
APPENDIX A

Some Linear Algebra

A.1 Matrices

The collection of m,n matrices

A =




a1,1, . . . , a1,n

· · · · · ·
am,1, . . . , am,n





with real elements ai,j is denoted by Rm,n. If n = 1 then A is called a column vector.
Similarly, if m = 1 then A is a row vector. We let Rm denote the collection of all column
or row vectors with m real components.

A.1.1 Nonsingular matrices, and inverses.

Definition A.1. A collection of vectors a1, . . . ,an ∈ Rm is linearly independent if x1a1 +
· · · + xnan = 0 for some real numbers x1, . . . , xn, implies that x1 = · · · = xn = 0.

Suppose a1, . . . ,an are the columns of a matrix A ∈ Rm,n. For a vector x = (x1, . . . ,
xn)T ∈ Rn we have Ax =

∑n
j=1 xjaj . It follows that the collection a1, . . . ,an is linearly

independent if and only if Ax = 0 implies x = 0.
Definition A.2. A square matrix A such that Ax = 0 implies x = 0 is said to be
nonsingular.

Definition A.3. A square matrix A ∈ Rn,n is said to be invertible if for some B ∈ Rn,n

BA = AB = I,

where I ∈ Rn,n is the identity matrix.

An invertible matrix A has a unique inverse B = A−1. If A,B, and C are square
matrices, and A = BC, then A is invertible if and only if both B and C are also invertible.
Moreover, the inverse of A is the product of the inverses of B and C in reverse order,
A−1 = C−1B−1.
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A.1.2 Determinants.

The determinant of a square matrix A will be denoted det(A) or
∣∣∣∣∣∣∣

a1,1, . . . , a1,n
...

...
an,1, . . . , an,n

∣∣∣∣∣∣∣
.

Recall that the determinant of a 2× 2 matrix is
∣∣∣∣

a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1.

A.1.3 Criteria for nonsingularity and singularity.

We state without proof the following criteria for nonsingularity.
Theorem A.4. The following is equivalent for a square matrix A ∈ Rn,n.

1. A is nonsingular.

2. A is invertible.

3. Ax = b has a unique solution x = A−1b for any b ∈ Rn.

4. A has linearly independent columns.

5. AT is nonsingular.

6. A has linearly independent rows.

7. det(A) $= 0.

We also have a number of criteria for a matrix to be singular.
Theorem A.5. The following is equivalent for a square matrix A ∈ Rn,n.

1. There is a nonzero x ∈ Rn so that Ax = 0.

2. A has no inverse.

3. Ax = b has either no solution or an infinite number of solutions.

4. A has linearly dependent columns.

5. There is a nonzero x so that xT A = 0.

6. A has linearly dependent rows.

7. det(A) = 0.

Corollary A.6. A matrix with more columns than rows has linearly dependent columns.

Proof. Suppose A ∈ Rm,n with n > m. By adding n−m rows of zeros to A we obtain a
square matrix B ∈ Rn,n. This matrix has linearly dependent rows. By Theorem A.4 the
matrix B has linearly dependent columns. But then the columns of A are also linearly
dependent.
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A.2 Vector Norms

Formally, a vector norm || || = ||x||, is a function ‖ ‖ : Rn → [0,∞) that satisfies for
x,y,∈ Rn, and α ∈ R the following properties

1. ||x|| = 0 implies x = 0.
2. ||αx|| = |α|||x||.
3. ||x + y|| ≤ ||x|| + ||y||.

(A.1)

Property 3 is known as the Triangle Inequality. For us the most useful class of norms are
the p or "p norms. They are defined for p ≥ 1 and x = (x1, x2, . . . , xn)T ∈ Rn by

||x||p = (|x1|p + |x2|p + · · · + |xn|p)1/p.
||x||∞ = maxi |xi|.

(A.2)

Since
||x||∞ ≤ ||x||p ≤ n1/p||x||∞, p ≥ 1 (A.3)

and limp→∞ n1/p = 1 for any n ∈ N we see that limp→∞ ||x||p = ||x||∞.
The 1,2, and ∞ norms are the most important. We have

||x||22 = x2
1 + · · · + x2

n = xT x. (A.4)

Lemma A.7 (The Hölder inequality). We have for 1 ≤ p ≤ ∞ and x,y ∈ R
n∑

i=1

|xiyi| ≤ ||x||p||y||q, where
1
p

+
1
q

= 1. (A.5)

Proof. We base the proof on properties of the exponential function. Recall that the
exponential function is convex, i.e. with f(x) = ex we have the inequality

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (A.6)

for every λ ∈ [0, 1] and x, y ∈ R.
If x = 0 or y = 0, there is nothing to prove. Suppose x,y $= 0. Define u = x/||x||p

and v = y/||y||q. Then ||u||p = ||v||q = 1. If we can prove that
∑

i |uivi| ≤ 1, we are done
because then

∑
i |xiyi| = ||x||p||y||q

∑
i |uivi| ≤ ||x||p||y||q. Since |uivi| = |ui||vi|, we can

assume that ui ≥ 0 and vi ≥ 0. Moreover, we can assume that ui > 0 and vi > 0 because
a zero term contributes no more to the left hand side than to the right hand side of (A.5).
Let si, ti be such that ui = esi/p, vi = eti/q. Taking f(x) = ex,λ = 1/p, 1 − λ = 1/q,
x = si and y = ti in (A.6) we find

esi/p+ti/q ≤ 1
p
esi +

1
q
eti .

But then
∑

i

|uivi| =
∑

i

esi/p+ti/q ≤ 1
p

∑

i

esi +
1
q

∑

i

eti =
1
p

∑

i

up
i +

1
q

∑

i

vq
i =

1
p

+
1
q

= 1.

This completes the proof of (A.5).
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When p = 2 then q = 2 and the Hölder inequality is associated with the names
Buniakowski-Cauchy-Schwarz.
Lemma A.8 (The Minkowski inequality). We have for 1 ≤ p ≤ ∞ and x,y ∈ R

||x + y||p ≤ ||x||p + ||y||p. (A.7)

Proof. Let u = (u1, . . . , un) with ui = |xi + yi|p−1. Since q(p−1) = p and p/q = p−1, we
find

||u||q = (
∑

i

|xi + yi|q(p−1))1/q = (
∑

i

|xi + yi|p)1/q = ||x + y||p/q
p = ||x + y||p−1

p .

Using this and the Hölder inequality we obtain

||x + y||pp =
∑

i

|xi + yi|p ≤
∑

i

|ui||xi| +
∑

i

|ui||yi| ≤ (||x||p + ||y||p)||u||q

≤ (||x||p + ||y||p)||x + y||p−1
p .

Dividing by ||x + y||p−1
p proves Minkowski.

Using the Minkowski inequality it follows that the p norms satisfies the axioms for a
vector norm.

In (A.3) we established the inequality

||x||∞ ≤ ||x||p ≤ n1/p||x||∞, p ≥ 1.

More generally, we say that two vector norms || || and || ||′ are equivalent if there exists
positive constants µ and M such that

µ||x|| ≤ ||x||′ ≤M ||x|| (A.8)

for all x ∈ Rn.
Theorem A.9. All vector norms on Rn are equivalent.

Proof. It is enough to show that a vector norm || || is equivalent to the l∞ norm, || ||∞.
Let x ∈ Rn and let ei, i = 1, . . . , n be the unit vectors in Rn. Writing x = x1e1+· · ·+xnen

we have
||x|| ≤

∑

i

|xi|||ei|| ≤ ||x||∞M, M =
∑

i

||ei||.

To find µ > 0 such that ||x|| ≥ µ||x||∞ for all x ∈ Rn is less elementary. Consider the
function f given by f(x) = ||x|| defined on the l∞ “unit ball”

S = {x ∈ Rn : ||x||∞ = 1}.

S is a closed and bounded set. From the inverse triangle inequality

| ||x||− ||y|| | ≤ ||x− y||, x,y ∈ Rn.
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it follows that f is continuous on S. But then f attains its maximum and minimum on S,
i.e. there is a point x∗ ∈ S such that

||x∗|| = min
x∈S

||x||.

Moreover, since x∗ is nonzero we have µ := ||x∗|| > 0. If x ∈ Rn is nonzero then
x = x/||x||∞ ∈ S. Thus

µ ≤ ||x|| = || x

||x||∞
|| =

1
||x||∞

||x||,

and this establishes the lower inequality.

It can be shown that for the p norms we have for any q with 1 ≤ q ≤ p ≤ ∞

||x||p ≤ ||x||q ≤ n1/q−1/p||x||p, x ∈ Rn. (A.9)

<

A.3 Vector spaces of functions

In Rm we have the operations x + y and ax of vector addition and multiplication by
a scalar a ∈ R. Such operations can also be defined for functions. As an example, if
f(x) = x, g(x) = 1 , and a, b are real numbers then af(x) + bg(x) = ax + b. In general, if
f and g are two functions defined on the same set I and a ∈ R, then the sum f + g and
the product af are functions defined on I by

(f + g)(x) = f(x) + g(x),
(af(x) = af(x).

Two functions f and g defined on I are equal if f(x) = g(x) for all x ∈ I. We say that f
is the zero function, i.e. f = 0, if f(x) = 0 for all x ∈ I.
Definition A.10. Suppose S is a collection of real valued or vector valued functions, all
defined on the same set I. The collection S is called a vector space if af + bg ∈ S for all
f, g ∈ S and all a, b ∈ R. A subset T of S is called a subspace of S if T itself is a vector
space.

Example A.11. Vector spaces

• All polynomials πd of degree at most d.

• All polynomials of all degrees.

• All trigonometric polynomials a0 + d
k=1(ak cos kx + bk sin kx of degree at most d.

• The set C(I) of all continuous real valued functions defined on I.

• The set Cr(I) of all real valued functions defined on I with continuous j′th derivative for j =
0, 1, . . . , r.
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Definition A.12. A vector space S is said to be finite dimesional if

S = span(φ1, . . . ,φn) = {
n∑

j=1

cjφj : cj ∈ R},

for a finite number of functions φ1, . . . ,φn in S. The functions φ1, . . . ,φn are said to span
or generate S.

Of the examples above the space πd = span(1, x, x2, . . . xd) generated by the monomials
1, x, x2, . . . xd is finite dimensional. Also the trigonometric polynomials are finite dimen-
sional. The space of all polynomials of all degrees is not finite dimensional. To see this
we observe that any finite set cannot generate the monomial xd+1 where d is the max-
imal degree of the elements in the spanning set. Finally we observe that C(I) and Cr(I)
contain the space of polynomials of all degrees as a subspace. Hence they are not finite
dimensional,

If f ∈ S = span(φ1, . . . ,φn) then f =
∑n

j=1 cjφj for some c = (c1, . . . , cn). With
φ = (φ1, . . . ,φn)T we will often use the vector notation

f(x) = φ(x)T c (A.10)

for f .

A.3.1 Linear independence and bases

All vector spaces in this section will be finite dimensional.
Definition A.13. A set of functions φ = (φ1, . . . ,φn)T in a vector space S is said to be
linearly independent on a subset J of I if φ(x)T c = c1φ1(x) + · · · + cnφn(x) = 0 for all
x ∈ J implies that c = 0. If J = I then we simply say that φ is linearly independent.

If φ is linearly independent then the representation in (A.10) is unique. For if f =
φT c = φT b for some c, b ∈ Rn then f = φT (c − b) = 0. Since φ is linearly independent
we have c− b = 0, or c = b.
Definition A.14. A set of functions φT = (φ1, . . . ,φn) in a vector space S is a basis for
S if the following two conditions hold

1. φ is linearly independent.

2. S = span(φ).

Theorem A.15. The monomials 1, x, x2, . . . xd are linearly independent on any set J ⊂ R
containing at least d+1 distinct points. In particular these functions form as basis for πd.

Proof. Let x0, . . . , xd be d+1 distinct points in J , and let p(x) = c0 +c1x+ · · ·+cdxd = 0
for all x ∈ J . Then p(xi) = 0, for i = 0, 1, . . . , d. Since a nonzero polynomial of degree
d can have at most d zeros we conclude that p must be the zero polynomial. But then
ck = p(k)(0)/k! = 0 for k = 0, 1, . . . , d. It follows that the monomial is a basis for πd since
they span πd by definition.

To prove some basic results about bases in a vector space of functions it is convenient
to introduce a matrix transforming one basis into another.
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Lemma A.16. Suppose S and T are finite dimensional vector spaces with S ⊂ T , and
let φ = (φ1, . . . ,φn)T be a basis for S and ψ = (ψ1, . . . ,ψm)T a basis for T . Then

φ = AT ψ, (A.11)

for some matrix A ∈ Rm,n. If f = φT c ∈ S is given then f = ψT b with

b = Ac. (A.12)

Moreover A has linearly independent columns.

Proof. Since φj ∈ T there are real numbers ai,j such that

φj =
m∑

i=1

ai,jψi, for j = 1, . . . , n,

This equation is simply the component version of (A.11). If f ∈ S then f ∈ T and f = ψT b
for some b. By (A.11) we have φT = ψT A and f = φT c = ψT Ac or ψT b = ψT Ac. Since
ψ is linearly independent we get (A.12). Finally, to show that A has linearly independent
columns suppose Ac = 0. Define f ∈ S by f = φT c. By (A.11) we have f = ψT Ac = 0.
But then f = φT c = 0. Since φ is linearly independent we conclude that c = 0.

The matrix A in Lemma A.16 is called a change of basis matrix.
A basis for a vector space generated by n functions can have at most n elements.

Lemma A.17. If ψ = (ψ1 . . . , ψk)T is a linearly independent set in a vector space S =
span(φ1, . . . ,φn), then k ≤ n.

Proof. With φ = (φ1, . . . ,φn)T we have

ψ = AT φ, for some A ∈ Rn,k.

If k > n then A is a rectangular matrix with more columns than rows. From Corollary A.6
we know that the columns of such a matrix must be linearly dependent; I.e. there is some
nonzero c ∈ Rk such that Ac = 0. But then ψT c = φT Ac = 0, for some nonzero c. This
implies that ψ is linearly dependent, a contradiction. We conclude that k ≤ n.

Lemma A.18. Every basis for a vector space must have the same number of elements.

Proof. Suppose φ = (φ1, . . . ,φn)T and ψ = (ψ1, . . . ,ψm)T are two bases for the vector
space. We need to show that m = n. Now

φ = AT ψ, for some A ∈ Rm,n,

ψ = BT φ, for some B ∈ Rn,m.

By Lemma A.16 we know that both A and B have linearly independent columns. But
then by Corollary A.6 we see that m = n.

Definition A.19. The number of elements in a basis in a vector space S is called the
dimension of S, and is denoted by dim(S).
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The following lemma shows that every set of linearly independent functions in a vector
space S can be extended to a basis for S. In particular every finite dimensional vector
space has a basis.
Lemma A.20. A set φT = (φ1, . . . ,φk) of linearly independent elements in a finite di-
mensional vector space S, can be extended to a basis ψT = (ψ1, . . . ,ψm) for S.

Proof. Let Sk = span(ψ1, . . . ,ψk) where ψj = φj for j = 1, . . . , k. If Sk = S then we set
m = k and stop. Otherwise there must be an element ψk+1 ∈ S such that ψ1, . . . ,ψk+1 are
linearly independent. We define a new vector space Sk+1 by Sk+1 = span(ψ1, . . . ,ψk+1).
If Sk+1 = S then we set m = k + 1 and stop the process. Otherwise we continue to gen-
erate vector spaces Sk+2, Sk+3, · · · . Since S is finitely generated we must by Lemma A.17
eventually find some m such that Sm = S.

The following simple, but useful lemma, shows that a spanning set must be a basis if
it contains the correct number of elements.
Lemma A.21. Suppose S = span(φ). If φ contains dim(S) elements then φ is a basis
for S.

Proof. Let n = dim(S) and suppose φ = (φ1, . . . ,φn) is a linearly dependent set. Then
there is one element, say φn which can be written as a linear combination of φ1, . . . ,φn−1.
But then S = span(φ1, . . . ,φn−1) and dim(S) < n by Lemma A.17, a contradiction to the
assumption that φ is linearly dependent.

A.4 Normed Vector Spaces

Suppose S is a vector space of functions. A norm || || = ||f ||, is a function ‖ ‖ : S → [0,∞)
that satisfies for f, g,∈ S, and α ∈ R the following properties

1. ||f || = 0 implies f = 0.
2. ||αf || = |α|||f ||.
3. ||f + g|| ≤ ||f || + ||g||.

(A.13)

Property 3 is known as the Triangle Inequality. The pair (S, || ||) is called a normed vector
space (of functions).

In the rest of this section we assume that the functions in S are continuous, or at least
piecewise continuous on some interval [a, b].

Analogous to the p or "p norms for vectors in Rn we have the p or Lp norms for
functions. They are defined for 1 ≤ p ≤ ∞ and f ∈ S by

||f ||p = ||f ||Lp[a,b] =
(∫ b

a |f(x)|pdx
)1/p

, p ≥ 1,

||f ||∞ = ||f ||L∞[a,b] = maxa≤x≤b |f(x)|.
(A.14)

The 1,2, and ∞ norms are the most important.
We have for 1 ≤ p ≤ ∞ and f, g ∈ S the Hölder inequality

∫ b

a
|f(x)g(x)|dx ≤ ||f ||p||g||q, where

1
p

+
1
q

= 1, (A.15)
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and the Minkowski inequality

||f + g||p ≤ ||f ||p + ||g||p. (A.16)

For p = 2 (A.15) is known as the Schwarz inequality, the Cauchy-Schwarz inequality, or
the Buniakowski-Cauchy- Schwarz inequality.


