

provided τk < τk+1. Here fk = f |(τk,τk+1) is the restriction of f to the interval (τk, τk+1).

Proof. Let us first restrict x to the interval [τµ, τµ+1) and only consider one polynomial
piece fµ of f . From Lemma 4.15 we know that B[fµ](x1, . . . , xd) = R1(x1) · · ·Rd(xd)cd,
where cd = (cj)

µ
j=µ−d are the B-spline coefficients of f active on the interval [τµ, τµ+1).

From (4.13) we then obtain

cj = B[fµ](τj+1, . . . , τj+d) (4.23)

which is (4.22) in this special situation.
To prove (4.22) in general, fix j and choose the integer k in the range j ≤ k ≤ j + d.

We then have

fk(x) =
k∑

i=k−d

ciBi,d(x), (4.24)

By the choice of k we see that the sum in (4.24) includes the term cjBj,d. Equation (4.22)
therefore follows by applying (4.23) to fk.

The affine property allows us to perform one important operation with the blossom;
we can change the arguments.
Lemma 4.17. The blossom of p satisfies the relation

B[p](. . . , x, . . .) =
b− x

b− a
B[p](. . . , a . . .) +

x− a

b− a
B[p](. . . , b, . . .) (4.25)

for all real numbers a, b and x with a 6= b.

Proof. Observe that x can be written as an affine combination of a and b,

x =
b− x

b− a
a +

x− a

b− a
b.

Equation (4.25) then follows from the affine property of the blossom.

The next result will be useful later.
Lemma 4.18. Let Bx

[
p(x, y)

]
denote the blossom of p with respect to the variable x.

Then

Bx

[
(y − x)k

]
(x1, . . . , xd) =

k!
d!

Dd−k
(
(y − x1) · · · (y − xd)

)
, (4.26)

for k = 0, 1, . . . , d, and

Bx

[
(y1 − x) · · · (y` − x)

]
(x1, . . . , xd) =

(d− `)!
d!

∑
1≤i1,...,i`≤d

(y1 − xi1) · · · (y` − xi`), (4.27)

where the sum is over all distinct choices i1, . . . , i` of ` integers from the d integers 1, . . . ,
d.



4.4. INSERTING ONE KNOT AT A TIME 93

Proof. For k = d equation (4.26) follows since the right-hand side is symmetric and affine
in each of the variables xi and it agrees with (y − x)d on the diagonal x1 = · · · = xd = x.
The general result is then obtained by differentiating both sides k times.

Equation (4.27) follows since the right-hand side is affine, symmetric and reduces to
(y1 − x) · · · (y` − x) when x = x1 = · · · = xd, i.e., it must be the blossom of (y − x)d.

4.4 Inserting one knot at a time

With blossoming we have a simple but powerful tool for determining the B-spline coeffi-
cients of splines. Here we will apply blossoming to develop an alternative knot insertion
strategy. Instead of inserting all new knots simultaneously we can insert them sequentially.
We insert one knot at a time and update the B-spline coefficients between each insertion.
This leads to simple, explicit formulas.
Lemma 4.19 (Böhm’s method). Let τ = (τj)n+d+1

j=1 be a given knot vector and let t =
(ti)n+d+2

i=1 be the knot vector obtained by inserting a knot z in τ in the interval [τµ, τµ+1).
If

f =
n∑

j=1

cjBj,d,τ =
n+1∑
i=1

biBi,d,t,

then (bi)n+1
i=1 can be expressed in terms of (cj)n

j=1 through the formulas

bi =


ci, if 1 ≤ i ≤ µ− d;

z − τi

τi+d − τi
ci +

τi+d − z

τi+d − τi
ci−1, if µ− d + 1 ≤ i ≤ µ;

ci−1, if µ + 1 ≤ i ≤ n + 1.

(4.28)

Proof. Observe that for j ≤ µ we have τj = tj . For i ≤ µ− d and with k an integer such
that i ≤ k ≤ i + d it therefore follows from (4.22) that

bi = B[fk](ti+1, . . . , ti+d) = B[fk](τi+1, . . . , τi+d) = ci.

Similarly, we have ti = τi−1 for i ≥ µ + 1 so

bi = B[fk](ti+1, . . . , ti+d) = B[fk](τi, . . . , τi+d−1) = ci−1

for such values of i.
When i satisfies µ − d + 1 ≤ i ≤ µ we note that z will appear in the sequence

(ti+1, . . . , ti+d). From (4.22) we therefore obtain

bi = B[fµ](ti+1, . . . , z, . . . , ti+d) = B[fµ](τi+1, . . . , z, . . . , τi+d−1)

since we now may choose k = µ. Applying Lemma 4.17 with x = z, a = τi and b = τi+d

yields

bi =
τi+d − z

τi+d − τi
B[fµ](τi+1, . . . , τi, . . . , τi+d) +

z − τi

τi+d − τi
B[fµ](τi, . . . , τi+d, . . . , τi+d−1).

Exploiting the symmetry of the blossom and again applying (4.22) leads to the middle
formula in (4.28).
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It is sometimes required to insert the same knot several times; this can of course be
accomplished by applying the formulas in (4.28) several times. Since blossoms have the
property B[f ](z, . . . , z) = f(z), we see that inserting a knot d times in a spline of degree
d gives as a by-product the function value of f at z. This can be conveniently illustrated
by listing old and new coefficients in a triangular scheme. Consider the following triangle
(d = 3),

· · · c0
µ−4 c0

µ−3 c0
µ−2 c0

µ−1 c0
µ c0

µ+1 · · ·
c1
µ−2 c1

µ−1 c1
µ

c2
µ−1 c2

µ

c3
µ

In the first row we have the coefficients of f on the original knot vector τ . After inserting
z in (τµ, τµ+1) once, the coefficients relative to the knot vector τ 1 = τ ∪ {z} are

(. . . , c0
µ−4, c

0
µ−3, c

1
µ−2, c

1
µ−1, c

1
µ, c0

µ, c0
µ+1, . . .),

i.e., we move down one row in the triangle. Suppose that z is inserted once more. The
new B-spline coefficients on τ 2 = τ 1 ∪ {z} are now found by moving down to the second
row, across this row, and up the right hand side,

(. . . , c0
µ−4, c

0
µ−3, c

1
µ−2, c

2
µ−1, c

2
µ, c1

µ, c0
µ, c0

µ+1, . . .).

Similarly, if z is inserted 3 times, we move around the whole triangle. We can also insert
z a full d = 4 times. We then simply repeat c3

µ two times in the last row.
Lemma 4.19 shows that Oslo Algorithm 2 (Algorithm 4.11) is not always efficient.

To compute a new coefficient in the case where only one new knot is inserted requires
at most one convex combination according to Lemma 4.19 while Algorithm 4.11 requires
the computation of a full triangle (two nested loops). More efficient versions of the Oslo
algorithms can be developed, but this will not be considered here.

The simplicity of the formulas (4.28) indicates that the knot insertion matrix A must
have a simple structure when only one knot is inserted. Setting c = (ci)n

i=1 and b = (bi)n+1
i=1

and remembering that b = Ac, we see that A is given by the (n + 1)× n matrix

A =



1 0
. . . . . .

1 0
1− λµ−d+1 λµ−d+1

. . . . . .
1− λµ λµ

0 1
. . . . . .

0 1


, (4.29)

where λi = (z − τi)/(τi+d − τi) for µ− d + 1 ≤ i ≤ µ. All the entries off the two diagonals
are zero and such matrices are said to be bi-diagonal. Since z lies in the interval [τµ, τµ+1)
all the entries in A are nonnegative. This property generalises to arbitrary knot insertion
matrices.
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Lemma 4.20. Let τ = (τj)n+d+1
j=1 and t = (ti)m+d+1

i=1 be two knot vectors for splines of
degree d with τ ⊆ t. All the entries of the knot insertion matrix A from Sd,τ to Sd,t are
nonnegative and A can be factored as

A = Am−nAm−n−1 · · ·A1, (4.30)

where Ai is a bi-diagonal (n + i)× (n + i− 1)-matrix with nonnegative entries.

Proof. Let us denote the m− n knots that are in t but not in τ by (zi)m−n
i=1 . Set t0 = τ

and ti = ti−1 ∪ (zi) for i = 1, . . . , m − n. Denote by Ai the knot insertion matrix from
ti−1 to ti. By applying Böhm’s method m−n times we obtain (4.30). Since all the entries
in each of the matrices Ai are nonnegative the same must be true of A.

4.5 Bounding the number of sign changes in a spline

In this section we will make use of Böhm’s method for knot insertion to prove that the
number of spline changes in a spline function is bounded by the number of sign changes in
its B-spline coefficient vector. This provides a generalisation of an interesting property of
polynomials known as Descartes’ rule of signs. Bearing the name of Descartes, this result
is of course classical, but it is seldom mentioned in elementary mathematics textbooks.
Before stating Descartes’ rule of signs let us record what we mean by sign changes in a
definition.
Definition 4.21. Let c = (ci)n

i=1 be a vector of real numbers. The number of sign changes
in c (zeros are ignored) is denoted S−(c). The number of sign changes in a function f in
an interval (a, b) is denoted S−(a,b)(f) = S−(f), provided this number is finite. It is given
by the largest possible integer r such that an increasing sequence of r + 1 real numbers
x1 < · · · < xr+1 in (a, b) can be found with the property that S−

(
f(x1), . . . , f(xr+1)

)
= r.

Example 4.22. Let us consider some simple examples of counting sign changes. It is easily checked
that

S−(1,−2) = 1,

S−(1, 0, 2) = 0,

S−(1,−1, 2) = 2,

S−(1, 0,−1, 3) = 2,

S−(2, 0, 0, 0,−1) = 1,

S−(2, 0, 0, 0, 1) = 0.

As stated in the definition, we simply count sign changes by counting the number of jumps from positive
to negative values and from negative to positive, ignoring all components that are zero.

Descartes’ rule of signs bounds the number of zeros in a polynomial by the number
of sign changes in its coefficients. Recall that z is a zero of f of multiplicity r ≥ 1 if
f(z) = Df(z) = · · · = Dr−1f(z) = 0 but Drf(z) 6= 0.
Theorem 4.23 (Descartes’ rule of signs). Let p =

∑d
i=0 cix

i be a polynomial of degree d
with coefficients c = (c0, . . . , cd)T , and let Z(p) denote the total number of zeros of p in
the interval (0,∞), counted with multiplicities. Then

Z(p) ≤ S−(c),

i.e., the number of zeros of p is bounded by the number of sign changes in its coefficients.

Figures 4.6 (a)–(d) show some polynomials and their zeros in (0,∞).
Our aim is to generalise this result to spline functions, written in terms of B-splines.

This is not so simple because it is difficult to count zeros for splines. In contrast to
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(a) p(x) = 1− x.
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(b) p(x) = 1− 3x + x2.
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(c) p(x) = 2− 3x + x2.
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(d) p(x) = 1− 4x + 4x2 − x3.

Figure 4.6. Illustrations of Descartes’ rule of signs: the number of zeros in (0,∞) is no greater than the number
of strong sign changes in the coefficients.

polynomials, a spline may for instance be zero on an interval without being identically
zero. In this section we will therefore only consider zeros that are also sign changes. In
the next section we will then generalise and allow multiple zeros.

To bound the number of sign changes of a spline we will investigate how knot insertion
influences the number of sign changes in the B-spline coefficients. Let Sd,τ and Sd,t be two
spline spaces of degree d, with Sd,τ ⊆ Sd,t. Recall from Section 4.4 that to get from the
knot vector τ to the refined knot vector t, we can insert one knot at a time. If there are `
more knots in τ than in t, this leads to a factorisation of the knot insertion matrix A as

A = A`A`−1 · · ·A1, (4.31)

where Ak is a (n + k)× (n + k − 1) matrix for k = 1, . . . , `, if dim Sd,τ = n. Each of the
matrices Ak corresponds to insertion of only one knot, and all the nonzero entries of the
bi-diagonal matrix Ak are found in positions (i, i) and (i + 1, i) for i = 1, . . . , n + k − 1,
and these entries are all nonnegative (in general many of them will be zero).

We start by showing that the number of sign changes in the B-spline coefficients is
reduced when the knot vector is refined.
Lemma 4.24. Let Sd,τ and Sd,t be two spline spaces such that t is a refinement of τ . Let
f =

∑n
j=1 cjBj,d,τ =

∑m
i=1 biBi,d,t be a spline in Sd,τ with B-spline coefficients c in Sd,τ

and b in Sd,t. Then b has no more sign changes than c, i.e.,

S−(Ac) = S−(b) ≤ S−(c), (4.32)

where A is the knot insertion matrix from τ to t.
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Figure 4.7. A quadratic spline (a) and a cubic spline (b) with their control polygons.

Proof. Since we can insert the knots one at a time, it clearly suffices to show that (4.32)
holds in the case where there is only one more knot in t than in τ . In this case we know
from Lemma 4.19 that A is bidiagonal so

bi = αi−1(i)ci−1 + αi(i)ci, for i = 1, . . .n + 1,

where
(
αj(i)

)n+1,n

i,j=1
are the entries of A (for convenience of notation we have introduced

two extra entries that are zero, α0(1) = αn+1(n + 1) = 0). Since αi−1(i) and αi(i) both
are nonnegative, the sign of bi must be the same as either ci−1 or ci (or be zero). Since
the number of sign changes in a vector is not altered by inserting zeros or a number with
the same sign as one of its neighbours we have

S−(c) = S−(b1, c1, b2, c2, . . . , bn−1, cn−1, bn, cn, bn+1) ≥ S−(b).

The last inequality follows since the number of sign changes in a vector is always reduced
when entries are removed.

From Lemma 4.24 we can quite easily bound the number of sign changes in a spline in
terms of the number of sign changes in its B-spline coefficients.
Theorem 4.25. Let f =

∑n
j=1 cjBj,d be a spline in Sd,τ . Then

S−(f) ≤ S−(c) ≤ n− 1. (4.33)

Proof. Suppose that S−(f) = `, and let (xi)`+1
i=1 be ` + 1 points chosen so that S−(f) =

S−
(
f(x1), . . . , f(x`+1)

)
. We form a new knot vector t that includes τ as a subsequence,

but in addition each of the xi occurs exactly d + 1 times in t. From our study of knot
insertion we know that f may be written f =

∑
j bjBj,d,t for suitable coefficients (bj), and

from Lemma 2.6 we know that each of the function values f(xi) will appear as a B-spline
coefficient in b. We therefore have

S−(f) ≤ S−(b) ≤ S−(c),

the last inequality following from Lemma 4.24. The last inequality in (4.33) follows since
an n-vector can only have n− 1 sign changes.

The validity of Theorem 4.25 can be checked with the two plots in Figure 4.7 as well
as all other figures which include both a spline function and its control polygon.
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Exercises for Chapter 4

4.1 In this exercise we are going to study a change of polynomial basis from the Bernstein
basis to the Monomial basis. Recall that the Bernstein basis of degree d is defined
by

Bd
j (x) =

(
d

j

)
xj(1− x)d−j , for j = 0, 1, . . . , d. (4.34)

A polynomial p of degree d is said to be written in Monomial form if p(x) =
∑d

j=0 bjx
j

and in Bernstein form if p(x) =
∑d

j=0 cjB
d
j (x). In this exercise the binomial formula

(a + b)d =
d∑

k=0

(
d

k

)
akbd−k (4.35)

will be useful.

a) By applying (4.35), show that

Bd
j (x) =

d∑
i=j

(−1)i−j

(
d

j

)(
d− j

i− j

)
xi, for j = 0, 1, . . . , d.

Also show that
(
d
j

)(
d−j
i−j

)
=

(
d
i

)(
i
j

)
for i = j, . . . , d and j = 0, . . . , d.

b) The two basis vectors Bd =
(
Bd

0(x), . . . , Bd
d(x)

)T and P d = (1, x, . . . , xd)T are
related by BT

d = P T
d Ad where Ad is a (d + 1)× (d + 1)-matrix Ad. Show that

the entries of Ad = (ai,j)d
i,j=0 are given by

ai,j =

{
0, if i < j,

(−1)i−j
(
d
i

)(
i
j

)
, otherwise.

c) Show that the entries of Ad satisfy the recurrence relation

ai,j = βi (ai−1,j−1 − ai−1,j) , where βi = (d− i + 1)/i.

Give a detailed algorithm for computing Ad based on this formula.

d) Explain how we can find the coefficients of a polynomial relative to the Monomial
basis if Ad is known and the coefficients relative to the Bernstein basis are
known.

4.2 In this exercise we are going to study the opposite conversion of that in Exercise 1,
namely from the Monomial basis to the Bernstein basis.

a) With the aid of (4.35), show that for all x and t in R we have

(
tx + (1− x)

)d =
d∑

k=0

Bd
k(x)tk. (4.36)

The function G(t) =
(
tx + (1 − x)

)d is called a generating function for the
Bernstein polynomials.
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b) Show that
∑d

k=0 Bd
k(x) = 1 for all x by choosing a suitable value for t in (4.36).

c) Find two different expressions for G(j)(1)/j! and show that this leads to the
formulas (

d

j

)
xj =

d∑
i=j

(
i

j

)
Bd

k(x), for j = 0, . . . , d. (4.37)

d) Show that the entries of the matrix Bd = (bi,j)d
i,j=0 such that P T

d = BT
d Bd are

given by

bi,j =

{
0, if i < j,(

i
j

)
/
(
d
j

)
, otherwise.

4.3 Let P denote the cubic Bernstein basis on the interval [0, 1] and let Q denote the
cubic Bernstein basis on the interval [2, 3]. Determine the matrix A3 such that
P (x)T = Q(x)T A3 for all real numbers x.

4.4 Let A denote the knot insertion matrix for the linear (d = 1) B-splines on τ = (τj)n+2
j=1

to the linear B-splines in t = (ti)m+2
i=1 . We assume that τ and t are 2-extended with

τ1 = t1 and τn+2 = tm+2 and τ ⊆ t.

a) Determine A when τ = (0, 0, 1/2, 1, 1) and t = (0, 0, 1/4, 1/2, 3/4, 1, 1).

b) Device a detailed algorithm that computes A for general τ and t and requires
O(m) operations.

c) Show that the matrix AT A is tridiagonal.

4.5 Prove Lemma 4.2 in the general case where τ and t are not d + 1-regular. Hint:
Augment both τ and t by inserting d + 1 identical knots at the beginning and end.

4.6 Prove Theorem 4.7 in the general case where the knot vectors are not d + 1-regular
with common knots at the ends. Hint: Use the standard trick of augmenting τ and
t with d + 1 identical knots at both ends to obtain new knot vectors τ̂ and t̂. The
knot insertion matrix from τ to t can then be identified as a sub-matrix of the knot
insertion matrix from τ̂ to t̂.

4.7 Show that if τ and t are d + 1-regular knot vectors with τ ⊆ t whose knots agree at
the ends then

∑
j αj,d(i) = 1.

4.8 Implement Algorithm 4.11 and test it on two examples. Verify graphically that the
control polygon converges to the spline as more and more knots are inserted.

4.9 Let f be a function that satisfies the identity

f(αx + βy) = αf(x) + βf(y) (4.38)

for all real numbers x and y and all real numbers α and β such that α + β = 1.
Show that then f must be an affine function. Hint: Use the alternative form of
equation (4.38) found in Lemma 4.17.

4.10 Find the cubic blossom B[p](x1, x2, x3) when p is given by:
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a) p(x) = x3.

b) p(x) = 1.

c) p(x) = 2x + x2 − 4x3.

d) p(x) = 0.

e) p(x) = (x− a)2 where a is some real number.
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