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CHAPTER 9

Approximation theory and stability

Polynomials of degree d have d+1 degrees of freedom, namely the d+1 coefficients relative
to some polynomial basis. It turns out that each of these degrees of freedom can be utilised
to gain approximation power so that the possible rate of approximation by polynomials of
degree d is hd+1, see Section 9.1. The meaning of this is that when a smooth function is
approximated by a polynomial of degree d on an interval of length h, the error is bounded
by Chd+1, where C is a constant that is independent of h. The exponent d + 1 therefore
controls how fast the error tends to zero with h.

When several polynomials are linked smoothly together to form a spline, each polyno-
mial piece has d+1 coefficients, but some of these are tied up in satisfying the smoothness
conditions. It therefore comes as a nice surprise that the approximation power of splines of
degree d is the same as for polynomials, namely hd+1, where h is now the largest distance
between two adjacent knots. In passing from polynomials to splines we have therefore
gained flexibility without sacrificing approximation power. We prove this in Section 9.2,
by making use of some of the simple quasi-interpolants that we constructed in Chapter 8;
it turns out that these produce spline approximations with the required accuracy.

The quasi-interpolants also allow us to establish two important properties of B-splines.
The first is that B-splines form a stable basis for splines, see Section 9.3. This means
that small perturbations of the B-spline coefficients can only lead to small perturbations
in the spline, which is of fundamental importance for numerical computations. We have
already seen that an important consequence of the stability of the B-spline basis is that
the control polygon of a spline converges to the spline as the knot spacing tends to zero;
this was proved in Section 4.1.

9.1 The distance to polynomials

We start by determining how well a given a real valued function f defined on an interval
[a, b] can be approximated by a polynomial of degree d. To measure the error in the
approximation we will use the uniform norm which for a bounded function g defined on
an interval [a, b] is defined by

||g||∞,[a,b] = sup
a≤x≤b

∣∣g(x)
∣∣.
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182 CHAPTER 9. APPROXIMATION THEORY AND STABILITY

Whenever we have an approximation p to f we can then measure the error by ||f −
p||∞,a,b. There are many possible approximations to f by polynomials of degree d, and
the approximation that makes the error as small as possible is of course of special interest.
This error is referred to as the distance from f to the space πd of polynomials of degree
≤ d and is defined formally as

dist∞,[a,b](f, πd) = inf
p∈πd

||f − p||∞,[a,b].

In order to bound this approximation error, we have to place some restrictions on the
functions that we approximate, and we will only consider functions with piecewise con-
tinuous derivatives. Such functions lie in a space that we denote Ck

∆[a, b] for some integer
k ≥ 0. A function f lies in this space if it has k− 1 continuous derivatives on the interval
[a, b], and the kth derivative Dkf is continuous everywhere except for a finite number of
points in the interior (a, b), given by ∆ = (zj). At the points of discontinuity ∆ the limits
from the left and right given by Dkf(zj+) and Dkf(zj−), should exist so all the jumps
are finite. If there are no continuous derivatives we write C∆[a, b] = C0

∆[a, b]. Note that
we will often refer to these spaces without stating explicitly what the singularities ∆ are.

An upper bound for the distance of f to polynomials of degree d is fairly simple to
give by choosing a particular approximation, namely Taylor expansion.
Theorem 9.1. Given a polynomial degree d and a function f in Cd+1

∆ [a, b], then

dist∞,[a,b](f, πd) ≤ Kdh
d+1||Dd+1f ||∞,[a,b],

where h = b− a and

Kd =
1

2d+1(d + 1)!
depends only on d.

Proof. Consider the truncated Taylor series of f at the midpoint m = (a + b)/2 of [a, b].

Tdf(x) =
d∑

k=0

(x−m)k

k!
Dkf(m), for x ∈ [a, b].

Since Tdf is a polynomial of degree d we clearly have

dist∞,[a,b](f, πd) ≤ ||f − Tdf ||∞,[a,b]. (9.1)

To study the error we use the integral form of the remainder in the Taylor expansion,

f(x)− Tdf(x) =
1
d!

∫ x

m
(x− y)dDd+1f(y)dy,

which is valid for any x ∈ [a, b]. If we restrict x to the interval [m, b] we obtain

|f(x)− Tdf(x)| ≤ ||Dd+1f ||∞,[a,b]
1
d!

∫ x

m
(x− y)ddy.

The integral is given by

1
d!

∫ x

m
(x− y)ddy =

1
(d + 1)!

(x−m)d+1 ≤ 1
(d + 1)!

(
h

2

)d+1

,
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so for x ≥ m we have

|f(x)− Tdf(x)| ≤ 1
2d+1(d + 1)!

hd+1||Dd+1f ||∞,[a,b].

By symmetry this estimate must also hold for x ≤ m and combining it with (9.1) completes
the proof of the theorem.

We remark that the best possible constant Kd can actually be computed. In fact, for
each f ∈ Cd+1[a, b] there is a point ξ ∈ [a, b] such that

dist∞,[a,b](f, πd) =
2

4d+1(d + 1)!
hd+1|Dd+1f(ξ)|

Applying this formula to the function f(x) = xd+1 we see that the exponent d + 1 in hd+1

is best possible.

9.2 The distance to splines

Just as we defined the distance from a function f to the space of polynomials of degree
d we can define the distance from f to a spline space. Our aim is to show that on one
knot interval, the distance from f to a spline space of degree d is essentially the same as
the distance from f to the space of polynomials of degree d on a slightly larger interval,
see Theorem 9.2 and Corollary 9.11. Our strategy is to consider the cases d = 0, 1 and 2
separately and then generalise to degree d. The main ingredient in the proof is a family
of simple approximation methods called quasi-interpolants. As well as leading to good
estimates of the distance between f and a spline space, many of the quasi-interpolants are
good, practical approximation methods.

We consider a spline space Sd,t where d is a nonnegative integer and t = (ti)n+d+1
i=1 is a

d + 1 regular knot vector. We set

a = t1, b = tn+d+1, hj = tj+1 − tj , h = max
1≤j≤n

hj .

Given a function f we consider the distance from f to Sd,t defined by

dist∞,[a,b](f, Sd,t) = inf
g∈Sd,t

||f − g||∞,[a,b].

We want to show the following.

Theorem 9.2. Let the polynomial degree d and the function f in Cd+1
∆ [a, b] be given.

Then for any spline space Sd,t

dist∞,[a,b](f, Sd,t) ≤ Kdh
d+1||Dd+1f ||∞,[a,b], (9.2)

where the constant Kd depends on d, but not on f, h or t.

We will prove this theorem by constructing a spline Pdf such that

|f(x)− Pdf(x)| ≤ Kdh
d+1||Dd+1f ||∞,[a,b], x ∈ [a, b] (9.3)
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for a constant Kd depending only on d. The approximation Pdf will be on the form

Pdf =
n∑

i=1

λi(f)Bi,d

where λi is a rule for computing the ith B-spline coefficient. We will restrict ourselves to
rules λi like

λi(f) =
d∑

k=0

wi,kf(xi,k)

where the points (xi,k)d
k=0 all lie in one knot interval and (wi,k)d

k=0 are suitable coefficients.
These kinds of approximation methods are called quasi-interpolants.

9.2.1 The constant and linear cases

We first prove Theorem 9.2 in the low degree cases d = 0 and d = 1. For d = 0 the knots
form a partition a = t1 < · · · < tn+1 = b of [a, b] and the B-spline Bi,0 is the characteristic
function of the interval [ti, ti+1) for i = 1, . . . , n−1, while Bn,0 is the characteristic function
of the closed interval [tn, tn+1]. We consider the step function

g = P0f =
n∑

i=1

f(ti+1/2)Bi,0,

where ti+1/2 = (ti + ti+1)/2. Fix x ∈ [a, b] and let l be an integer such that tl ≤ x < tl+1.
We then have

f(x)− P0f(x) = f(x)− f(tl+1/2) =
∫ x

tl+1/2

Df(y)dy

so
|f(x)− P0f(x)| ≤ |x− tl+1/2| ||Df ||∞,[tl,tl+1] ≤

h

2
||Df ||∞,[a,b].

In this way we obtain (9.2) with K0 = 1/2.
In the linear case d = 1 we define P1f to be the piecewise linear interpolant to f on t

g = P1f =
n∑

i=1

f(ti+1)Bi,1.

Proposition 5.2 gives an estimate of the error in linear interpolation and by applying this
result on each interval we obtain

||f − P1f ||∞,[a,b] ≤
h2

8
||D2f ||∞,[a,b]

which is (9.2) with K1 = 1/8.

9.2.2 The quadratic case

Consider next the quadratic case d = 2. We shall approximate f by the quasi-interpolant
P2f that we constructed in Section 8.2.2. Its properties is summarised in the following
lemma.
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Lemma 9.3. Suppose t = (ti)n+3
i=1 is a knot vector with ti+3 > ti for i = 1, . . . , n. The

operator

P2f =
n∑

i=1

λi(f)Bi,2,t, with λi(f) = −1
2
f(ti+1) + 2f(ti+3/2)−

1
2
f(ti+2) (9.4)

satisfies P2p = p for all p ∈ π2.

To show that (9.3) holds for d = 2 we now give a sequence of small lemmas.
Lemma 9.4. Let P2(f) be as in (9.4). Then

|λi(f)| ≤ 3||f ||∞,[ti+1,ti+2], i = 1, . . . , n. (9.5)

Proof. Fix an integer i. Then

|λi(f)| = | − 1
2
f(ti+1) + 2f(ti+3/2)−

1
2
f(ti+2)| ≤ (

1
2

+ 2 +
1
2
)||f ||∞,[ti+1,ti+2]

from which the result follows.

Lemma 9.5. For ` = 3, . . . , n we can bound P2f on a subinterval [t`, t`+1] by

||P2f ||∞,[t`,t`+1] ≤ 3||f ||∞,[t`−1,t`+2]. (9.6)

Proof. Fix x ∈ [t`, t`+1]. Since the B-splines are nonnegative and form a partition of
unity we have

|P2f(x)| =
∣∣∣ ∑̀
i=`−2

λi(f)Bi,2,t(x)
∣∣∣ ≤ max

`−2≤i≤`
|λi(f)|

≤ 3 max
`−2≤i≤`

||f ||∞,[ti+1,ti+2] = 3||f ||∞,[t`−1,t`+2],

where we used Lemma 9.4. This completes the proof.

The following lemma shows that locally, the spline P2f approximates f essentially as
well as the best quadratic polynomial.
Lemma 9.6. For ` = 3, . . . , n the error f − P2f on the interval [t`, t`+1] is bounded by

||f − P2f ||∞,[t`,t`+1] ≤ 4 dist∞,[t`−1,t`+2](f, π2). (9.7)

Proof. Let p ∈ π2 be any quadratic polynomial. Since P2p = p and P2 is a linear operator,
application of (9.6) to f − p yields∣∣f(x)− (P2f)(x)

∣∣ =
∣∣f(x)− p(x)−

(
(P2f)(x)− p(x)

)∣∣
≤

∣∣f(x)− p(x)
∣∣ +

∣∣P2(f − p)(x)
∣∣

≤ (1 + 3)||f − p||∞,[t`−1,t`+2].

(9.8)

Since p is arbitrary we obtain (9.7).

We can now prove (9.2) for d = 2. For any interval [a, b] Theorem 9.1 with d = 2 gives

dist∞,[a,b](f, π2) ≤ K2h
3||D3f ||∞,[a,b],

where h = b − a and K2 = 1/(233!). Combining this estimate on [a, b] = [t`−1, t`+2] with
(9.7) we obtain (9.3) and hence (9.2).
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9.2.3 The general case

The general case is analogous to the quadratic case, but the details are more complicated.
Recall that for d = 2 we picked three points xi,k = ti+1 + k(ti+2 − ti+1)/2 for k = 0, 1, 2
in each subinterval [ti+1, ti+2] and then chose constants wi,k for k = 0, 1, 2 such that the
operator

P2f =
n∑

i=1

λi(f)Bi,2,t, with λi(f) = wi,0f(xi,0) + wi,1f(xi,1) + wi,2f(xi,2),

reproduced quadratic polynomials. We will follow the same strategy for general degree.
The resulting quasi-interpolant is a special case of the one given in Theorem 8.7.

Suppose that d ≥ 2 and fix an integer i such that ti+d > ti+1. We pick the largest
subinterval [ai, bi] = [tl, tl+1] of [ti+1, ti+d] and define the uniformly spaced points

xi,k = ai +
k

d
(bi − ai), for k = 0, 1, . . . , d (9.9)

in this interval. Given f ∈ C∆[a, b] we define Pdf ∈ Sd,t by

Pdf(x) =
n∑

i=1

λi(f)Bi,d(x), where λi(f) =
d∑

k=0

wi,kf(xi,k). (9.10)

The following lemma shows how the coefficients (wi,k)d
k=0 should be chosen so that Pdp = p

for all p ∈ πd.
Lemma 9.7. Suppose that in (9.10) the functionals λi are given by λi(f) = f(ti+1) if
ti+d = ti+1, while if ti+d > ti+1 we set

wi,k = γi(pi,k), k = 0, 1, . . . , d, (9.11)

where γi(pi,k) is the ith B-spline coefficient of the polynomial

pi,k(x) =
d∏

j=0
j 6=k

x− xi,j

xi,k − xi,j
. (9.12)

Then the operator Pd in (9.10) satisfies Pdp = p for all p ∈ πd.

Proof. Suppose first that ti+d > ti+1. Any p ∈ πd can be written in the form

p(x) =
d∑

k=0

p(xi,k)pi,k(x). (9.13)

For if we denote the function on the right by q(x) then q(xi,k) = p(xi,k) for k = 0, 1, . . . ,
d, and since q ∈ πd it follows by the uniqueness of the interpolating polynomial that p = q.
Now, by linearity of γi we have

λi(p) =
d∑

k=0

wi,kp(xi,k) =
d∑

k=0

γi(pi,k)p(xi,k)

= γi

( d∑
k=0

pi,kp(xi,k)
)

= γi(p).
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If ti+1 = ti+d we know that a spline of degree d with knots t agrees with its i + 1st
coefficient at ti+1. In particular, for any polynomial p we have λi(p) = f(ti+1) = γi(p).
Alltogether this means that

Pd(p) =
n∑

i=1

λi(p)Bi,d(x) =
n∑

i=1

γi(p)Bi,d(x) = p

which confirms the lemma.

The B-spline coefficients of pi,k can be found from the following lemma.
Lemma 9.8. Given a spline space Sd,t and numbers v1, . . . , vd. The ith B-spline coefficient
of the polynomial p(x) = (x− v1) . . . (x− vd) can be written

γi(p) =
1
d!

∑
(j1,...,jd)∈Πd

(ti+j1 − v1) · · · (ti+jd
− vd), (9.14)

where Πd is the set of all permutations of the integers 1, 2, . . . , d.

Proof. By Theorem 4.16 we have

γi(p) = B[p](ti+1, . . . , ti+d),

where B[p] is the blossom of p. It therefore suffices to verify that the expression (9.14) for
γi(p) satisfies the three properties of the blossom, but this is immediate.

As an example, for d = 2 the set of all permutations of 1, 2 are Π2 = {(1, 2), (2, 1)}
and therefore

γi

(
(x− v1)(x− v2)

)
=

1
2

(
(ti+1 − v1)(ti+2 − v2) + (ti+2 − v1)(ti+1 − v2)

)
.

We can now give a bound for λi(f).
Theorem 9.9. Let Pd(f) =

∑n
i=1 λi(f)Bi,d be the operator in Lemma 9.7. Then

|λi(f)| ≤ Kd||f ||∞,[ti+1,ti+d], i = 1, . . . , n, (9.15)

where

Kd =
2d

d!
[d(d− 1)]d (9.16)

depends only on d.

Proof. Fix an integer i. From Lemma 9.8 we have

wi,k =
∑

(j1,...,jd)∈Πd

d∏
r=1

(
ti+jr − vr

xi,k − vr

)
/d!, (9.17)

where (vr)d
r=1 = (xi,0, . . . , xi,k−1, xi,k+1, . . . , xi,d). and Πd denotes the set of all permuta-

tions of the integers 1, 2, . . . , d. Since the numbers ti+jr and vr belongs to the interval
[ti+1, ti+d] for all r we have the inequality

d∏
r=1

(ti+jr − vr) ≤ (ti+d − ti+1)d.
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We also note that xi,k − vr = (k− q)(bi−ai)/d for some q in the range 1 ≤ q ≤ d but with
q 6= k. Taking the product over all r we therefore obtain

d∏
r=1

|xi,k − vr| =
d∏

q=0
q 6=k

|k − q|
d

(bi − ai) ≥ k!(d− k)!
(

bi − ai

d

)d

≥ k!(d− k)!
(

ti+d − ti+1

d(d− 1)

)d

for all values of k and r since [ai, bi] is the largest subinterval of [ti+1, ti+d]. Since the sum
in (9.17) contains d! terms, we find

d∑
k=0

|wi,k| ≤
[d(d− 1)]d

d!

d∑
k=0

(
d

k

)
=

2d

d!
[d(d− 1)]d = Kd

and hence

|λi(f)| ≤ ||f ||∞,[ti+1,ti+d]

d∑
k=0

|wi,k| ≤ Kd||f ||∞,[ti+1,ti+d] (9.18)

which is the required inequality.

From the bound for λi(f) we easily obtain a bound for the norm of Pdf .
Theorem 9.10. For d + 1 ≤ l ≤ n and f ∈ C∆[a, b] we have the bound

||Pdf ||∞,[tl,tl+1] ≤ Kd||f ||∞,[tl−d+1,tl+d], (9.19)

where Kd is the constant in Theorem 9.9.

Proof. Fix x ∈ [tl, tl+1]. Since the B-splines are nonnegative and form a partition of unity
we have by Theorem 9.9

|Pdf(x)| = |
l∑

i=l−d

λi(f)Bi,d,t(x)| ≤ max
l−d≤i≤l

|λi(f)|

≤ Kd max
l−d≤i≤l

||f ||∞,[ti+1,ti+d] = Kd||f ||∞,[tl−d+1,tl+d]

This completes the proof.

The following corollary shows that Pdf locally approximates f essentially as well as
the best polynomial approximation of f of degree d.
Corollary 9.11. For l = d+1, . . . , n the error f−Pdf on the interval [tl, tl+1] is bounded
by

||f − Pdf ||∞,[tl,tl+1] ≤ (1 + Kd) dist∞,[tl−d+1,tl+d](f, πd), (9.20)

where Kd is the constant in Theorem 9.9

Proof. We argue exactly as in the quadratic case. Let p ∈ πd be any polynomial in πd.
Since Pdp = p and Pd is a linear operator we therefore have∣∣f(x)− (Pdf)(x)

∣∣ =
∣∣f(x)− p(x)−

(
(Pdf)(x)− p(x)

)∣∣
≤

∣∣f(x)− p(x)
∣∣ +

∣∣Pd(f − p)(x)
∣∣

≤ (1 + Kd)||f − p||∞,[tl−d+1,tl+d].

Since p is arbitrary we obtain (9.20).
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We can now prove (9.2) for general d. By Theorem 9.1 we have for any interval [a, b]

dist∞,[a,b](f, πd) ≤ Kdh
d+1||Dd+1f ||∞,[a,b],

where h = b−a and Kd only depends on d. Combining this estimate on [a, b] = [tl−d+1, tl+d]
with (9.20) we obtain (9.3) and hence (9.2).

9.3 Stability of the B-spline basis

In order to compute with polynomials or splines we need to choose a basis to represent
the functions. If a basis is to be suitable for computer manipulations then it should be
reasonably insensitive to round-off errors. In particular, functions with ‘small’ function

values should have ‘small’ coefficients and vice versa. A basis with this property is said
to be well conditioned or stable. In this section we will study the relationship between a
spline and its coefficients quantitatively by introducing the condition number of a basis.

We have already seen that the size of a spline is bounded by its B-spline coefficients.
There is also a reverse inequality, i.e., a bound on the B-spline coefficients in terms of the
size of f . There are several reasons why such inequalities are important. In Section 4.1
we made use of this fact to estimate how fast the control polygon converges to the spline
as more and more knots are inserted. A more direct consequence is that small relative
perturbations in the coefficients can only lead to small changes in the function values.
Both properties reflect the fact that the B-spline basis is well conditioned.

9.3.1 A general definition of stability

The stability of a basis can be defined quite generally. Instead of considering polynomials,
we can consider a general linear vector space where we can measure the size of the elements
through a norm; this is called a normed linear space.
Definition 9.12. Let U be a normed linear space. A basis (φj) for U is said to be stable
with respect to a vector norm || · || if there are small positive constants C1 and C2 such
that

C−1
1

∥∥(cj)
∥∥ ≤ ∥∥∥∑

j

cjφj

∥∥∥ ≤ C2

∥∥(cj)
∥∥, (9.21)

for all sets of coefficients c = (cj). Let C∗1 and C∗2 denote the smallest possible values of
C1 and C2 such that (9.21) holds. The condition number of the basis is then defined to
be κ = κ((φi)i) = C∗1C∗2 .

At the risk of confusion, we have used the same symbol both for the norm in U and
the vector norm of the coefficients. In our case U will of course be some spline space Sd,t

and the basis (φj) will be the B-spline basis. The norms we will consider are the p-norms
which are defined by

||f ||p = ||f ||p,[a,b] =
(∫ b

a
|f(x)|pdx

)1/p

, and ||c||p =
( ∑

j

|cj |p
)1/p

where f is a function on the interval [a, b] and c = (cj) is a real vector, and p is a real
number in the range 1 ≤ p < ∞ for any real number. For p = ∞ the norms are defined by

||f ||∞ = ||f ||∞,[a,b] = max
a≤x≤b

|f(x)|, and ||c||∞ =
∥∥(cj)

∥∥
∞ = max

j
|cj |,
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In practice, the most important norms are the 1-, 2- and ∞-norms.
In Definition 9.12 we require the constants C1 and C2 to be ‘small’, but how small is

‘small’? There is no unique answer to this question, but it is typically required that C1

and C2 should be independent of the dimension n of U, or at least grow very slowly with
n. Note that we always have κ ≥ 1, and κ = 1 if and only if we have equality in both
inequalities in (9.21).

A stable basis is desirable for many reasons, and the constant κ = C1C2 crops up in
many different contexts. The condition number κ does in fact act as a sort of derivative
of the basis and gives a measure of how much an error in the coefficients is magnified in a
function value.

Proposition 9.13. Suppose (φj) is a stable basis for U. If f =
∑

j cjφj and g =
∑

j bjφj

are two elements in U with f 6= 0, then

||f − g||
||f ||

≤ κ
||c− b||
||c||

, (9.22)

where κ is the condition number of the basis as in Definition 9.12.

Proof. From (9.21), we have the two inequalities ||f − g|| ≤ C2||(cj − bj)|| and 1/||f || ≤
C1/||(cj)||. Multiplying these together gives the result.

If we think of g as an approximation to f , then (9.22) says that the relative error in
f − g is bounded by at most κ times the relative error in the coefficients. If κ is small,
then a small relative error in the coefficients gives a small relative error in the function
values. This is important in floating point calculations on a computer. A function is
usually represented by its coefficients relative to some basis. Normally, the coefficients are
real numbers that must be represented inexactly as floating point numbers in a computer.
This round-off error means that the computed

spline, here g, will differ from the exact f . Proposition 9.13 shows that this is not so
serious if the perturbed coefficients of g are close to those of f and the basis is stable.

Proposition 9.13 also provides some information as to what are acceptable values of
C∗1 and C∗2 . If for example κ = C∗1C∗2 = 100 we risk losing 2 decimal places in evaluation
of a function; exactly how much accuracy one can afford to lose will of course vary.

One may wonder whether there are any unstable polynomial bases. It turns out that
the power basis 1, x, x2, . . . , on the interval [0, 1] is unstable even for quite low degrees.
Already for degree 10, one risks losing as much as 4 or 5 decimal digits in the process of
computing the value of a polynomial on the interval [0, 1] relative to this basis, and other
operations such as numerical root finding is even more sensitive.

9.3.2 The condition number of the B-spline basis. Infinity norm

Since splines and B-splines are defined via the knot vector, it is quite conceivable that
the condition number of the B-spline basis could become arbitrarily large for certain knot
configurations, for example in the limit when two knots merge into one. We will now prove
that the condition number of the B-spline basis can be bounded independently of the knot
vector so it cannot grow beyond all bounds when the knots vary.

The best constant C∗2 in Definition 9.12 can be found quite easily for the B-spline basis.
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Lemma 9.14. In all spline spaces Sd,t the bound

∥∥∥ m∑
i=1

biBi,d

∥∥∥
∞,[t1,tm+1+d]

≤ ||b||∞

holds. Equality holds if bi = 1 for all i and the knot vector t = (ti)n+d
i=0 is d + 1-extended;

in this case C∗2 = 1.

Proof. This follows since the B-splines are nonnegative and sum to one.

To find a bound for the constant C1 we shall use the operator Pd given by (9.3). We
recall that Pd reproduces polynomials of degree d, i.e., Pdp = p for all p ∈ πd. We now
show that more is true; we have in fact that Pd reproduces all splines in Sd,t.

Theorem 9.15. The operator

Pdf =
n∑

i=1

λi(f)Bi,d

given by (9.3) reproduces all splines in Sd,t, Pdf = f for all f ∈ Sd,t.

Proof. We first show that

λj(Bk,d) = δj,k, for j, k = 1, . . . , n. (9.23)

Fix i and let
Ii = [ai, bj ] = [tli , tli+1]

be the interval used to define λi(f). We consider the polynomials

φk = Bk,d|Ii for li − d ≤ k ≤ li

obtained by restricting the B-splines {Bk,d}li
k=li−d to the interval Ii. Since Pd reproduces

πd we have

φk(x) = (Pdφk)(x) =
li∑

j=li−d

λj(φk)φj(x)

for x in the interval Ii. By the linear independence of the the polynomials (φk) we therefore
obtain

λj(Bk,d) = λj(φk) = δj,k, for j, k = li − d, . . . , li.

In particular we have λiBi,d = 1 since li − d ≤ i ≤ li. For k < li − d or k > li the support
of Bk,d has empty intersection with Ii so λi(Bk,d) = 0 for these values of k. Thus (9.23)
holds for all k.

To complete the proof suppose f =
∑n

k=1 ckBk,d is a spline in Sd,t. From (9.23) we
then have

Qf =
n∑

j=1

( n∑
k=1

ckλj(Bk,d)
)
Bj,d =

n∑
j=1

cjBj,d = f.
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To obtain an upper bound for C∗1 we note that the leftmost inequality in (9.21) is
equivalent to

|bi| ≤ C1||f ||, i = 1, . . . ,m.

Lemma 9.16. There is a constant Kd, depending only on the polynomial degree d, such
that for all splines f =

∑m
i=1 biBi,d in some given spline space Sd,t the inequality

|bi| ≤ Kd||f ||[ti+1,ti+d] (9.24)

holds for all i.

Proof. Consider the operator Pd given in Lemma 9.7. Since Pdf = f we have bi = λi(f).
The result now follows from (9.15)

Note that if [a, b] ⊆ [c, d], then ||f ||∞,[a,b] ≤ ||f ||∞,[c,d]. From (9.24), we therefore
conclude that |bi| ≤ Kd‖f‖∞,[t1,tm+1+d] for all i or briefly ||b|| ≤ Kd‖f‖. The constant Kd

can therefore be used as C1 in Definition 9.12 in the case where the norm is the ∞-norm.
Combining the two lemmas we obtain the following theorem.
Theorem 9.17. There is a constant K1, depending only on the polynomial degree d,
such that for all spline spaces Sd,t and all splines f =

∑m
i=1 biBi,d ∈ Sd,t with B-spline

coefficients b = (bi)m
i=1 the inequalities

K−1
1 ||b||∞ ≤ ||f ||∞,[t1,tm+d] ≤ ||b||∞ (9.25)

hold.

The condition number of the B-spline basis on the knot vector t with respect to the ∞-
norm is usually denoted κd,∞,t. By taking the supremum over all knot vectors we obtain
the knot independent condition number κd,∞,

κd,∞ = sup
t

κd,∞,t.

Theorem 9.17 shows that κd,∞ is bounded above by K1.
The estimate Kd for C∗1 given by (9.16) is a number which grows quite rapidly with

d and does not indicate that the B-spline basis is stable . However, it is possible to find
better estimates for the condition number, and it is known that the B-spline basis is very
stable , at least for moderate values of d. To determine the condition number is relatively
simple for d ≤ 2; we have κ0,∞ = κ1,∞ = 1 and κ2,∞ = 3. For d ≥ 3 it has recently been
shown that κd,∞ = O(2d). The first few values are known numerically to be κ3,∞ ≈ 5.5680
and κ4,∞ ≈ 12.088.

9.3.3 The condition number of the B-spline basis. p-norm

With 1 ≤ p ≤ ∞ and q such that 1/p+1/q = 1 we recall the Hölder inequality for functions∫ b

a
|f(x)g(x)|dx ≤ ||f ||p||g||q,

and the Hölder inequality for sums
m∑

i=1

|bici| ≤ ||(bi)m
i=1||p||(ci)m

i=1||q.
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We also note that for any polynomial g ∈ πd and any interval [a, b] we have

|g(x)| ≤ C

b− a

∫ b

a
|g(x)| dx, x ∈ [a, b], (9.26)

where the constant C only depends on the degree d. This follows on [a, b] = [0, 1] since
all norms on a finite dimensional vector space are equivalent, and then on an arbitrary
interval [a, b] by a change of variable.

In order to generalise the stability result (9.25) to arbitrary p-norms we need to scale
the B-splines differently. We define the p-norm B-splines to be identically zero if ti+d+1 = ti
and

Bp
i,d,t =

(
d + 1

ti+d+1 − ti

)1/p

Bi,d,t, (9.27)

otherwise.

Theorem 9.18. There is a constant K, depending only on the polynomial degree d, such
that for all 1 ≤ p ≤ ∞, all spline spaces Sd,t and all splines f =

∑m
i=1 biB

p
i,d ∈ Sd,t with

p-norm B-spline coefficients b = (bi)m
i=1 the inequalities

K−1||b||p ≤ ||f ||p,[t1,tm+d] ≤ ||b||p (9.28)

hold.

Proof. We first prove the upper inequality. Let γi = (d+1)/(ti+d+1− ti) for i = 1, . . . ,m
and set [a, b] = [t1, tm+d+1]. Using the Hölder inequality for sums we have

∑
i

|biB
p
i,d| =

∑
i

|biγ
1/p
i B

1/p
i,d |B

1/q
i,d ≤

( ∑
i

|bi|pγiBi,d

)1/p( ∑
i

Bi,d

)1/q

.

Raising this to the pth power and using the partition of unity property we obtain the
inequality ∣∣ ∑

i

biB
p
i,d(x)

∣∣p ≤ ∑
i

|bi|pγiBi,d(x), x ∈ R.

Therefore, recalling that
∫

Bi,d(x)dx = 1/γi we find

||f ||pp,[a,b] =
∫ b

a

∣∣ ∑
i

biB
p
i,d(x)

∣∣p dx ≤
∑

i

|bi|pγi

∫ b

a
Bi,d(x) dx =

∑
i

|bi|p.

Taking pth roots proves the upper inequality.
Consider now the lower inequality. Recall from (9.24) that we can bound the B-spline

coefficients in terms of the infinity norm of the function. In terms of the coefficients bi of
the p-norm B-splines we obtain from (9.24) for all i(

d + 1
ti+d+1 − ti

)1/p

|bi| ≤ K1 max
ti+1≤x≤ti+d

|f(x)|,
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where the constant K1 only depends on d. Taking max over a larger subinterval, using
(9.26), and then Hölder for integrals we find

|bi| ≤ K1(d + 1)−1/p
(
ti+d+1 − ti

)1/p| max
ti≤x≤ti+d+1

|f(x)|

≤ CK1(d + 1)−1/p
(
ti+d+1 − ti

)−1+1/p
∫ ti+d+1

ti

|f(y)| dy

≤ CK1(d + 1)−1/p

( ∫ ti+d+1

ti

|f(y)|p dy

)1/p

Raising both sides to the pth power and summing over i we obtain∑
i

|bi|p ≤ CpKp
1 (d + 1)−1

∑
i

∫ ti+d+1

ti

|f(y)|p dy ≤ CpKp
1 ||f ||

p
p,[a,b].

Taking pth roots we obtain the lower inequality in (9.28) with K = CK1.

Exercises for Chapter 9

9.1 In this exercise we will study the order of approximation by the Schoenberg Variation
Diminishing Spline Approximation of degree d ≥ 2. This approximation is given by

Vdf =
n∑

i=1

f(t∗i )Bi,d, with t∗i =
ti+1 + · · · ti+d

d
.

Here Bi,d is the ith B-spline of degree d on a d+1-regular knot vector t = (ti)n+d+1
i=1 .

We assume that ti+d > ti for i = 2, . . . , n. Moreover we define the quantities

a = t1, b = tn+d+1, h = max
1≤i≤n

ti+1 − ti.

We want to show that Vdf is an O(h2) approximation to a sufficiently smooth f .

We first consider the more general spline approximation

Ṽdf =
n∑

i=1

λi(f)Bi,d, with λi(f) = wi,0f(xi,0) + wi,1f(xi,1).

Here xi,0 and xi,1 are two distinct points in [ti, ti+d] and wi,0, wi,1 are constants,
i = 1, . . . , n.

Before attempting to solve this exercise the reader might find it helpful to review
Section 9.2.2

a) Suppose for i = 1, . . . , n that wi,0 and wi,1 are such that

wi,0 + wi,1 = 1
xi,0wi,0 + xi,1wi,1 = t∗i

Show that then Ṽdp = p for all p ∈ π1. (Hint: Consider the polynomials
p(x) = 1 and p(x) = x.)
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b) Show that if we set xi,0 = t∗i for all i then Ṽdf = Vdf for all f , regardless of
how we choose the value of xi,1.
In the rest of this exercise we set λi(f) = f(t∗i ) for i = 1, . . . , n, i.e. we consider
Vdf . We define the usual uniform norm on an interval [c, d] by

||f ||[c,d] = sup
c≤x≤d

|f(x)|, f ∈ C∆[c, d].

c) Show that for d + 1 ≤ l ≤ n

||Vdf ||[tl,tl+1] ≤ ||f ||[t∗l−d,t∗l ], f ∈ C∆[a, b].

d) Show that for f ∈ C∆[t∗l−d, t
∗
l ] and d + 1 ≤ l ≤ n

||f − Vdf ||[tl,tl+1] ≤ 2 dist[t∗l−d,t∗l ](f, π1).

e) Explain why the following holds for d + 1 ≤ l ≤ n

dist[t∗l−d,t∗l ](f, π1) ≤
(t∗l − t∗l−d)

2

8
||D2f ||[t∗l−d,t∗l ].

f) Show that the following O(h2) estimate holds

||f − Vdf ||[a,b] ≤
d2

4
h2||D2f ||[a,b].

(Hint: Verify that t∗l − t∗l−d ≤ hd. )

9.2 In this exercise we want to perform a numerical simulation experiment to determine
the order of approximation by the quadratic spline approximations

V2f =
n∑

i=1

f(t∗i )Bi,2, with t∗i =
ti+1 + ti+2

2
,

P2f =
n∑

i=1

(
− 1

2
f(ti+1) + 2f(t∗i )−

1
2
f(ti+2)

)
Bi,2.

We want to test the hypotheses f − V2f = O(h2) and f − P2f = O(h3) where h =
maxi ti+1− ti. We test these on the function f(x) = sin x on [0, π] for various values
of h. Consider for m ≥ 0 and nm = 2 + 2m the 3-regular knot vector tm = (tmi )nm+3

i=1

on the interval [0, π] with uniform spacing hm = π2−m. We define

V m
2 f =

n∑
i=1

f(tmi+3/2)B
m
i,2, with tmi =

tmi+1 + tmi+2

2
,

Pm
2 f =

n∑
i=1

(
− 1

2
f(tmi+1) + 2f(tmi+3/2)−

1
2
f(tmi+2)

)
Bm

i,2,
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and Bm
i,2 is the ith quadratic B-spline on tm. As approximations to the norms

||f − V m
2 f ||[0,π] and ||f − Pm

2 f ||[0,π] we use

Em
V = max

0≤j≤100
|f(jπ/100)− V m

2 f(jπ/100)|,

Em
P = max

0≤j≤100
|f(jπ/100)− Pm

2 f(jπ/100)|.

Write a computer program to compute numerically the values of Em
V and Em

P for
m = 0, 1, 2, 3, 4, 5, and the ratios Em

V /Em−1
V and Em

P /Em−1
P for 1 ≤ m ≤ 5. What

can you deduce about the approximation order of the two methods?

Make plots of V m
2 f , Pm

2 f , f − V m
2 f , and f − Pm

2 f for some values of m.

9.3 Suppose we have m ≥ 3 data points
(
xi, f(xi)

)m

i=1
sampled from a function f , where

the abscissas x = (xi)m
i=1 satisfy x1 < · · · < xm. In this exercise we want to derive

a local quasi-interpolation scheme which only uses the data values at the xi’s and
which has O(h3) order of accuracy if the y-values are sampled from a smooth function
f . The method requires m to be odd.

From x we form a 3-regular knot vector by using every second data point as a knot

t = (tj)n+3
j=1 = (x1, x1, x1, x3, x5, . . . , xm−2, xm, xm, xm), (9.29)

where n = (m + 3)/2. In the quadratic spline space S2,t we can then construct the
spline

Q2f =
n∑

j=1

λj(f)Bj,2, (9.30)

where the B-spline coefficients λj(f)n
j=1 are defined by the rule

λj(f) =
1
2

(
− θ−1

j f(x2j−3) + θ−1
j (1 + θj)2f(x2j−2)− θjf(x2j−1)

)
, (9.31)

for j = 1, . . . , n. Here θ1 = θn = 1 and

θj =
x2j−2 − x2j−3

x2j−1 − x2j−2

for j = 2, . . . , n− 1.

a) Show that Q2 simplifies to P2 given by (9.4) when the data abscissas are uni-
formly spaced.

b) Show that Q2p = p for all p ∈ π2 and that because of the multiple abscissas at
the ends we have λ1(f) = f(x1), λn(f) = f(xm), so only the original data are
used to define Q2f . (Hint: Use the formula in Exercise 1.

c) Show that for j = 1, . . . , n and f ∈ C∆[x1, xm]

|λj(f)| ≤ (2θ + 1)||f ||∞,[tj+1,tj+2],

where
θ = max

1≤j≤n
{θ−1

j , θj}.
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d) Show that for l = 3, . . . , n, f ∈ C∆[x1, xm], and x ∈ [tl, tl+1]

|Q2(f)(x)| ≤ (2θ + 1)||f ||∞,[tl−1,tl+2].

e) Show that for l = 3, . . . , n and f ∈ C∆[x1, xm]

||f −Q2f ||∞,[tl,tl+1] ≤ (2θ + 2) dist[tl−1,tl+2](f, π2).

f) Show that for f ∈ C3
∆[x1, xm] we have the O(h3) estimate

||f −Q2f ||∞,[x1,xm] ≤ K(θ)|∆x|3||D3f ||∞,[x1,xm],

where
|∆x| = max

j
|xj+1 − xj |

and the constant K(θ) only depends on θ.


