
CHAPTER 8

Quasi-interpolation methods

In Chapter 5 we considered a number of methods for computing spline approximations.
The starting point for the approximation methods is a data set that is usually discrete and
in the form of function values given at a set of abscissas. The methods in Chapter 5 roughly
fall into two categories: global methods and local methods. A global method is one where
any B-spline coefficient depends on all initial data points, whereas a local method is one
where a B-spline coefficient only depends on data points taken from the neighbourhood
of the support of the corresponding B-spline. Typical global methods are cubic spline
interpolation and least squares approximation, while cubic Hermite interpolation and the
Schoenberg variation diminishing spline approximation are popular local methods.

In this chapter we are going to describe a general recipe for developing local spline
approximation methods. This will enable us to produce an infinite number of approxima-
tion schemes that can be tailored to any special needs that we may have or that our given
data set dictates. In principle, the methods are local, but by allowing the area of influence
for a given B-spline coefficient to grow, our general recipe may even encompass the global
methods in Chapter 5.

The recipe we describe produces approximation methods known under the collective
term quasi-interpolation methods. Their advantage is their flexibility and their simplicity.
There is considerable freedom in the recipe to produce tailor-made approximation schemes
for initial data sets with special structure. Quasi-interpolants also allow us to establish
important properties of B-splines. In the next chapter we will employ them to study how
well a given function can be approximated by splines, and to show that B-splines form a
stable basis for splines.

8.1 A general recipe

A spline approximation method consists of two main steps: First the degree and knot vec-
tor are determined, and then the B-spline coefficients of the approximation are computed
from given data according to some formula. For some methods like spline interpolation and
least squares approximation, this formula corresponds to the solution of a linear system
of equations. In other cases, like cubic Hermite interpolation and Schoenberg’s Variation
Diminishing spline approximation, the formula for the coefficients is given directly in terms
of given values of the function to be interpolated.

161



162 CHAPTER 8. QUASI-INTERPOLATION METHODS

8.1.1 The basic idea

The basic idea behind the construction of quasi-interpolants is very simple. We focus
on how to compute the B-spline coefficients of the approximation and assume that the
degree and knot vector are known. The procedure depends on two versions of the local
support property of B-splines that we know well from earlier chapters: (i) The B-spline
Bj is nonzero only within the interval [tj , tj+d+1], and (ii) on the interval [tµ, tµ+1) there
are only d + 1 B-splines in Sd,t that are nonzero so a spline g in Sd,t can be written as
g(x) =

∑µ
i=µ−d biBi(x) when x is restricted to this interval.

Suppose we are to compute an approximation g =
∑

i ciBi in Sd,t to a given function
f . To compute cj we can select one knot interval I = [tµ, tµ+1] which is a subinterval
of [tj , tj+d+1]. We denote the restriction of f to this interval by f I and determine an
approximation gI =

∑µ
i=µ−d biBi to f I . One of the coefficients of gI will be bj and we

fix cj by setting cj = bj . The whole procedure is then repeated until all the ci have been
determined.

It is important to note the flexibility of this procedure. In choosing the interval I we
will in general have the d+1 choices µ = j, j, . . . , j+d (fewer if there are multiple knots).
As we shall see below we do not necessarily have to restrict I to be one knot interval; all
that is required is that I∩ [tµ, tµ+d+1] is nonempty. When approximating f I by gI we have
a vast number of possibilities. We may use interpolation or least squares approximation,
or any other approximation method. Suppose we settle for interpolation, then we have
complete freedom in choosing the interpolation points within the interval I. In fact, there
is so much freedom that we can have no hope of exploring all the possibilities.

It turns out that some of this freedom is only apparent — to produce useful quasi-
interpolants we have to enforce certain conditions. With the general setup described
above, a useful restriction is that if f I should happen to be a polynomial of degree d then
gI should reproduce f I , i.e., in this case we should have gI = f I . This has the important
consequence that if f is a spline in Sd,t then the approximation g will reproduce f exactly
(apart from rounding errors in the numerical computations). To see why this is the case,
suppose that f =

∑
i b̂iBi is a spline in Sd,t. Then f I will be a polynomial that can be

written as f I =
∑µ

i=µ−d b̂iBi. Since we have assumed that polynomials will be reproduced
we know that gI = f I so

∑µ
i=µ−d biBi =

∑µ
i=µ−d b̂iBi, and by the linear independence of

the B-splines involved we conclude that bi = b̂i for i = µ − d, . . . , µ. But then we see
that cj = bj = b̂j so g will agree with f . An approximation scheme with the property that
Pf = f for all f in a space S is to reproduce the space.

8.1.2 A more detailed description

Hopefully, the basic idea behind the construction of quasi-interpolants became clear above.
In this section we describe the construction in some more detail with the generalisa-
tions mentioned before. We first write down the general procedure for determining quasi-
interpolants and then comment on the different steps afterwards.

Algorithm 8.1 (Construction of quasi-interpolants). Let the spline space Sd,t of dimen-
sion n and the real function f defined on the interval [td+1, tn+1] be given, and suppose
that t is a d + 1-regular knot vector. To approximate f from the space Sd,t perform the
following steps for j = 1, 2, . . . , n:



8.1. A GENERAL RECIPE 163

1. Choose a subinterval I = [tµ, tν ] of [td+1, tn+1] with the property that I ∩ (tj , tj+d+1)
is nonempty, and let f I denote the restriction of f to this interval.

2. Choose a local approximation method P I and determine an approximation gI to f I ,

gI = P If I =
µ∑

i=ν−d

biBi, (8.1)

on the interval I.

3. Set coefficient j of the global approximation Pf to bj , i.e.,

cj = bj .

The spline Pf =
∑n

j=1 cjBj will then be an approximation to f .

The coefficient cj obviously depends on f and this dependence on f is often indicated
by using the notation λjf for cj . This will be our normal notation in the rest of the
chapter.

An important point to note is that the restriction Sd,t,I of the spline space Sd,t to
the interval I can be written as a linear combination of the B-splines {Bi}µ

i=ν−d. These
are exactly the B-splines whose support intersect the interior of the interval I, and by
construction, one of them must clearly be Bj . This ensures that the coefficient bj that is
needed in step 3 is computed in step 2.

Algorithm 8.1 generalises the simplified procedure in Section 8.1.1 in that I is no
longer required to be a single knot interval in [tj , tj+d+1]. This gives us considerably
more flexibility in the choice of local approximation methods. Note in particular that the
classical global methods are included as special cases since we may choose I = [td+1, tn+1].

As we mentioned in Section 8.1.1, we do not get good approximation methods for free.
If Pf is going to be a decent approximation to f we must make sure that the local methods
used in step 2 reproduce polynomials or splines.
Lemma 8.2. Suppose that all the local methods used in step 2 of Algorithm 8.1 reproduce
all polynomials of some degree d1 ≤ d. Then the global approximation method P will also
reproduce polynomials of degree d1. If all the local methods reproduce all the splines in
Sd,t,I then P will reproduce the whole spline space Sd,t.

Proof. The proof of both claims follow just as in the special case in Section 8.1.1, but let
us even so go through the proof of the second claim. We want to prove that if all the local
methods P I reproduce the local spline spaces Sd,t,I and f is a spline in Sd,t, then Pf = f .
If f is in Sd,t we clearly have f =

∑n
i=1 b̂iBi for appropriate coefficients (b̂i)n

i=1, and the
restriction of f to I can be represented as f I =

∑µ
i=ν−d b̂iBi. Since P I reproduces Sd,t,I

we will have P If I = f I or
µ∑

i=ν−d

biBi =
µ∑

i=ν−d

b̂iBi.

The linear independence of the B-splines involved over the interval I then allows us to
conclude that bi = b̂i for all indices i involved in this sum. Since j is one the indices
we therefore have cj = bj = b̂j . When this holds for all values of j we obviously have
Pf = f .



164 CHAPTER 8. QUASI-INTERPOLATION METHODS

The reader should note that if I is a single knot interval, the local spline space Sd,t,I

reduces to the space of polynomials of degree d. Therefore, when I is a single knot interval,
local reproduction of polynomials of degree d leads to global reproduction of the whole
spline space.

Why does reproduction of splines or polynomials ensure that P will be a good ap-
proximation method? We will study this in some detail in Chapter 9, but as is often
the case the basic idea is simple: The functions we want to approximate are usually nice
and smooth, like the exponential functions or the trigonometric functions. An important
property of polynomials is that they approximate such smooth functions well, although if
the interval becomes wide we may need to use polynomials of high degree. A quantitative
manifestation of this phenomenon is that if we perform a Taylor expansion of a smooth
function, then the error term will be small, at least if the degree is high enough. If our
approximation method reproduces polynomials it will pick up the essential behaviour of
the Taylor polynomial, while the approximation error will pick up the essence of the error
in the Taylor expansion. The approximation method will therefore perform well whenever
the error in the Taylor expansion is small. If we reproduce spline functions we can es-
sentially reproduce Taylor expansions on each knot interval as long as the function we
approximate has at least the same smoothness as the splines in the spline space we are
using. So instead of increasing the polynomial degree because we are approximating over a
wide interval, we can keep the spacing in the knot vector small and thereby keep the poly-
nomial degree of the spline low. Another way to view this is that by using splines we can
split our function into suitable pieces that each can be approximated well by polynomials
of relatively low degree, even though this is not possible for the complete function. By
constructing quasi-interpolants as outlined above we obtain approximation methods that
actually utilise this approximation power of polynomials on each subinterval. In this way
we can produce good approximations even to functions that are only piecewise smooth.

8.2 Some quasi-interpolants

It is high time to try out our new tool for constructing approximation methods. Let us
see how some simple methods can be obtained from Algorithm 8.1.

8.2.1 Piecewise linear interpolation

Perhaps the simplest, local approximation method is piecewise linear interpolation. We
assume that our n-dimensional spline space S1,t is given and that t is a 2-regular knot
vector. For simplicity we also assume that all the interior knots are simple. The function
f is given on the interval [t2, tn+1]. To determine cj we choose the local interval to be
I = [tj , tj+1]. In this case, we have no interior knots in I so S1,t,I is the two dimensional
space of linear polynomials. A basis for this space is given by the two linear B-splines
Bj−1 and Bj , restricted to the interval I. A natural candidate for our local approximation
method is interpolation at tj andtj+1. On the interval I, the B-spline Bj−1 is a straight
line with value 1 at tj and value 0 at tj+1, while Bj is a straight line with value 0 at tj
and value 1 at tj+1. The local interpolant can therefore be written

P I
1 f(x) = f(tj)Bj−1(x) + f(tj+1)Bj(x).

From Algorithm 8.1 we know that the coefficient multiplying Bj is the one that should
multiply Bj also in our global approximation, in other words cj = λjf = f(tj+1). The



8.2. SOME QUASI-INTERPOLANTS 165

global approximation is therefore

P1f(x) =
n∑

i=1

f(tj+1)Bj(x).

Since a straight line is completely characterised by its value at two points, the local ap-
proximation will always give zero error and therefore reproduce all linear polynomials.
Then we know from Lemma 8.2 that P1 will reproduce all splines S1,t.

This may seem like unnecessary formalism in this simple case where the conclusions
are almost obvious, but it illustrates how the construction works in a very transparent
situation.

8.2.2 A 3-point quadratic quasi-interpolant

In our repertoire of approximation methods, we only have one local, quadratic method,
Schoenberg’s variation diminishing spline. With the quasi-interpolant construction it is
easy to construct alternative, local methods. Our starting point is a quadratic spline space
S2,t based on a 3-regular knot vector with distinct interior knots, and a function f to be
approximated by a scheme which we denote P2. The support of the B-spline Bj is [tj , tj+3],
and we choose our local interval as I = [tj+1, tj+2]. Since I is one knot interval, we need a
local approximation method that reproduces quadratic polynomials. One such method is
interpolation at three distinct points. We therefore choose three distinct points xj,0, xj,1

and xj,2 in I. Some degree of symmetry is always a good guide so we choose

xj,0 = tj+1, xj,1 =
tj+1 + tj+2

2
, xj,2 = tj+2.

To determine P I
2 f we have to solve the linear system of three equations in the three

unknowns bj−1, bj and bj+1 given by

P I
2 f(xj,k) =

j+1∑
i=j−1

biBi(xj,k) = f(xj,k), for k = 0, 1, 2.

With the aid of a tool like Mathematica we can solve these equations symbolically. The
result is that

bj =
1
2
(−f(tj+1) + 4f(tj+3/2)− f(tj+2)

)
,

where tj+3/2 = (tj+1 + tj+2)/2. The expressions for bj−1 and bj+1 are much more com-
plicated and involve the knots tj and tj+3 as well. The simplicity of the expression for bj
stems from the fact that xj,1 was chosen as the midpoint between tj+1 and tj+2.

The expression for bj is valid whenever tj+1 < tj+2 which is not the case for j = 1 and
j = n since t1 = t2 = t3 and tn+1 = tn+2 = tn+3. But from Lemma 2.12 we know that any
spline g in S3,t will interpolate its first and last B-spline coefficient at these points so we
simply set c1 = f(t1) and cn = f(tn+1).

Having constructed the local interpolants, we have all the ingredients necessary to



166 CHAPTER 8. QUASI-INTERPOLATION METHODS

construct the quasi-interpolant P2f =
∑n

j=1 λjfBj , namely

λjf =


f(t1), when j = 1;

1
2
(−f(xj,0) + 4f(xj,1)− f(xj,2), when 1 < j < n;

f(tn+1), when j = n.

Since the local approximation reproduced the local spline space (the space of quadratic
polynomials in this case), the complete quasi-interpolant will reproduce the whole spline
space S2,t.

8.2.3 A 5-point cubic quasi-interpolant

The most commonly used splines are cubic, so let us construct a cubic quasi-interpolant.
We assume that the knot vector is 4-regular and that the interior knots are all distinct. As
usual we focus on the coefficient cj = λjf . It turns out that the choice I = [tj+1, tj+3] is
convenient. The local spline space S3,t,I has dimension 5 and is spanned by the (restriction
of the) B-splines {Bi}j+2

i=j−2. We want the quasi-interpolant to reproduce the whole spline
space and therefore need P I to reproduce S3,t,I . We want to use interpolation as our local
approximation method, and we know from Chapter 5 that spline interpolation reproduces
the spline space as long as it has a unique solution. The solution is unique if the coefficient
matrix of the resulting linear system is nonsingular, and from Theorem 5.18 we know that
a B-spline coefficient matrix is nonsingular if and only if its diagonal is positive. Since the
dimension of S3,t,I is 5 we need 5 interpolation points. We use the three knots tj+1, tj+2

and tj+3 and one point from each of the knot intervals in I,

xj,0 = tj+1, xj,1 ∈ (tj+1, tj+2), xj,2 = tj+2, xj,3 ∈ (tj+2, tj+3), xj,4 = tj+3.

Our local interpolation problem is

j+2∑
i=j−2

biBi(xj,k) = f(xj,k), for k = 0, 1, . . . , 4.

In matrix-vector form this becomes
Bj−2(xj,0) Bj−1(xj,0) 0 0 0
Bj−2(xj,1) Bj−1(xj,1) Bj(xj,1) Bj(xj,1) 0
Bj−2(xj,2) Bj−1(xj,2) Bj(xj,2) Bj(xj,2) Bj(xj,2)

0 Bj−1(xj,3) Bj(xj,3) Bj(xj,3) Bj(xj,3)
0 0 0 Bj(xj,4) Bj(xj,4)



bj−2

bj−1

bj
bj+1

bj+2

 =


f(xj,0)
f(xj,1)
f(xj,2)
f(xj,3)
f(xj,4)


when we insert the matrix entries that are zero. Because of the way we have chosen the
interpolation points we see that all the entries on the diagonal of the coefficient matrix
will be positive so the matrix is nonsingular. The local problem therefore has a unique
solution and will reproduce S3,t,I . The expression for λjf is in general rather complicated,
but in the special case where the width of the two knot intervals is equal and xj,2 and xj,4

are chosen as the midpoints of the two intervals we end up with

λjf =
1
6
(
f(tj+1)− 8f(tj+3/2) + 20f(tj+2)− 8f(tj+5/2) + f(tj+3)

)



8.2. SOME QUASI-INTERPOLANTS 167

where tj+3/2 = (tj+1 + tj+2)/2 and tj+5/2 = (tj+2 + tj+3)/2. Unfortunately, this formula
is not valid when j = 1, 2, n − 1 or n since then one or both of the knot intervals in I
collapse to one point. However, our procedure is sufficiently general to derive alternative
formulas for computing the first two coefficients. The first value of j for which the general
procedure works is j = 3. In this case I = [t4, t6] and our interpolation problem involves
the B-splines {Bi}5

i=1. This means that when we solve the local interpolation problem
we obtain B-spline coefficients multiplying all of these B-splines, including B1 and B2.
There is nothing stopping us from using the same interval I for computation of several
coefficients, so in addition to obtaining λ3f from this local interpolant, we also use it as
our source for the first two coefficients. In the special case when the interior knots are
uniformly distributed and x3,1 = t9/2 and x3,3 = t11/2, we find

λ1f = f(t4),

λ2f =
1
18

(
−5f(t4) + 40f(t9/2)− 36f(t5) + 18f(t11/2)− f(t6)

)
.

In general, the second coefficient will be much more complicated, but the first one will not
change.

This same procedure can obviously be used to determine values for the last two coef-
ficients, and under the same conditions of uniformly distributed knots and interpolation
points we find

λn−1f =
1
18

(
−f(tn−1) + 18f(tn−1/2)− 36f(tn) + 40f(tn+1/2)− 5f(tn+1)

)
,

λnf = f(tn+1).

8.2.4 Some remarks on the constructions

In all our constructions, we have derived specific formulas for the B-spline coefficients
of the quasi-interpolants in terms of the function f to be approximated, which makes it
natural to use the notation cj = λjf . To do this, we had to solve the local linear system
of equations symbolically. When the systems are small this can be done quite easily with
a computer algebra system like Maple or Mathematica, but the solutions quickly become
complicated and useless unless the knots and interpolation points are nicely structured,
preferably with uniform spacing. The advantage of solving the equations symbolically is of
course that we obtain explicit formulas for the coefficients once and for all and can avoid
solving equations when we approximate a particular function.

For general knots, the local systems of equations usually have to be solved numeric-
ally, but quasi-interpolants can nevertheless prove very useful. One situation is real-time
processing of data. Suppose we are in a situation where data are measured and need to
be fitted with a spline in real time. With a global approximation method we would have
to recompute the whole spline each time we receive new data. This would be acceptable
at the beginning, but as the data set grows, we would not be able to compute the new
approximation quickly enough. We could split the approximation into smaller pieces at
regular intervals, but quasi-interpolants seem to be a perfect tool for this kind of applic-
ation. In a real-time application the data will often be measured at fixed time intervals,
and as we have seen it is then easy to construct quasi-interpolants with explicit formulas
for the coefficients. Even if this is not practicable because the explicit expressions are not



168 CHAPTER 8. QUASI-INTERPOLATION METHODS

available or become too complicated, we just have to solve a simple, linear set of equations
to determine each new coefficient. The important fact is that the size of the system is
constant so that we can handle almost arbitrarily large data sets, the only limitation being
available storage space.

Another important feature of quasi-interpolants is their flexibility. In our constructions
we have assumed that the function we approximate can be evaluated at any point that
we need. This may sometimes be the case, but often the function is only partially known
by a few discrete, measured values at specific abscissas. The procedure for constructing
quasi-interpolants has so much inherent freedom that it can be adapted in a number of
ways to virtually any specific situation, whether the whole data set is available a priori or
the approximation has to be produced in real-time as the data is generated.

8.3 Quasi-interpolants are linear operators

Now that we have seen some examples of quasi-interpolants, let us examine them from a
more general point of view. The basic ingredient of quasi-interpolants is the computation
of each B-spline coefficient, and we have have used the notation cj = λjf = λj(f) to
indicate that each coefficient depends on f . It is useful to think of λj as a ’function’ that
takes an ordinary function as input and gives a real number as output; such ’functions’
are usually called functionals. If we go back and look at our examples, we notice that in
each case the dependency of our coefficient functionals on f is quite simple: The function
values occur explicitly in the coefficient expressions and are not multiplied or operated
on in any way other than being added together and multiplied by real numbers. This is
familiar from linear algebra.

Definition 8.3. In the construction of quasi-interpolants, each B-spline coefficient is com-
puted by evaluating a linear functional. A linear functional λ is a mapping from a suitable
space of functions S into the real numbers R with the property that if f and g are two
arbitrary functions in S and α and β are two real numbers then

λ(αf + βg) = αλf + βλg.

Linearity is a necessary property of a functional that is being used to compute B-spline
coefficients in the construction of quasi-interpolants. If one of the coefficient functionals are
not linear, then the resulting approximation method is not a quasi-interpolant. Linearity
of the coefficient functionals leads to linearity of the approximation scheme.

Lemma 8.4. Any quasi-interpolant P is a linear operator, i.e., for any two admissible
functions f and g and any real numbers α and β,

P (αf + βg) = αPf + βPg.

Proof. Suppose that the linear coefficient functionals are (λj)n
j=1. Then we have

P (αf + βg) =
n∑

i=1

λj(αf + βg)Bi = α

n∑
i=1

λjfBi + β

n∑
i=1

λjgBi = αPf + βPg

which demonstrates the linearity of P .



8.4. DIFFERENT KINDS OF LINEAR FUNCTIONALS AND THEIR USES 169

This lemma is simple, but very important since there are so many powerful mathem-
atical tools available to analyse linear operators. In Chapter 9 we are going to see how
well a given function can be approximated by splines. We will do this by applying basic
tools in the analysis of linear operators to some specific quasi-interpolants.

8.4 Different kinds of linear functionals and their uses

In our examples of quasi-interpolants in Section 8.2 the coefficient functionals were all
linear combinations of function values, but there are other functionals that can be useful.
In this section we will consider some of these and how they turn up in approximation
problems.

8.4.1 Point functionals

Let us start by recording the form of the functionals that we have already encountered.
The coefficient functionals in Section 8.2 were all in the form

λf =
∑̀
i=0

wif(xi) (8.2)

for suitable numbers (wi)`
i=0 and (xi)`

i=0. Functionals of this kind can be used if a procedure
is available to compute values of the function f or if measured values of f at specific points
are known. Most of our quasi-interpolants will be of this kind.

Point functionals of this type occur naturally in at least two situations. The first is
when the local approximation method is interpolation, as in our examples above. The
second is when the local approximation method is discrete least squares approximation.
As a simple example, suppose our spline space is S2,t and that in determining cj we
consider the single knot interval I = [tj+1, tj+2]. Suppose also that we have 10 function
values at the points (xj,k)9k=0 in this interval. Since the dimension of S2,t,I is 3, we cannot
interpolate all 10 points. The solution is to perform a local least squares approximation
and determine the local approximation by minimising the sum of the squares of the errors,

min
g∈S2,t,I

9∑
k=0

(
g(xj,k)− f(xj,k)

)2
.

The result is that cj will be a linear combination of the 10 function values,

cj = λjf =
9∑

k=0

wj,kf(xj,k).

8.4.2 Derivative functionals

In addition to function values, we can also compute derivatives of a function at a point.
Since differentiation is a linear operator it is easy to check that a functional like λf = f ′′(xi)
is linear. The most general form of a derivative functional based at a point that we will
consider is

λf =
r∑

k=0

wkf
(k)(x)



170 CHAPTER 8. QUASI-INTERPOLATION METHODS

where x is a suitable point in the domain of f . We will construct a quasi-interpolant based
on this kind of coefficient functionals in Section 8.6.1. By combining derivative functionals
based at different points we obtain

λf =
∑̀
i=0

ri∑
k=0

wi,kf
(k)(xi)

where each ri is a nonnegative integer. A typical functional of this kind is the divided
difference of a function when some of the arguments are repeated. Such functionals are
fundamental in interpolation with polynomials. Recall that if the same argument occurs
r + 1 times in a divided difference, this signifies that all derivatives of order 0, 1, . . . , r
are to be interpolated at the point. Note that the point functionals above are derivative
functionals with ri = 0 for all i.

8.4.3 Integral functionals

The final kind of linear functionals that we will consider are based on integration. A
typical functional of this kind is

λf =
∫ b

a
f(x)φ(x) dx (8.3)

where φ is some fixed function. Because of basic properties of integration, it is easy to
check that this is a linear functional. Just as with point functionals, we can combine
several functionals like the one in (8.3) together,

λf = w0

∫ b

a
f(x)φ0(x) dx+ w1

∫ b

a
f(x)φ1(x) dx+ · · ·+ w`

∫ b

a
f(x)φ`(x) dx,

where (wi)`
i=0 are real numbers and {φi}`

i=0 are suitable functions. Note that the right-
hand side of this equation can be written in the form (8.3) if we define φ by

φ(x) = w0φ0(x) + w1φ1(x) + · · ·+ w`φ`(x).

Point functionals can be considered a special case of integral functionals. For if φε is a
function that is positive on the interval Iε = (xi − ε, xi + ε) and

∫
Iε
φε = 1, then we know

from the mean value theorem that∫
Iε

f(x)φε(x) dx = f(ξ)

for some ξ in Iε, as long as f is a nicely behaved (for example continuous) function. If we
let ε tend to 0 we clearly have

lim
ε→0

∫
Iε

f(x)φε(x) dx = f(xi), (8.4)

so by letting φ in (8.3) be a nonnegative function with small support around x and unit
integral we can come as close to point interpolation as we wish.

If we include the condition that
∫ b
a φdx = 1, then the natural interpretation of (8.3)

is that λf gives a weighted average of the function f , with φ(x) giving the weight of the



8.4. DIFFERENT KINDS OF LINEAR FUNCTIONALS AND THEIR USES 171

function value f(x). A special case of this is when φ is the constant φ(x) = 1/(b−a); then
λf is the traditional average of f . From this point of view the limit (8.4) is quite obvious:
if we take the average of f over ever smaller intervals around xi, the limit must be f(xi).

The functional
∫ b
a f(x) dx is often referred to as the first moment of f . As the name

suggests there are more moments. The i+ 1st moment of f is given by∫ b

a
f(x)xi dx.

Moments of a function occur in many applications of mathematics like physics and the
theory of probability.

8.4.4 Preservation of moments and interpolation of linear functionals

Interpolation of function values is a popular approximation method, and we have used it
repeatedly in this book. However, is it a good way to approximate a given function f?
Is it not a bit haphazard to pick out a few, rather arbitrary, points on the graph of f
and insist that our approximation should reproduce these points exactly and then ignore
all other information about f? As an example of what can happen, suppose that we are
given a set of function values

(
xi, f(xi)

)m

i=1
and that we use piecewise linear interpolation

to approximate the underlying function. If f has been sampled densely and we interpolate
all the values, we would expect the approximation to be good, but consider what happens
if we interpolate only two of the values. In this case we cannot expect the resulting
straight line to be a good approximation. If we are only allowed to reproduce two pieces
of information about f we would generally do much better by reproducing its first two
moments, i.e., the two integrals

∫
f(x) dx and

∫
f(x)x dx, since this would ensure that the

approximation would reproduce some of the average behaviour of f .
Reproduction of moments is quite easy to accomplish. If our approximation is g, we

just have to ensure that the conditions∫ b

a
g(x)xi dx =

∫ b

a
f(x)xi dx, i = 0, 1, . . . , n− 1

are enforced if we want to reproduce n moments. In fact, this can be viewed as a gener-
alisation of interpolation if we view interpolation to be preservation of the values of a set
of linear functionals (ρi)n

i=1,

ρig = ρif, for i = 1, 2, . . . , n. (8.5)

When ρif =
∫ b
a f(x)xi−1 dx for i = 1, . . . , n we preserve moments, while if ρif = f(xi) for

i = 1, . . . , n we preserve function values. Suppose for example that g is required to lie in
the linear space spanned by the basis {ψj}n

j=1. Then we can determine coefficients (cj)n
j=1

so that g(x) =
∑n

j=1 cjψj(x) satisfies the interpolation conditions (8.5) by inserting this
expression for g into (8.5). By exploiting the linearity of the functionals, we end up with
the n linear equations

c1ρi(ψ1) + c2ρi(ψ2) + · · ·+ cnρi(ψn) = ρi(f), i = 1, . . . , n



172 CHAPTER 8. QUASI-INTERPOLATION METHODS

in the n unknown coefficients (ci)n
i=1. In matrix-vector form this becomes

ρ1(ψ1) ρ1(ψ2) · · · ρ1(ψn)
ρ2(ψ1) ρ2(ψ2) · · · ρ1(ψn)

...
...

. . .
...

ρn(ψ1) ρn(ψ2) · · · ρn(ψn)



c1
c2
...
cn

 =


ρ1(f)
ρ2(f)

...
ρn(f)

 . (8.6)

A fundamental property of interpolation by point functionals is that the only polynomial
of degree d that interpolates the value 0 at d + 1 points is the zero polynomial. This
corresponds to the fact that when ρif = f(xi) and ψi(x) = xi for i = 0, . . . , d, the matrix
in (8.6) is nonsingular. Similarly, it turns out that the only polynomial of degree d whose
d+ 1 first moments vanish is the zero polynomial, which corresponds to the fact that the
matrix in (8.6) is nonsingular when ρif =

∫ b
a f(x)xi dx and ψi(x) = xi for i = 0, . . . , d.

If the equations (8.6) can be solved, each coefficient will be a linear combination of the
entries on the right-hand side,

cj = λjf = wj,1ρ1(f) + wj,2ρ2(f) + · · ·+ wj,nρn(f).

We recognise this as (8.2) when the ρi correspond to point functionals, whereas we have

cj = λjf = wj,1

∫ b

a
f(x) dx+ wj,2

∫ b

a
f(x)x dx+ · · ·+ wj,n

∫ b

a
f(x)xn−1 dx

=
∫ b

a
f(x)

(
wj,1 + wj,2x+ · · ·+ wj,nx

n−1
)
dx

when the ρi correspond to preservation of moments.

8.4.5 Least squares approximation

In the discussion of point functionals, we mentioned that least squares approximation leads
to coefficients that are linear combinations of point functionals when the error is measured
by summing up the squares of the errors at a given set of data points. This is naturally
termed discrete least squares approximation. In continuous least squares approximation
we minimise the integral of the square of the error. If the function to be approximated is
f and the approximation g is required to lie in a linear space S, we solve the minimisation
problem

min
g∈S

∫ b

a

(
f(x)− g(x)

)2
dx.

If S is spanned by (ψi)n
i=1, we can write g as g =

∑n
i=1 ciψ and the minimisation problem

becomes

min
(c1,...,cn)∈Rn

∫ b

a

(
f(x)−

n∑
i=1

ciψ(x)
)2
dx.

To determine the minimum we differentiate with respect to each coefficient and set the
derivatives to zero which leads to the so-called normal equations

n∑
i=1

ci

∫ b

a
ψi(x)ψj(x) dx =

∫ b

a
ψj(x)f(x) dx, for j = 1, . . . , n.



8.5. ALTERNATIVE WAYS TO CONSTRUCT COEFFICIENT FUNCTIONALS 173

If we use the notation above and introduce the linear functionals ρif =
∫ b
a ψi(x)f(x)

represented by the basis functions, we recognise this linear system as an instance of (8.6).
In other words, least squares approximation is nothing but interpolation of the linear
functionals represented by the basis functions. In particular, preservation of moments
corresponds to least squares approximation by polynomials.

8.4.6 Computation of integral functionals

In our discussions involving integral functionals we have tacitly assumed that the values
of integrals like

∫ b
a f(x)ψ(x) dx are readily available. This is certainly true if both f and ψ

are polynomials, and it turns out that it is also true if both f and ψ are splines. However,
if f is some general function, then the integral cannot usually be determined exactly, even
when ψi is a polynomial. In such situations we have to resort to numerical integration
methods. Numerical integration amounts to computing an approximation to an integral
by evaluating the function to be integrated at certain points, multiplying the function
values by suitable weights, and then adding up to obtain the approximate value of the
integral, ∫ b

a
f(x) dx ≈ w0f(x0) + w1f(x1) + · · ·+ w`f(x`).

In other words, when it comes to practical implementation of integral functionals we have
to resort to point functionals. In spite of this, integral functionals and continuous least
squares approximation are such important concepts that it is well worth while to have an
exact mathematical description. And it is important to remember that we do have exact
formulas for the integrals of polynomials and splines.

8.5 Alternative ways to construct coefficient functionals

In Section 8.2 we constructed three quasi-interpolants by following the general procedure
in Section 8.1. In this section we will deduce two alternative ways to construct quasi-
interpolants.

8.5.1 Computation via evaluation of linear functionals

Let us use the 3-point, quadratic quasi-interpolant in subsection 8.2.2 as an example. In
this case we used I = [tj+1, tj+2] as the local interval for determining cj = λjf . This
meant that the local spline space S2,t,I become the space of quadratic polynomials on I

which has dimension three. This space is spanned by the three B-splines {Bi}j+1
i=j−1 and

interpolation at the three points

tj+1, tj+3/2 =
tj+1 + tj+2

2
, tj+2

allowed us to determine a local interpolant gI =
∑j+1

i=j−1 biBi whose middle coefficient bj
we used as λjf .

An alternative way to do this is as follows. Since gI is constructed by interpolation at
the three points tj+1, tj+3/2 and tj+2, we know that λjf can be written in the form

λjf = w1f(tj+1) + w2f(tj+3/2) + w3f(tj+2). (8.7)



174 CHAPTER 8. QUASI-INTERPOLATION METHODS

We want to reproduce the local spline space which in this case is just the space of quadratic
polynomials. This means that (8.7) should be valid for all quadratic polynomials. Repro-
duction of quadratic polynomials can be accomplished by demanding that (8.7) should be
exact when f is replaced by the three elements of a basis for S2,t,I . The natural basis to
use in our situation is the B-spline basis {Bi}j+1

i=j−1. Inserting this, we obtain the system

λjBj−1 = w1Bj−1(tj+1) + w2Bj−1(tj+3/2) + w3Bj−1(tj+2),

λjBj = w1Bj(tj+1) + w2Bj(tj+3/2) + w3Bj(tj+2),

λjBj+1 = w1Bj+1(tj+1) + w2Bj+1(tj+3/2) + w3Bj+1(tj+2).

in the three unknowns w1, w2 and w3. The left-hand sides of these equations are easy to
determine. Since λjf denotes the jth B-spline coefficient, it is clear that λjBi = δi,j , i.e.,
it is 1 when i = j and 0 otherwise.

To determine the right-hand sides we have to compute the values of the B-splines. For
this it is useful to note that the wj ’s in equation (8.7) cannot involve any of the knots
other than tj+1 and tj+2 since a general polynomial knows nothing about these knots.
This means that we can choose the other knots so as to make life simple for ourselves.
The easiest option is to choose the first three knots equal to tj+1 and the last three equal
to tj+2. But then we are in the Bézier setting, and we know that the B-splines in this
case will have the same values if we choose tj+1 = 0 and tj+2 = 1. The knots are then
(0, 0, 0, 1, 1, 1) which means that tj+3/2 = 1/2. If we denote the B-splines on these knots
by {B̃i}3

i=1, we can replace Bi in (8.5.1) by B̃i−j+2 for i = 1, 2, 3. We can now simplify
(8.5.1) to

0 = w1B̃1(0) + w2B̃1(1/2) + w3B̃1(1),

1 = w1B̃2(0) + w2B̃2(1/2) + w3B̃2(1),

0 = w1B̃3(0) + w2B̃3(1/2) + w3B̃3(1).

If we insert the values of the B-splines we end up with the system

w1 + w2/4 = 0,
w2/2 = 1,

w2/4 + w3 = 0,

which has the solution w1 = −1/2, w2 = 2 and w3 = −1/2. In conclusion we have

λjf =
−f(tj+1) + 4f(tj+3/2)− f(tj+2)

2
,

as we found in Section 8.2.2.
This approach to determining the linear functional works quite generally and is often

the easiest way to compute the weights (wi).

8.5.2 Computation via explicit representation of the local approximation

There is a third way to determine the expression for λjf . For this we write down an explicit
expression for the approximation gI . Using the 3-point quadratic quasi-interpolant as our



8.6. TWO QUASI-INTERPOLANTS BASED ON POINT FUNCTIONALS 175

example again, we introduce the abbreviations a = tj+1, b = tj+3/2 and c = tj+2. We can
write the local interpolant gI as

gI(x) =
(x− b)(x− c)
(a− b)(a− c)

f(a) +
(x− a)(x− c)
(b− a)(b− c)

f(b) +
(x− a)(x− b)
(c− a)(c− b)

f(c),

as it is easily verified that gI then satisfies the three interpolation conditions gI(a) = f(a),
gI(b) = f(b) and gI(c) = f(c). What remains is to write this in terms of the B-spline
basis {Bi}j+1

i=j−1 and pick out coefficient number j. Recall that we have the notation γj(f)
for the jth B-spline coefficient of a spline f . Coefficient number j on the left-hand side is
λjf . On the right, we find the B-spline coefficients of each of the three polynomials and
add up. The numerator of the first polynomial is (x− b)(x− c) = x2 − (b+ c)x+ bc. To
find the jth B-spline of this polynomial, we make use of Corollary 3.5 which tells that,
when d = 2, we have γj(x2) = tj+1tj+2 = ac and γj(x) = (tj+1 + tj+2)/2 = (a+ c)/2 = b,
respectively. The jth B-spline coefficient of the first polynomial is therefore

γj

(ac− (b+ c)b+ bc

(a− b)(a− c)

)
=

ac− b2

(a− b)(a− c)
(8.8)

which simplifies to −1/2 since b = (a + c)/2. Similarly, we find that the jth B-spline
coefficient of the second and third polynomials are 2 and −1/2, respectively. The complete
jth B-spline coefficient of the right-hand side of (8.8) is therefore −f(a)/2+2f(b)−f(c)/2.
In total, we have therefore obtained

λjf = γj(gI) = −f(tj+1)
2

+ 2f(tj+3/2)−
f(tj+2)

2
,

as required.
This general procedure also works generally, and we will see another example of it in

Section 8.6.1.

8.6 Two quasi-interpolants based on point functionals

In this section we consider two particular quasi-interpolants that can be constructed for
any polynomial degree. They may be useful for practical approximation problems, but
we are going to use them to prove special properties of spline functions in Chapters 9
and 10. Both quasi-interpolants are based on point functionals: In the first case all the
points are identical which leads to derivative functionals, in the second case all the points
are distinct.

8.6.1 A quasi-interpolant based on the Taylor polynomial

A very simple local, polynomial approximation is the Taylor polynomial. This leads to a
quasi-interpolant based on derivative functionals. Even though we use splines of degree d,
our local approximation can be of lower degree; in Theorem 8.5 this degree is given by r.
Theorem 8.5 (de Boor-Fix). Let r be an integer with 0 ≤ r ≤ d and let xj be a number
in [tj , tj+d+1] for j = 1, . . . , n. Consider the quasi-interpolant

Qd,rf =
n∑

j=1

λj(f)Bj,d, where λj(f) =
1
d!

r∑
k=0

(−1)kDd−kρj,d(xj)Dkf(xj), (8.9)



176 CHAPTER 8. QUASI-INTERPOLATION METHODS

and ρj,d(y) = (y − tj+1) · · · (y − tj+d). Then Qd,r reproduces all polynomials of degree r
and Qd,d reproduces all splines in Sd,t.

Proof. To construct Qd,r we let I be the knot interval that contains xj and let the local
approximation gI = P I

r f be the Taylor polynomial of degree r at the point xj ,

gI(x) = P I
r f(x) =

r∑
k=0

(x− xj)k

k!
Dkf(xj).

To construct the linear functional λjf , we have to find the B-spline coefficients of this
polynomial. We use the same approach as in Section 8.5.2. For this Marsden’s identity,

(y − x)d =
n∑

j=1

ρj,d(y)Bj,d(x),

will be useful. Setting y = xj , we see that the jth B-spline coefficient of (xj − x)d is
ρj,d(xj). Differentiating Marsden’s identity d − k times with respect to y, setting y = xi

and rearranging, we obtain the jth B-spline coefficient of (x− xj)k/k! as

γj

(
(x− xj)k/k!

)
= (−1)kDd−kρj,d(xj)/d! for k = 0, . . . , r.

Summing up, we find that

λj(f) =
1
d!

r∑
k=0

(−1)kDd−kρj,d(xj)Dkf(xj).

Since the Taylor polynomial of degree r reproduces polynomials of degree r, we know
that the quasi-interpolant will do the same. If r = d, we reproduce polynomials of degree
d which agree with the local spline space Sd,t,I since I is a single knot interval. The
quasi-interpolant therefore reproduces the whole spline space Sd,t in this case.

Example 8.6. We find

Ddρj,d(y)/d! = 1, Dd−1ρj,d(y)/d! = y − t∗j , where t∗j =
tj+1 + · · ·+ tj+d

d
. (8.10)

For r = 1 and xj = t∗j we therefore obtain

Qd,rf =

nX
j=1

f(t∗j )Bj,d

which is the Variation Diminishing spline approximation. For d = r = 2 we obtain

Q2,2f =

nX
j=1

�
f(xj)− (xj − tj+3/2)Df(xj) +

1

2
(xj − tj+1)(xj − tj+2)D

2f(xj)
�
Bj,2. (8.11)

while for d = r = 3 and xj = tj+2 we obtain

Q3,3f =
nX

j=1

�
f(tj+2)+

1

3
(tj+3−2tj+2+tj+1)Df(tj+2)−

1

6
(tj+3−tj+2)(tj+2−tj+1)D

2f(tj+2)
�
Bj,3. (8.12)

We leave the detailed derivation as a problem for the reader.



8.6. TWO QUASI-INTERPOLANTS BASED ON POINT FUNCTIONALS 177

Since Qd,df = f for all f ∈ Sd,t it follows that the coefficients of a spline f =∑n
j=1 cjBj,d can be written in the form

cj =
1
d!

d∑
k=0

(−1)kDd−kρj,d(xj)Dkf(xj), for j = 1, . . . , n, (8.13)

where xj is any number in [tj , tj+d+1].

8.6.2 Quasi-interpolants based on evaluation

Another natural class of linear functionals is the one where each λj used to define Q is
constructed by evaluating the data at r + 1 distinct points

tj ≤ xj,0 < xj,1 < · · · < xj,r ≤ tj+d+1 (8.14)

located in the support [tj , tj+d+1] of the B-spline Bj,d for j = 1, . . . , n. We consider the
quasi-interpolant

Pd,rf =
n∑

j=1

λj,r(f)Bj,d, (8.15)

where

λj,r(f) =
r∑

k=0

wj,kf(xj,k). (8.16)

From the preceding theory we know how to choose the constants wj,k so that Pd,rf = f
for all f ∈ πr.
Theorem 8.7. Let Sd,t be a spline space with a d+ 1-regular knot vector t = (ti)n+d+1

i=1 .
Let (xj,k)r

k=0 be ` + 1 distinct points in [tj , tj+d+1] for j = 1, . . . , n, and let wj,k be the
jth B-spline coefficient of the polynomial

pj,k(x) =
r∏

r=0
r 6=k

x− xj,r

xj,k − xj,r
.

Then Pd,rf = f for all f ∈ πr, and if r = d and all the numbers (xj,k)r
k=0 lie in one

subinterval
tj ≤ t`j

≤ xj,0 < xj,1 < · · · < xj,r ≤ t`j+1 ≤ tj+d+1 (8.17)

then Pd,df = f for all f ∈ Sd,t.

Proof. It is not hard to see that

pj,k(xj,i) = δk,i, k, i = 0, . . . , r

so that the polynomial

P I
d,rf(x) =

r∑
k=0

pj,k(x)f(xj,k)

satisfies the interpolation conditions P I
d,rf(xj,r) = f(xj,r) for all j and r. The result

therefore follows from the general recipe.



178 CHAPTER 8. QUASI-INTERPOLATION METHODS

In order to give examples of quasi-interpolants based on evaluation we need to know
the B-spline coefficients of the polynomials pj,k. We will return to this in more detail in
Chapter 9, see (9.14) in the case r = d. A similar formula can be given for r < d.
Example 8.8. For r = 1 we have

pj,0(x) =
xj,1 − x

xj,1 − xj,0
, pj,1(x) =

x− xj,0

xj,1 − xj,0

and (8.15) takes the form

Pd,1f =

nX
j=1

�
xj,1 − t∗j

xj,1 − xj,0
f(xj,0) +

t∗j − xj,0

xj,1 − xj,0
f(xj,1)

�
Bj,d. (8.18)

This quasi-interpolant reproduces straight lines for any choice of tj ≤ xj,0 < xj,1 ≤ tj+d+1. If we choose
xj,0 = t∗j the method simplifies to

P̃d,1f =

nX
j=1

f(t∗j )Bj,d. (8.19)

This is again the Variation diminishing method of Schoenberg.

Exercises for Chapter 8

8.1 In this exercise we assume that the points (xi,k) and the spline space Sd,t are as in
Theorem 8.7.

a) Show that for r = d = 2

P2,2f =
n∑

j=1

[
(tj+1 − xj,1)(tj+2 − xj,2) + (tj+2 − xj,1)(tj+1 − xj,2)

2(xj,0 − xj,1)(xj,0 − xj,2)
f(xj,0)

+
(tj+1 − xj,0)(tj+2 − xj,2) + (tj+2 − xj,0)(tj+1 − xj,2)

2(xj,1 − xj,0)(xj,1 − xj,2)
f(xj,1)

+
(tj+1 − xj,0)(tj+2 − xj,1) + (tj+2 − xj,0)(tj+1 − xj,1)

2(xj,2 − xj,0)(xj,2 − xj,1)
f(xj,2)

]
Bj,2

(8.20)

b) Show that (8.20) reduces to the operator (9.4) for a suitable choice of (xj,k)2k=0.

8.2 Derive the following operators Qd,l and show that they are exact for πr for the
indicated r. Again we the points (xj,k) and the spline space Sd,t are is in Theorem 8.7.
Which of the operators reproduce the whole spline space?

a) Qd,0f =
∑n

j=1 f(xj)Bj,d, (r = 0).

b) Qd,1f =
∑n

j=1

[
f(xj) + (tj − xj)Df(xj)

]
Bj,d, (r = 1).

c) Q̃d,1f =
∑n

j=1 f(t∗j )Bj,d, (r = 1).
d)

Q2,2f =
n∑

j=1

[
f(xj)− (xj − tj+3/2)Df(xj)

+
1
2
(xj − tj+1)(xj − tj+2)D2f(xj)

]
Bj,2, (r=2).



8.6. TWO QUASI-INTERPOLANTS BASED ON POINT FUNCTIONALS 179

e) Q̃2,2f =
∑n

j=1

[
f(tj+3/2)− 1

2(tj+2 − tj+1)2D2f(tj+3/2)
]
Bj,2, (r = 2).

f)

Q3,3f =
n∑

j=1

[
f(tj+2) +

1
3
(tj+3 − 2tj+2 + tj+1)Df(tj+2)

− 1
6
(tj+3 − tj+2)(tj+2 − tj+1)D2f(tj+2)

]
Bj,3, (r = 3).


