
Spline Methods
Draft

Tom Lyche and Knut Mørken
Department of Informatics

Centre of Mathematics for Applications
University of Oslo

January 27, 2006

Contents

1 Splines and B-splines
an Introduction 1
1.1 Convex combinations and convex hulls . 1

1.1.1 Stable computations . 2
1.1.2 The convex hull of a set of points . 2

1.2 Some fundamental concepts . 5
1.3 Interpolating polynomial curves . 6

1.3.1 Quadratic interpolation of three points 7
1.3.2 General polynomial interpolation . 8
1.3.3 Interpolation by convex combinations? 11

1.4 Bézier curves . 12
1.4.1 Quadratic Bézier curves . 12
1.4.2 Bézier curves based on four and more points 14
1.4.3 Composite Bézier curves . 17

1.5 A geometric construction of spline curves 18
1.5.1 Linear spline curves . 18
1.5.2 Quadratic spline curves . 20
1.5.3 Spline curves of higher degrees . 21
1.5.4 Smoothness of spline curves . 24

1.6 Representing spline curves in terms of basis functions 25
1.7 Conclusion . 28

2 Basic properties of splines and B-splines 33
2.1 Some simple consequences of the recurrence relation 33
2.2 Linear combinations of B-splines . 39

2.2.1 Spline functions . 39
2.2.2 Spline curves . 42

2.3 A matrix representation of B-splines . 43
2.4 Algorithms for evaluating a spline . 46

2.4.1 High level description . 46
2.4.2 More detailed algorithms . 48

3 Further properties of splines and B-splines 55
3.1 Linear independence and representation of polynomials 55

3.1.1 Some properties of the B-spline matrices 55

i

ii CONTENTS

3.1.2 Marsden’s identity and representation of polynomials 57
3.1.3 Linear independence of B-splines . 59

3.2 Differentiation and smoothness of B-splines 60
3.2.1 Piecewise smooth functions . 60
3.2.2 Derivatives of B-splines . 61
3.2.3 Computing derivatives of splines and B-splines 64
3.2.4 Smoothness of B-splines . 66

3.3 B-splines as a basis for piecewise polynomials 68

4 Knot insertion 73
4.1 The control polygon relative to different knot vectors 74
4.2 Knot insertion . 75

4.2.1 Basic idea . 75
4.2.2 Conversion between B-spline polynomials 77
4.2.3 Formulas and algorithms for knot insertion 79

4.3 B-spline coefficients as functions of the knots 86
4.3.1 The blossom . 86
4.3.2 B-spline coefficients as blossoms . 89

4.4 Inserting one knot at a time . 91
4.5 Bounding the number of sign changes in a spline 93

5 Spline Approximation of Functions and Data 101
5.1 Local Approximation Methods . 102

5.1.1 Piecewise linear interpolation . 102
5.1.2 Cubic Hermite interpolation . 104
5.1.3 Estimating the derivatives . 107

5.2 Cubic Spline Interpolation . 107
5.2.1 Interpretations of cubic spline interpolation 111
5.2.2 Numerical solution and examples . 112

5.3 General Spline Approximation . 114
5.3.1 Spline interpolation . 114
5.3.2 Least squares approximation . 115

5.4 The Variation Diminishing Spline Approximation 119
5.4.1 Preservation of bounds on a function 120
5.4.2 Preservation of monotonicity . 122
5.4.3 Preservation of convexity . 124

6 Parametric Spline Curves 129
6.1 Definition of Parametric Curves . 129

6.1.1 Regular parametric representations 129
6.1.2 Changes of parameter and parametric curves 131
6.1.3 Arc length parametrisation . 132

6.2 Approximation by Parametric Spline Curves 133
6.2.1 Definition of parametric spline curves 133
6.2.2 The parametric variation diminishing spline approximation 135
6.2.3 Parametric spline interpolation . 136

CONTENTS iii

6.2.4 Assigning parameter values to discrete data 138
6.2.5 General parametric spline approximation 138

7 Tensor Product Spline Surfaces 141
7.1 Explicit tensor product spline surfaces . 141

7.1.1 Definition of the tensor product spline 141
7.1.2 Evaluation of tensor product spline surfaces 144

7.2 Approximation methods for tensor product splines 145
7.2.1 The variation diminishing spline approximation 145
7.2.2 Tensor Product Spline Interpolation 146
7.2.3 Least Squares for Gridded Data . 150

7.3 General tensor product methods . 153
7.4 Trivariate Tensor Product Methods . 156
7.5 Parametric Surfaces . 159

7.5.1 Parametric Tensor Product Spline Surfaces 160

8 Quasi-interpolation methods 163
8.1 A general recipe . 163

8.1.1 The basic idea . 164
8.1.2 A more detailed description . 164

8.2 Some quasi-interpolants . 166
8.2.1 Piecewise linear interpolation . 166
8.2.2 A 3-point quadratic quasi-interpolant 167
8.2.3 A 5-point cubic quasi-interpolant . 168
8.2.4 Some remarks on the constructions 169

8.3 Quasi-interpolants are linear operators . 170
8.4 Different kinds of linear functionals and their uses 171

8.4.1 Point functionals . 171
8.4.2 Derivative functionals . 171
8.4.3 Integral functionals . 172
8.4.4 Preservation of moments and interpolation of linear functionals . . . 173
8.4.5 Least squares approximation . 174
8.4.6 Computation of integral functionals 175

8.5 Alternative ways to construct coefficient functionals 175
8.5.1 Computation via evaluation of linear functionals 175
8.5.2 Computation via explicit representation of the local approximation . 176

8.6 Two quasi-interpolants based on point functionals 177
8.6.1 A quasi-interpolant based on the Taylor polynomial 177
8.6.2 Quasi-interpolants based on evaluation 179

9 Approximation theory and stability 183
9.1 The distance to polynomials . 183
9.2 The distance to splines . 185

9.2.1 The constant and linear cases . 186
9.2.2 The quadratic case . 186
9.2.3 The general case . 188

iv CONTENTS

9.3 Stability of the B-spline basis . 192
9.3.1 A general definition of stability . 192
9.3.2 Stability of the B-spline basis, p = ∞ 193
9.3.3 Stability of the B-spline basis, p < ∞ 194

9.4 Convergence of the control polygon for spline functions 196

10 Shape Preserving Properties of B-splines 201
10.1 Bounding the number of zeros of a spline 201
10.2 Uniqueness of spline interpolation . 204

10.2.1 Lagrange Interpolation . 205
10.2.2 Hermite Interpolation . 206

10.3 Total positivity . 208

A Some Linear Algebra 213
A.1 Matrices . 213

A.1.1 Nonsingular matrices, and inverses. 213
A.1.2 Determinants. 214
A.1.3 Criteria for nonsingularity and singularity. 214

A.2 Vector Norms . 215
A.3 Vector spaces of functions . 217

A.3.1 Linear independence and bases . 218
A.4 Normed Vector Spaces . 220

CHAPTER 1

Splines and B-splines
an Introduction

In this first chapter, we consider the following fundamental problem: Given a set of points
in the plane, determine a smooth curve that approximates the points. The algorithm
for determining the curve from the points should be well suited for implementation on a
computer. That is, it should be efficient and it should not be overly sensitive to round-
off errors in the computations. We only consider methods that involve a relatively small
number of elementary arithmetic operations; this ensures that the methods are efficient.
The sensitivity of the methods to round-off errors is controlled by insisting that all the
operations involved should amount to forming weighted averages of the given points. This
has the added advantage that the constructions are geometrical in nature and easy to
visualise.

In Section 1.1, we discuss affine and convex combinations and the convex hull of a set
of points, and relate these concepts to numerical stability (sensitivity to rounding errors),
while in Section 1.2 we give a brief and very informal introduction to parametric curves.
The first method for curve construction, namely polynomial interpolation, is introduced
in Section 1.3. In Section 1.4 we show how to construct Bézier curves, and in Section 1.5
we generalise this construction to spline curves. At the outset, our construction of spline
curves is geometrical in nature, but in Section 1.6 we show that spline curves can be
written conveniently in terms of certain basis functions, namely B-splines. In the final
section, we relate the material in this chapter to the rest of the book.

1.1 Convex combinations and convex hulls

An important constraint on our study is that it should result in numerical methods that
will ultimately be implemented in floating point arithmetic on a computer. We should
therefore make sure that these methods are reasonably insensitive to the primary source
of problems, namely round-off errors and other numerical uncertainties that occur in
numerical computations. This requirement is often referred to by saying that the methods
should be numerically stable .

1

2 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

c1

c2

-0.4

0

0.3

0.5

0.8

1

1.3

Figure 1.1. Some points on the line (1− λ)c1 + λc2 and the corresponding values of λ.

1.1.1 Stable computations

One characteristic of numerical instabilities is that a chain of computations contain num-
bers of large magnitude even though the numbers that form the input to the computations,
and the final result, are not particularly large numbers. A simple way to avoid this is to
base the computations on computing weighted averages as in

c = (1− λ)c1 + λc2. (1.1)

Here c1 and c2 are two given numbers and λ a given weight in the range [0, 1]. The result
of the computation is the number c which must lie between c1 and c2 as averages always
do. A special example is of course computation of the mean between two numbers, c =
(c1 + c2)/2. A computation on the form (1.1) is often referred to as a convex combination,
and c is often said to be a convex combination of c1 and c2. If all our computations are
convex combinations, all intermediate results as well as the final result must be within the
numerical range of the input data, thereby indicating that the computations are reasonably
stable . It is overly optimistic to hope that we can do all our computations by forming
convex combinations, but convex combinations will certainly be a guiding principle.

1.1.2 The convex hull of a set of points

Convex combinations make sense for vectors as well as for real numbers. If c1 = (x1, y1)
and c2 = (x2, y2) then a convex combination of c1 and c2 is an expression on the form

c = (1− λ)c1 + λc2, (1.2)

where the weight λ is some number in the range 0 ≤ λ ≤ 1. This expression is usually
implemented on a computer by expressing it in terms of convex combinations of real
numbers,

(x, y) =
(
(1− λ)x1 + λx2, (1− λ)y1 + λy2

)
,

where (x, y) = c.

1.1. CONVEX COMBINATIONS AND CONVEX HULLS 3

c1

c2

c3

c

c�

1-Λ

Λ

1-Μ

Μ

Figure 1.2. Determining the convex hull of three points.

Sometimes combinations on the form (1.1) or (1.2) with λ < 0 or λ > 1 are required.
A combination of c1 and c2 as in (1.2) with no restriction on λ other than λ ∈ R is called
an affine combination of c1 and c2. As λ takes on all real numbers, the point c in (1.2)
will trace out the whole straight line that passes through c1 and c2. If we restrict λ to lie
in the interval [0, 1], we only get the part of the line that lies between c1 and c2. This is
the convex hull , or the set of all weighted averages, of the two points. Figure 1.1 shows
two points c1 and c2 and the line they define, together with some points on the line and
their corresponding values of λ.

We can form convex and affine combinations in any space dimension, we just let c1

and c2 be points in the appropriate space. If we are working in Rn for instance, then c1

and c2 have n components. In our examples we will mostly use n = 2, as this makes the
visualisation simpler.

Just as we can take the average of more than two numbers, it is possible to form convex
combinations of more than two points. If we have n points (ci)n

i=1, a convex combination
of the points is an expression on the form

c = λ1c1 + λ2c2 + · · ·+ λncn

where the n numbers λi sum to one,
∑n

i=1 λi = 1, and also satisfy 0 ≤ λi ≤ 1 for i = 1,
2, . . . , n. As for two points, the convex hull of the points (ci)n

i=1 is the set of all possible
convex combinations of the points.

It can be shown that the convex hull of a set of points is the smallest convex set
that contains all the points (recall that a set is convex if the straight line connecting any
two points in the set is always completely contained in the set). This provides a simple
geometric interpretation of the convex hull. As we have already seen, the convex hull
of two points can be identified with the straight line segment that connects the points,
whereas the convex hull of three points coincides with the triangle spanned by the points,
see Figure 1.2. In general, the convex hull of n points is the n-sided polygon with the points
as corners. However, if some of the points are contained in the convex hull of the others,
then the number of edges is reduced correspondingly, see the examples in Figure 1.3.

4 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) Two points. (b) Three points.

(c) Four points. (d) Five points.

(e) Five points. (f) Five points.

Figure 1.3. Examples of convex hulls (shaded area) of points (black dots).

1.2. SOME FUNDAMENTAL CONCEPTS 5

-2 -1 1 2 3 4

-4

-2

2

4

(a) (b)

Figure 1.4. A function (a) and a parametric curve (b).

1.2 Some fundamental concepts

Our basic challenge in this chapter is to construct a curve from some given points in the
plane. The underlying numerical algorithms should be simple and efficient and preferably
based on forming repeated convex combinations as in (1.1). To illustrate some fundamental
concepts let us consider the case where we are given two points c0 = (x0, y0) and c1 =
(x1, y1) (we always denote points and vectors by bold type). The most natural curve to
construct from these points is the straight line segment which connects the two points.
In Section 1.1.2 we saw that this line segment coincides with the convex hull of the two
points and that a point on the line could be represented by a convex combination, see
(1.2). More generally we can express this line segment as

q(t | c0, c1; t0, t1) =
t1 − t

t1 − t0
c0 +

t− t0
t1 − t0

c1 for t ∈ [t0, t1]. (1.3)

Here t0 and t1 are two arbitrary real numbers with t0 < t1. Note that the two coefficients
add to one,

t1 − t

t1 − t0
+

t− t0
t1 − t0

= 1

and each of them is nonnegative as long as t is in the interval [t0, t1]. The expression in
(1.3) is therefore a convex combination of c0 and c1. In fact, if we set λ = (t− t0)/(t1− t0)
then (1.3) becomes (1.2).

A representation of a line as in (1.3), where we have a function that maps each real
number to a point in R2, is an example of a parametric representation. The line can also
be expressed as a linear function

y = f(x) =
x1 − x

x1 − x0
y0 +

x− x0

x1 − x0
y1

but here we run into problems if x0 = x1, i.e., if the line is vertical. Vertical lines can only
be expressed as x = c (with each constant c characterising a line) if we insist on using
functions. In general, a parametric representation can cross itself or return to its starting
point, but this is impossible for a function, which always maps a real number to a real
number, see the two examples in Figure 1.4.

In this chapter we only work with parametric representations in the plane, and we
will refer to these simply as (parametric) curves. All our constructions start with a set

6 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

of points, from which we generate new points, preferably by forming convex combinations
as in (1.2). In our examples the points lie in the plane, but we emphasise again that the
constructions will work for curves in any space dimension; just replace the planar points
with points with the appropriate number of components. For example, a line in space
is obtained by letting c0 and c1 in (1.3) be points in space with three components. In
particular, we can construct a function by letting the points be real numbers. In later
chapters we will work mainly with functions since the core of spline theory is independent
of the space dimension. The reason for working with planar curves in this chapter is that
the constructions are geometric in nature and particularly easy to visualise in the plane.

In (1.3) the two parameters t0 and t1 are arbitrary except that we assumed t0 < t1.
Regardless of how we choose the parameters, the resulting curve is always the same. If
we consider the variable t to denote time, the parametric representation q(t | c0, c1; t0, t1)
gives a way to travel from c0 to c1. The parameter t0 gives the time at which we start at
c0 and t1 the time at which we arrive at c1. With this interpretation, different choices of
t0 and t1 correspond to different ways of travelling along the line. The velocity of travel
along the curve is given by the tangent vector or derivative

q′(t | c0, c1; t0, t1) =
c1 − c0

t1 − t0
,

while the scalar velocity or speed is given by the length of the tangent vector∣∣q′(t | c0, c1; t0, t1)
∣∣ =

|c1 − c0|
t1 − t0

=

√
(x1 − x0)2 + (y1 − y0)2

t1 − t0
.

If t1−t0 is small (compared to |c1−c0|), then we have to travel quickly to reach c1 at time
t1 whereas if t1− t0 is large then we have to move slowly to arrive at c1 exactly at time t1.
Note that regardless of our choice of t0 and t1, the speed along the curve is independent
of t and therefore constant. This reflects the fact that all the representations of the line
given by (1.3) are linear in t.

This discussion shows how we must differentiate between the geometric curve in ques-
tion (a straight line in our case) and the parametric representation of the curve. Loosely
speaking, a curve is defined as the collection of all the different parametric representations
of the curve. In practise a curve is usually given by a particular parametric represent-
ation, and we will be sloppy and often refer to a parametric representation as a curve.
The distinction between a curve and a particular parametric representation is not only of
theoretical significance. When only the geometric shape is significant we are discussing
curves and their properties. Some examples are the outlines of the characters in a font
and the level curves on a map. When it is also significant how we travel along the curve
(how it is represented) then we are talking about a particular parametric representation
of the underlying geometric curve, which in mathematical terms is simply a vector valued
function. An example is the path of a camera in a computer based system for animation.

1.3 Interpolating polynomial curves

A natural way to construct a curve from a set of given points is to force the curve to
pass through the points, or interpolate the points, and the simplest example of this is the
straight line between two points. In this section we show how to construct curves that
interpolate any number of points.

1.3. INTERPOLATING POLYNOMIAL CURVES 7

(a) t = (0, 1, 2). (b) t = (0, 0.5, 2).

(c) t = (0, 1, 2). (d) t = (0, 0.5, 2).

Figure 1.5. Some examples of quadratic interpolation.

1.3.1 Quadratic interpolation of three points

How can we construct a curve that interpolates three points? In addition to the three
given interpolation points c0, c1 and c2 we also need three parameters (ti)2i=0. We first
construct the two straight lines q0,1(t) = q(t | c0, c1; t0, t1) and q1,1(t) = q(t | c1, c2; t1, t2).
If we now form the weighted average

q0,2(t) = q(t | c0, c1, c2; t0, t1, t2) =
t2 − t

t2 − t0
q0,1(t) +

t− t0
t2 − t0

q1,1(t),

we obtain a curve that is quadratic in t, and it is easy to check that it passes through the
given points as required,

q0,2(t0) = q0,1(t0) = c0,

q0,2(t1) =
t2 − t1
t2 − t0

q0,1(t1) +
t1 − t0
t2 − t0

q1,1(t1) =
t2 − t1
t2 − t0

c1 +
t1 − t0
t2 − t0

c1 = c1,

q0,2(t2) = q1,1(t2) = c2.

Four examples are shown in Figure 1.5, with the interpolation points (ci)2i=0 given
as black dots and the values of the three parameters t = (ti)2i=0 shown below each plot.
The tangent vector at the end of the curve (at t = t2) is also displayed in each case.
Note that the interpolation points are the same in plots (a) and (b), and also in plots
(c) and (d). When we only had two points, the linear interpolant between the points was
independent of the values of the parameters t0 and t1; in the case of three points and
quadratic interpolation the result is clearly highly dependent on the choice of parameters.
It is possible to give qualitative explanations of the results if we view q0,2(t) as the position

8 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

at time t of someone travelling along the curve. In the first two plots the given points
are quite uniformly spaced and the uniform distribution of parameters in plot (a) seems
to connect the points with a ’nice’ curve. In plot (b) the value of t1 has been lowered,
leaving more ‘time’ for travelling from c1 to c2 than from c0 to c1 with the effect that the
curve bulges out between c1 and c2. This makes the journey between these points longer
and someone travelling along the curve can therefore spend the extra time allocated to
this part of the ‘journey’. The curves in Figure 1.5 (c) and (d) can be explained similarly.
The interpolation points are the same in both cases, but now they are not uniformly
distributed. In plot (a) the parameters are uniform which means that we must travel
much faster between c1 and c2 (which are far apart) than between c0 and c1 (which are
close together). The result is a curve that is almost a straight line between the last two
points and bulges out between the first two points. In plot (d) the parameters have been
chosen so as to better reflect the geometric spacing between the points, and this gives a
more uniformly rounded curve.

1.3.2 General polynomial interpolation

To construct a cubic curve that interpolates four points we follow the same strategy that
was used to construct the quadratic interpolant. If the given points are (ci)3i=0 we first
choose four parameters t = (ti)3i=0. We then form the two quadratic interpolants

q0,2(t) = q(t | c0, c1, c2; t0, t1, t2),

q1,2(t) = q(t | c1, c2, c3; t1, t2, t3),

and combine these to obtain the cubic interpolant q0,3(t),

q0,3(t) =
t3 − t

t3 − t0
q0,2(t) +

t− t0
t3 − t0

q1,2(t).

At t0 this interpolant agrees with q0,2(t0) = c0 and at t3 it agrees with q1,2(t3) = c3. At an
interior point ti it is a convex combination of q0,1(ti) and q1,1(ti) which both interpolate
ci at ti. Hence we also have q0,3(ti) = ci for i = 1 and i = 2 so q0,3 interpolates the four
points (ci)3i=0 as it should.

Some examples of cubic interpolants are shown in Figure 1.6, and the same interpola-
tion points are used in (a) and (b), and (c) and (d) respectively. The qualitative comments
that we made about the quadratic interpolants also apply here. The pleasing shape of the
curve in Figure 1.6 (a) is quite natural since both the interpolation points and parameters
are quite uniformly spaced. However, by adjusting the parameters, quite strange beha-
viour can occur, even with these ‘nice’ interpolation points. In (b) there is so much time
to ‘waste’ between c1 and c2 that the curve makes a complete loop. In (c) and (d) we see
two different approaches to jumping from one level in the data to another. In (c) there is
too much time to be spent between c0 and c1, and between c2 and c3, the result being
bulges between these points. In Figure 1.6 (d) there is too much time between c1 and c2

leading to the two big wiggles and almost straight lines between c0 and c1, and c2 and c3

respectively.
The general strategy for constructing interpolating curves should now be clear. Given

d+1 points (ci)d
i=0 and parameters (ti)d

i=0, the curve q0,d of degree d that satisfies q0,d(tj) =

1.3. INTERPOLATING POLYNOMIAL CURVES 9

(a) t = (0, 1, 2, 3). (b) t = (0, 0.3, 2.7, 3).

(c) t = (0, 0.75, 2.25, 3). (d) t = (0, 0.3, 2.8, 3).

Figure 1.6. Some examples of cubic interpolation.

cj for j = 0, . . . , d is constructed by forming a convex combination between the two curves
of degree d− 1 that interpolate (ci)d−1

i=0 and (ci)d
i=1,

q0,d(t) =
td − t

td − t0
q0,d−1(t) +

t− t0
td − t0

q1,d−1(t). (1.4)

If we expand out this equation we find that q0,d(t) can be written

q0,d(t) = c0`0,d(t) + c1`1,d(t) + · · ·+ cd`d,d(t), (1.5)

where the functions {`i,d}d
i=0 are the Lagrange polynomials of degree d given by

`i,d(t) =
∏

0≤j≤d
j 6=i

(t− tj)
ti − tj

. (1.6)

It is easy to check that these polynomials satisfy the condition

`i,d(tk) =

{
1, if k = i,

0, otherwise,

which is necessary since q0,d(tk) = ck.
The complete computations involved in computing q0,d(t) are summarised in the fol-

lowing algorithm.

10 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

q0,3

t3-
t

t-t0

t3-t0

q0,2

t2-
t

t-t0

t2-t0

q0,1

t1-
t

t-t0

t1-t0

q1,2

t3-
t

t-t1

t3-t1

q1,1

t2-
t

t-t1

t2-t1

q2,1

t3-
t

t-t2

t3-t2

c0

c1

c2

c3

Figure 1.7. Computing a point on a cubic interpolating curve.

Algorithm 1.1 (Neville-Aitken method). Let d be a positive integer and let the d + 1
points (ci)d

i=0 be given together with d+1 strictly increasing parameter values t = (ti)d
i=0.

There is a polynomial curve q0,d of degree d that satisfies the conditions

q0,d(ti) = ci for i = 0, 1, . . . , d,

and for any real number t the following algorithm computes the point q0,d(t). First set
qi,0(t) = ci for i = 0, 1, . . . , d and then compute

qi,r(t) =
ti+r − t

ti+r − ti
qi,r−1(t) +

t− ti
ti+r − ti

qi+1,r−1(t)

for i = 0, 1, . . . , d− r and r = 1, 2, . . . , d.

The computations involved in determining a cubic interpolating curve are shown in the
triangular table in Figure 1.7. The computations start from the right and proceed to the
left and at any point a quantity qi,r is computed by combining, in an affine combination,
the two quantities at the beginning of the two arrows meeting at qi,r. The expression
between the two arrows is the denominator of the weights in the affine combination while
the two numerators are written along the respective arrows.

Two examples of curves of degree five are shown in Figure 1.8, both interpolating the
same points. The wiggles in (a) indicate that t1 − t0 and t6 − t5 should be made smaller
and the result in (b) confirms this.

It should be emphasised that choosing the correct parameter values is a complex prob-
lem. Our simple analogy with travelling along a road may seem to explain some of the
behaviour we have observed, but to formalise these observations into a foolproof algorithm
for choosing parameter values is a completely different matter. As we shall see later, se-
lection of parameter values is also an issue when working with spline curves.

1.3. INTERPOLATING POLYNOMIAL CURVES 11

(a) t = (0, 1, 2, 3, 4, 5). (b) t = (0, 0.5, 2, 3, 4.5, 5).

Figure 1.8. Two examples of interpolation with polynomial curves of degree five.

The challenge of determining good parameter values is not the only problem with
polynomial interpolation. A more serious limitation is the fact that the polynomial de-
gree is only one less than the number of interpolation points. In a practical situation
we may be given several thousand points which would require a polynomial curve of an
impossibly high degree. To compute a point on a curve of degree d requires a number of
multiplications and additions that are at best proportional to d (using the Newton form
of the interpolating polynomial); the algorithm we have presented here requires roughly
d2 additions and multiplications. If for example d = 1000, computer manipulations like
plotting and interactive editing of the curve would be much too slow to be practical, even
on today’s fast computers. More importantly, it is well known that round-off errors in the
computer makes numerical manipulations of high degree polynomials increasingly (with
the degree) inaccurate. We therefore need alternative ways to approximate a set of points
by a smooth curve.

1.3.3 Interpolation by convex combinations?

In the interpolation algorithm for polynomials of degree d, Algorithm 1.1, the last step is
to form a convex combination between two polynomials of degree d− 1,

q0,d(t) =
td − t

td − t0
q0,d−1(t) +

t− t0
td − t0

q1,d−1(t).

More precisely, the combination is convex as long as t lies in the interval [t0, td]. But if the
algorithm is based on forming convex combinations, any point on the final curve should be
within the convex hull of the given interpolation points. By merely looking at the figures
it is clear that this is not true, except in the case where we only have two points and the
interpolant is the straight line that connects the points. To see what is going on, let us
consider the quadratic case in detail. Given the points (ci)2i=0 and the parameters (ti)2i=0,
we first form the two straight lines

q0,1(t) =
t1 − t

t1 − t0
c0 +

t− t0
t1 − t0

c1, (1.7)

q1,1(t) =
t2 − t

t2 − t1
c1 +

t− t1
t2 − t1

c2, (1.8)

and from these the quadratic segment

q0,2(t) =
t2 − t

t2 − t0
q0,1(t) +

t− t0
t2 − t0

q1,1(t). (1.9)

12 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) Two points on the curve. (b) Thirty points on the curve.

Figure 1.9. The geometry of quadratic interpolation.

The combination in (1.7) is convex as long as t is in [t0, t1], the combination in (1.8) is
convex when t lies within [t1, t2], and the combination in (1.9) is convex when t is restricted
to [t0, t2]. But in computing q0,2(t) we also have to compute q0,1(t) and q1,1(t), and one
of these latter combinations will not be convex when t is in [t0, t2] (except when t = t1).
The problem lies in the fact that the two line segments are defined over different intervals,
namely [t0, t1] and [t1, t2] that only has t1 in common, so t cannot be in both intervals
simultaneously. The situation is illustrated in Figure 1.9.

In the next section we shall see how we can construct polynomial curves from points in
the plane by only forming convex combinations. The resulting curve will then lie within
the convex hull of the given points, but will not interpolate the points.

1.4 Bézier curves

The curve construction method that we consider in this section is an alternative to poly-
nomial interpolation and produces what we call Bézier curves. Bézier curves are also
polynomial curves and for that reason not very practical, but they avoid the problem of
wiggles and bulges because all computations are true convex combinations. It also turns
out that segments of Bézier curves can easily be joined smoothly together to form more
complex shapes. This avoids the problem of using curves of high polynomial degree when
many points are approximated. Bézier curves are a special case of the spline curves that
we will construct in Section 1.5.

1.4.1 Quadratic Bézier curves

We have three points in the plane c0, c1 and c2, and based on these points we want to
construct a smooth curve, by forming convex combinations of the given points. With
polynomial interpolation this did not work because the two line segments (1.7) and (1.8)
are defined over different intervals. The natural solution is to start by defining the two
line segments over the same interval, say [0, 1] for simplicity,

p1,1(t) = p(t | c0, c1) = (1− t)c0 + tc1, (1.10)

p2,1(t) = p(t | c1, c2) = (1− t)c1 + tc2. (1.11)

(The curves we construct in this section and the next are related and will be denoted
by p to distinguish them from the interpolating curves of Section 1.3.) Now we have no

1.4. BÉZIER CURVES 13

(a) (b)

Figure 1.10. A Bézier curve based on three points.

(a) (b)

Figure 1.11. Two examples of quadratic Bézier curves.

problem forming a true convex combination,

p2,2(t) = p(t | c0, c1, c2) = (1− t)p1,1(t) + tp2,1(t). (1.12)

The construction is illustrated in Figure 1.10 (a). In Figure 1.10 (b), where we have
repeated the construction for 15 uniformly spaced values of t, the underlying curve is
clearly visible.

If we insert the explicit expressions for the two lines in (1.10) and (1.11) in (1.12) we
find

p2,2(t) = (1− t)2c0 + 2t(1− t)c1 + t2c2 = b0,2(t)c0 + b1,2(t)c1 + b2,2(t)c2. (1.13)

This is called a quadratic Bézier curve; the points (ci)2i=0 are called the control points of
the curve and the piecewise linear curve connecting the control points is called the control
polygon of the curve. Two examples of quadratic Bézier curves with their control points
and control polygons are shown in Figure 1.11 (the two sets of interpolation points in
Figure 1.5 have been used as control points).

Some striking geometric features are clearly visible in Figures 1.10 and 1.11. We note
that the curve interpolates c0 at t = 0 and c2 at t = 1. This can be verified algebraically
by observing that b0,2(0) = 1 and b1,2(0) = b2,2(0) = 0, and similarly b2,2(1) = 1 while
b0,2(1) = b1,2(1) = 0. The line from c0 to c1 coincides with the direction of the tangent to
the curve at t = 0 while the line from c1 to c2 coincides with the direction of the tangent
at t = 1. This observation can be confirmed by differentiating equation (1.13). We find

p′2,2(0) = 2(c1 − c0), p′2,2(1) = 2(c2 − c1).

14 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) (b)

Figure 1.12. Constructing a Bézier curve from four points.

(a) (b)

Figure 1.13. Two examples of cubic Bézier curves.

The three polynomials in (1.13) add up to 1,

(1− t)2 + 2t(1− t) + t2 = (1− t + t)2 = 1,

and since t varies in the interval [0, 1], we also have 0 ≤ bi,2(t) ≤ 1 for i = 0, 1, 2. This
confirms that p2,2(t) is a convex combination of the three points (ci)2i=0. The geometric
interpretation of this is that the curve lies entirely within the triangle formed by the three
given points, the convex hull of c0, c1 and c2.

1.4.2 Bézier curves based on four and more points

The construction of quadratic Bézier curves generalises naturally to any number of points
and any polynomial degree. If we have four points (ci)3i=0 we can form the cubic Bézier
curve p3,3(t) = p(t | c0, c1, c2, c3) by taking a weighted average of two quadratic curves,

p3,3(t) = (1− t)p2,2(t) + tp3,2(t).

If we insert the explicit expressions for p2,2(t) and p3,2(t), we find

p3,3(t) = (1− t)3c0 + 3t(1− t)2c1 + 3t2(1− t)c2 + t3c3.

The construction is illustrated in Figure 1.12. Figure (a) shows the construction for
a given value of t, and in Figure (b) the cubic and the two quadratic curves are shown
together with the lines connecting corresponding points on the two quadratics (every

1.4. BÉZIER CURVES 15

point on the cubic lies on such a line). The data points are the same as those used in
Figure 1.6 (a) and (b). Two further examples are shown in Figure 1.13, together with
the control points and control polygons which are defined just as in the quadratic case.
The data points in Figure 1.13 are the same as those used in Figure 1.6 (c) and (d). In
Figure 1.13 (b) the control polygon crosses itself with the result that the underlying Bézier
curve does the same.

To construct Bézier curves of degree d, we start with d + 1 control points (ci)d
i=0,

and form a curve pd,d(t) = p(t | c0, . . . , cd) based on these points by taking a convex
combination of the two Bézier curves pd−1,d−1 and pd,d−1 of degree d− 1 which are based
on the control points (ci)d−1

i=0 and (ci)d
i=1 respectively,

pd,d(t) = (1− t)pd−1,d−1(t) + tpd,d−1(t).

If we expand out we find by an inductive argument that

pd,d(t) = b0,d(t)c0 + · · ·+ bd,d(t)cd, (1.14)

where

bi,d(t) =
(

d

i

)
ti(1− t)d−i.

As in the quadratic case we have

b0,d(t) + b1,d(t) + · · ·+ bd,d(t) = (1− t + t)d = 1

and 0 ≤ bi,d(t) ≤ 1 for any t in [0, 1] and 0 ≤ i ≤ d. For any t in [0, 1] the point pd,d(t)
therefore lies in the convex hull of the points (ci)d

i=0. The curve interpolates the first and
last control points and the tangent at t = 0 points in the direction from c0 to c1 and the
tangent at t = 1 points in the direction from cd−1 to cd,

p′d,d(0) = d(c1 − c0), p′d,d(1) = d(cd − cd−1). (1.15)

As in the quadratic and cubic cases the piecewise linear curve with the control points as
vertexes is called the control polygon of the curve.

The complete computations involved in computing a point on a Bézier curve are given
in Algorithm 1.2 and depicted graphically in the triangular table in Figure 1.14.
Algorithm 1.2. Let d be a positive integer and let the d + 1 points (ci)d

i=0 be given.
The point pd,d(t) on the Bézier curve p0,d of degree d can be determined by the following
computations. First set pi,0(t) = ci for i = 0, 1, . . . , d and then compute pd,d(t) by

pi,r(t) = (1− t)pi−1,r−1(t) + tpi,r−1(t)

for i = r, . . . , d and r = 1, 2, . . . , d.

Two examples of Bézier curves of degree five are shown in Figure 1.15. The curve in
Figure (a) uses the interpolation points of the two curves in Figure 1.8 as control points.

We have defined Bézier curves on the interval [0, 1], but any nonempty interval would
work. If the interval is [a, b] we just have to use convex combinations on the form

c =
b− t

b− a
c0 +

t− a

b− a
c1

16 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

p3,3

1-t

t

p2, 2

1-t

t

p1, 1

1-t

t

p3, 2

1-t

t

p2,1

1-t

t

p3,1

1-t

t

c0

c1

c2

c3

Figure 1.14. Computing a point on a cubic Bézier curve.

(a) (b)

Figure 1.15. Two Bézier curves of degree five.

1.4. BÉZIER CURVES 17

(a) (b)

Figure 1.16. Different forms of continuity between two segments of a cubic Bézier curve.

instead. Equivalently, we can use a linear change of parameter; if pd,d(t) is a Bézier curve
on [0, 1] then

p̃d,d(s) = pd,d

(
(t− a)/(b− a)

)
is a Bézier curve on [a, b].

1.4.3 Composite Bézier curves

By using Bézier curves of sufficiently high degree we can represent a variety of shapes.
However, Bézier curves of high degree suffer from the same shortcomings as interpolating
polynomial curves:

1. As the degree increases, the complexity and therefore the processing time increases.

2. Because of the increased complexity, curves of high degree are more sensitive to
round-off errors.

3. The relation between the given data points (ci)d
i=0 and the curve itself becomes less

intuitive when the degree is large.

Because of these shortcomings it is common to form complex shapes by joining together
several Bézier curves, most commonly of degree two or three. Such composite Bézier
curves are also referred to as Bézier curves.

A Bézier curve of degree d consisting of n segments is given by n sets of control points
(ci

0, . . . , c
i
d)

n
i=1. It is common to let each segment be defined over [0, 1], but it is also

possible to form a curve defined over the interval [0, n] with segment i defined on the
interval [i − 1, i]. By adjusting the control points appropriately it is possible to ‘glue’
together the segments with varying degrees of continuity. The minimal form of continuity
is to let ci−1

d = ci
0 which ensures that segments i − 1 and i join together continuously as

in Figure 1.16 (a). We obtain a smoother join by also letting the tangents be continuous
at the join. From (1.15) we see that the tangent at the join between segments i− 1 and i
will be continuous if

ci−1
d − ci−1

d−1 = ci
1 − ci

0.

An example is shown in Figure 1.16 (b).
Quadratic Bézier curves form the basis for the TrueType font technology, while cubic

Bézier curves lie at the heart of PostScript and a number of draw programs like Adobe

18 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

Illustrator. Figure 1.17 shows one example of a complex Bézier curve. It is the letter S
in the Postscript font Times Roman, shown with its control polygon and control points.
This is essentially a cubic Bézier curve, interspersed with a few straight line segments.
Each cubic curve segment can be identified by the two control points on the curve giving
the ends of the segment and the two intermediate control points that lie off the curve.

1.5 A geometric construction of spline curves

The disadvantage of Bézier curves is that the smoothness between neighbouring polynomial
pieces can only be controlled by choosing the control points appropriately. It turns out
that by adjusting the construction of Bézier curves slightly, we can produce pieces of
polynomial curves that automatically tie together smoothly. These piecewise polynomial
curves are called spline curves.

1.5.1 Linear spline curves

The construction of spline curves is also based on repeated averaging, but we need a slight
generalisation of the Bézier curves, reminiscent of the construction of the interpolating
polynomials in Section 1.3. In Section 1.3 we introduced the general representation (1.3)
for a straight line connecting two points. In this section we use the same general repres-
entation, but with a different labelling of the points and parameters. If we have two points
c1 and c2 we now represent the straight line between them by

p(t | c1, c2; t2, t3) =
t3 − t

t3 − t2
c1 +

t− t2
t3 − t2

c2, t ∈ [t2, t3], (1.16)

provided t2 < t3. By setting t2 = 0 and t3 = 1 we get back to the linear Bézier curve.
The construction of a piecewise linear curve based on some given points (ci)n

i=1 is
quite obvious; we just connect each pair of neighbouring points by a straight line. More
specifically, we choose n numbers (ti)n+1

i=2 with ti < ti+1 for i = 2, 3, . . . , n, and define the
curve f by

f(t) =

p(t | c1, c2; t2, t3), t ∈ [t2, t3),
p(t | c2, c3; t3, t4), t ∈ [t3, t4),

...
...

p(t | cn−1, cn; tn, tn+1), t ∈ [tn, tn+1].

(1.17)

The points (ci)n
i=1 are called the control points of the curve, while the parameters t =

(ti)n+1
i=2 , which give the value of t at the control points, are referred to as the knots, or knot

vector, of the curve. If we introduce the piecewise constant functions Bi,0(t) defined by

Bi,0(t) =

{
1, ti ≤ t < ti+1,

0, otherwise,
(1.18)

and set pi,1(t) = p(t | ci−1, ci; ti, ti+1), we can write f(t) more succinctly as

f(t) =
n∑

i=2

pi,1(t)Bi,0(t). (1.19)

This construction can be generalised to produce smooth, piecewise polynomial curves of
higher degrees.

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 19

Figure 1.17. The letter S in the Postscript font Times Roman.

20 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

Figure 1.18. Construction of a segment of a quadratic spline curve.

1.5.2 Quadratic spline curves

In the definition of the quadratic Bézier curve, a point on p2,2(t) is determined by taking
three averages, all with weights 1 − t and t since both the two line segments (1.10) and
(1.11), and the quadratic curve itself (1.12), are defined with respect to the interval [0, 1].
The construction of spline functions is a hybrid between the interpolating polynomials of
Section 1.3 and the Bézier curve of Section 1.4 in that we retain the convex combinations,
but use more general weighted averages of the type in (1.16). To construct a spline curve
based on the three control points c1, c2, and c3, we introduce four knots (ti)5i=2, with
the assumption that t2 ≤ t3 < t4 ≤ t5. We represent the line connecting c1 and c2 by
p(t | c1, c2; t2, t4) for t ∈ [t2, t4], and the line connecting c2 and c3 by p(t | c2, c3; t3, t5)
for t ∈ [t3, t5]. The reason for picking every other knot in the representation of the line
segments is that then the interval [t3, t4] is within the domain of both segments. This
ensures that the two line segments can be combined in a convex combination to form a
quadratic curve,

p(t | c1, c2, c3; t2, t3, t4, t5) =
t4 − t

t4 − t3
p(t | c1, c2; t2, t4) +

t− t3
t4 − t3

p(t | c2, c3; t3, t5) (1.20)

with t varying in [t3, t4]. Of course we are free to vary t throughout the real line R since
p is a polynomial in t, but then the three combinations involved are no longer all convex.
The construction is illustrated in Figure 1.18. Note that if t2 = t3 = 0 and t4 = t5 = 1 we
are back in the Bézier setting.

The added flexibility provided by the knots t2, t3, t4 and t5 turns out to be exactly
what we need to produce smooth, piecewise quadratic curves, and by including sufficiently
many control points and knots we can construct curves of almost any shape. Suppose
we have n control points (ci)n

i=1 and a sequence of knots (ti)n+2
i=2 that are assumed to be

increasing except that we allow t2 = t3 and tn+1 = tn+2. We define the quadratic spline
curve f(t) by

f(t) =

p(t | c1, c2, c3; t2, t3, t4, t5), t3 ≤ t ≤ t4,

p(t | c2, c3, c4; t3, t4, t5, t6), t4 ≤ t ≤ t5,
...

...
p(t | cn−2, cn−1, cn; tn−1, tn, tn+1, tn+2), tn ≤ t ≤ tn+1.

(1.21)

An example with n = 4 is shown in Figure 1.19. Part (a) of the figure shows a quadratic
curve defined on [t3, t4] and part (b) a curve defined on the adjacent interval [t4, t5]. In

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 21

(a) (b)

(c)

Figure 1.19. A quadratic spline curve (c) and its two polynomial segments (a) and (b).

part (c) the two curves in (a) and (b) have been superimposed in the same plot, and,
quite strikingly, it appears that the curves meet smoothly at t4. The precise smoothness
properties of splines will be proved in Section 3.2.4 of Chapter 3; see also exercise 6.

By making use of the piecewise constant functions {Bi,0}n
i=3 defined in (1.18) and the

abbreviation pi,2(t) = p(t | ci−2, ci−1, ci; ti−1, ti, ti+1, ti+2), we can write f(t) as

f(t) =
n∑

i=3

pi,2(t)Bi,0(t). (1.22)

Two examples of quadratic spline curves are shown in Figure 1.20. The control points
are the same as those in Figure 1.13. We observe that the curves behave like Bézier curves
at the two ends.

1.5.3 Spline curves of higher degrees

The construction of spline curves can be generalised to arbitrary polynomial degrees by
forming more averages. A cubic spline segment requires four control points ci−3, ci−2,
ci−1, ci, and six knots (tj)i+3

j=i−2 which must form a nondecreasing sequence of numbers
with ti < ti+1. The curve is the average of two quadratic segments,

p(t | ci−3, ci−2, ci−1, ci; ti−2, ti−1, ti, ti+1, ti+2, ti+3) =
ti+1 − t

ti+1 − ti
p(t | ci−3, ci−2, ci−1; ti−2, ti−1, ti+1, ti+2)+

t− ti
ti+1 − ti

p(t | ci−2, ci−1, ci; ti−1, ti, ti+2, ti+3), (1.23)

22 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) (b)

Figure 1.20. Two quadratic spline curves, both with knots t = (0, 0, 0, 1, 2, 2, 2).

with t varying in [ti, ti+1]. The two quadratic segments are given by convex combinations
of linear segments on the two intervals [ti−1, ti+1] and [ti, ti+2], as in (1.20). The three line
segments are in turn given by convex combinations of the given points on the intervals
[ti−2, ti+1], [ti−1, ti+2] and [ti, ti+3]. Note that all these intervals contain [ti, ti+1] so that
when t varies in [ti, ti+1] all the combinations involved in the construction of the cubic
curve will be convex. This also shows that we can never get division by zero since we have
assumed that ti < ti+1.

The explicit notation in (1.23) is too cumbersome, especially when we consider spline
curves of even higher degrees, so we generalise the notation in (1.19) and (1.22) and set

ps
i,k(t) = p(t | ci−k, . . . , ci, ti−k+1, . . . , ti, ti+s, . . . , ti+k+s−1), (1.24)

for some positive integer s, assuming that the control points and knots in question are
given. The first subscript i in ps

i,k indicates which control points and knots are involved
(in general we work with many spline segments and therefore long arrays of control points
and knots), the second subscript k gives the polynomial degree, and the superscript s gives
the gap between the knots in the computation of the weight (t− ti)/(ti+s − ti). With the
abbreviation (1.24), equation (1.23) becomes

p1
i,3(t) =

ti+1 − t

ti+1 − ti
p2

i−1,2(t) +
t− ti

ti+1 − ti
p2

i,2(t).

Note that on both sides of this equation, the last two subscripts sum to four. Similarly,
if the construction of quadratic splines given by (1.20) is expressed with the abbreviation
given in (1.24), the last two subscripts add to three. The general pattern is that in the
recursive formulation of spline curves of degree d, the last two subscripts always add to
d + 1. Therefore, when the degree of the spline curves under construction is fixed we can
drop the superscript and write ps

i,k = pi,k.
The complete computations involved in computing a point on the cubic segment pi,3(t)

can be arranged in the triangular array shown in Figure 1.21 (all arguments to the pi,k

have been omitted to conserve space). The labels should be interpreted as in Figure 1.7.
A segment of a general spline curve of degree d requires d + 1 control points (cj)i

j=i−d

and 2d knots (tj)i+d
j=i−d+1 that form a nondecreasing sequence with ti < ti+1. The curve is

a weighted average of two curves of degree d− 1,

pi,d(t) =
ti+1 − t

ti+1 − ti
pi−1,d−1(t) +

t− ti
ti+1 − ti

pi,d−1(t). (1.25)

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 23

pi,3

t i+1-
t

t-ti

ti+1-ti

pi-1,2

t i+1-
t

t-ti-1

tt+1-ti-1

pi-2,1

t i+1-
t

t-ti-2

ti+1-ti-2

pi,2

t i+2-
t

t-ti

ti+2-ti

pi-1,1

t i+2-
t

t-ti-1

ti+2-ti-1

pi,1

t i+3-
t

t-ti

ti+3-ti

ci-3

ci-2

ci-1

ci

Figure 1.21. Computing a point on a cubic spline curve.

Because of the assumption ti < ti+1 we never get division by zero in (1.25). The two
curves of degree d − 1 are obtained by forming similar convex combinations of curves of
degree d− 2. For example,

pi,d−1(t) =
ti+2 − t

ti+2 − ti
pi−1,d−2(t) +

t− ti
ti+2 − ti

pi,d−2(t),

and again the condition ti < ti+1 saves us from dividing by zero. At the lowest level we
have d line segments that are determined directly from the control points,

pj,1(t) =
tj+d − t

tj+d − tj
cj−1 +

t− tj
tj+d − tj

cj

for j = i − d + 1, . . . , i. The denominators in this case are ti+1 − ti−d+1, . . . , ti+d − ti,
all of which are positive since the knots are nondecreasing with ti < ti+1. As long as
t is restricted to the interval [ti, ti+1], all the operations involved in computing pi,d(t)
are convex combinations. The complete computations are summarised in the following
algorithm.

Algorithm 1.3. Let d be a positive integer and let the d + 1 points (cj)i
j=i−d be given

together with the 2d knots t = (tj)i+d
j=i−d+1. The point pi,d(t) on the spline curve pi,d of

degree d is determined by the following computations. First set pj,0(t) = cj for j = i− d,
i− d + 1, . . . , i and then compute

pj,r(t) =
tj+d−r+1 − t

tj+d−r+1 − tj
pj−1,r−1(t) +

t− tj
tj+d−r+1 − tj

pj,r−1(t) (1.26)

for j = i− d + r, . . . , i and r = 1, 2, . . . , d.

24 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) (b)

Figure 1.22. Two cubic spline curves, both with knots t = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3).

A spline curve of degree d with n control points (ci)n
i=1 and knots (ti)n+d

i=2 is given by

f(t) =

pd+1,d(t) t ∈ [td+1, td+2],
pd+2,d(t), t ∈ [td+2, td+3];

...
...

pn,d(t), t ∈ [tn, tn+1],

where as before it is assumed that the knots are nondecreasing and in addition that
ti < ti+1 for i = d + 1, . . . , n. Again we can express f in terms of the piecewise constant
functions given by (1.18),

f(t) =
n∑

i=d+1

pi,d(t)Bi,0(t). (1.27)

It turns out that spline curves of degree d have continuous derivatives up to order d− 1,
see Section 3.2.4 in Chapter 3.

Figure 1.22 shows two examples of cubic spline curves with control points taken from
the two Bézier curves of degree five in Figure 1.15. Again we note that the curves behave
like Bézier curves at the ends because there are four identical knots at each end.

1.5.4 Smoothness of spline curves

The geometric construction of one segment of a spline curve, however elegant and numer-
ically stable it may be, would hardly be of much practical interest was it not for the fact
that it is possible to smoothly join together neighbouring segments. We will study this
in much more detail in Chapter 3, but will take the time to state the exact smoothness
properties of spline curves here.

Theorem 1.4. Suppose that the number ti+1 occurs m times among the knots (tj)m+d
j=i−d,

with m some integer bounded by 1 ≤ m ≤ d + 1, i.e.,

ti < ti+1 = · · · = ti+m < ti+m+1.

Then the spline function f(t) = pi,d,1(t)Bi,0(t) + pi+m,d,1(t)Bi+m,0(t) has continuous de-
rivatives up to order d−m at the join ti+1.

1.6. REPRESENTING SPLINE CURVES IN TERMS OF BASIS FUNCTIONS 25

(a) (b)

Figure 1.23. A quadratic spline with a double knot at the circled point (a) and a cubic spline with a double knot
at the circled point (b).

This theorem introduces a generalisation of our construction of spline curves by per-
mitting ti+1, . . . , ti+m to coalesce, but if we assume that m = 1 the situation corresponds
to the construction above. Theorem 1.4 tells us that in this standard case the spline curve
f will have d continuous derivatives at the join ti+1: namely f , f ′, . . . , fd−1 will all be
continuous at ti+1. This means that if the knots are all distinct, then a linear spline will
be continuous, a quadratic spline will also have a continuous first derivative, while for a
cubic spline even the second derivative will be continuous. Examples of spline curves with
this maximum smoothness can be found above.

What happens when m > 1? Theorem 1.4 tells us that each time we add a knot at
ti+1 the number of continuous derivatives is reduced by one. So a quadratic spline will
in general only be continuous at a double knot, whereas a cubic spline will be continuous
and have a continuous derivative at a double knot.

This ability to control the smoothness of a spline by varying the multiplicity of the
knots is important in practical applications. For example it is often necessary to represent
curves with a sharp corner (discontinuous derivative). With a spline curve of degree d this
can be done by letting the appropriate knot occur d times. We will see many examples of
how the multiplicity of the knots influence the smoothness of a spline in later chapters.

Two examples of spline curves with reduced smoothness are shown in Figure 1.23.
Figure (a) shows a quadratic spline with a double knot and a discontinuous derivative
at the encircled point, while Figure (b) shows a cubic spline with a double knot and a
discontinuous second derivative at the encircled point.

1.6 Representing spline curves in terms of basis functions

In Section 1.4 we saw that a Bézier curve g of degree d with control points (ci)d
i=0 can

be written as a linear combination of the Bernstein polynomials {bi,d}d
i=0 with the control

points as coefficients, see (1.14). In this section we want to develop a similar representation
for spline curves.

If we have n control points (ci)n
i=1 and the n + d − 1 knots t = (ti)n+d

i=2 for splines of
degree d; we have seen that a typical spline can be written

f(t) =
n∑

i=d+1

pi,d(t)Bi,0(t), t ∈ [td+1, tn+1], (1.28)

26 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

where {Bi,0}n
i=d+1 are given by (1.18). When this representation was introduced at the

end of Section 1.5.3 we assumed that td+1 < td+2 < · · · < tn+1 (although the end knots
were allowed to coincide). To accommodate more general forms of continuity, we know
from Theorem 1.4 that we must allow some of the interior knots to coincide as well. If for
example ti = ti+1 for some i with d+1 < i < n+1, then the corresponding segment pi,d is
completely redundant and (1.25) does not make sense since we get division by zero. This
is in fact already built into the representation in (1.28), since Bi,0(t) is identically zero in
this case, see (1.18). A more explicit definition of Bi,0 makes this even clearer,

Bi,0(t) =

1, ti ≤ t < ti+1,

0, t < ti or t ≥ ti+1,

0, ti = ti+1.

(1.29)

The representation (1.28) is therefore valid even if some of the knots occur several times.
The only complication is that we must be careful when we expand out pi,d according to
(1.25) as this will give division by zero if ti = ti+1. One might argue that there should be
no need to apply (1.25) if ti = ti+1 since the result is zero anyway. However, in theoretical
developments it is convenient to be able to treat all the terms in (1.28) similarly, and
this may then lead to division by zero. It turns out though that this problem can be
circumvented quite easily by giving an appropriate definition of ‘division by zero’ in this
context, see below.

Let us now see how f can be written more directly in terms of the control points. By
making use of (1.25) we obtain

f(t) =
n∑

i=d+1

(t− ti
ti+1 − ti

pi,d−1(t)Bi,0(t) +
ti+1 − t

ti+1 − ti
pi−1,d−1(t)Bi,0(t)

)

=
n−1∑

i=d+1

(t− ti
ti+1 − ti

Bi,0(t) +
ti+2 − t

ti+2 − ti+1
Bi+1,0(t)

)
pi,d−1(t)+ (1.30)

td+2 − t

td+2 − td+1
Bd+1,0(t)pd,d−1(t) +

t− tn
tn+1 − tn

Bn,0(t)pn,d−1(t).

This is a typical situation where we face the problem of division by zero if ti = ti+1 for
some i. The solution is to declare that ‘anything divided by zero is zero’ since we know
that if ti = ti+1 the answer should be zero anyway.

In (1.30) we have two ‘boundary terms’ that complicate the expression. But since t is
assumed to lie in the interval [td+1, tn+1] we may add the expression

t− td
td+1 − td

Bd,0(t)pd,d−1(t) +
tn+2 − t

tn+2 − tn+1
Bn+1,0(t)pn,d−1(t)

which is identically zero as long as t is within this [td+1, tn+1]. By introducing the functions

Bi,1(t) =
t− ti

ti+1 − ti
Bi,0(t) +

ti+2 − t

ti+2 − ti+1
Bi+1,0(t) (1.31)

for i = d, . . . , n, we can then write f as

f(t) =
n∑

i=d

pi,d−1(t)Bi,1(t).

1.6. REPRESENTING SPLINE CURVES IN TERMS OF BASIS FUNCTIONS 27

This illustrates the general strategy: Successively apply the relations in (1.26) in turn and
rearrange the sums until we have an expression where the control points appear explicitly.
The functions that emerge are generalisations of Bi,1 and can be defined recursively by

Bi,r(t) =
t− ti

ti+r − ti
Bi,r−1(t) +

ti+r+1 − t

ti+r+1 − ti
Bi+1,r−1(t), (1.32)

for r = 1, 2, . . . , d, starting with Bi,0 as defined in (1.18). Again we use the convention
that ‘anything divided by zero is zero’. It follows by induction that Bi,r(t) is identically
zero if ti = ti+r+1 and Bi,r(t) = 0 if t < ti or t > ti+r+1, see exercise 7.

To prove by induction that the functions defined by the recurrence (1.32) appear in
the process of unwrapping all the averaging in (1.26), we consider a general step. Suppose
that after r − 1 applications of (1.26) we have

f(t) =
n∑

i=d+2−r

pi,d−r+1(t)Bi,r−1(t).

One more application yields

f(t) =
n∑

i=d+2−r

(ti+r − t

ti+r − ti
pi−1,d−r(t)Bi,r−1(t) +

t− ti
ti+r − ti

pi,d−r(t)Bi,r−1(t)
)

=
n−1∑

i=d+2−r

(t− ti
ti+r − ti

Bi,r−1(t) +
ti+r+1 − t

ti+r+1 − ti+1
Bi+1,r−1(t)

)
pi,d−r(t)+

td+2 − t

td+2 − td+2−r
Bd+2−r,r−1(t)pd+1−r,d−r(t) +

t− tn
tn+r − tn

Bn,r−1(t)pn,d−r(t).

Just as above we can include the boundary terms in the sum by adding

t− td+1−r

td+1 − td+1−r
Bd+1−r,r−1(t)pd+1−r,d−r(t) +

tn+r+1 − t

tn+r+1 − tn+1
Bn+1,r−1(t)pn,d−r(t)

which is zero since Bi,r−1(t) is zero when t < ti or t > ti+r. The result is that

f(t) =
n∑

i=d+1−r

pi,d−r(t)Bi,r(t).

After d−1 steps we have f(t) =
∑n

i=2 pi,1,d−1(t)Bi,d−1(t). In the last application of (1.26)
we recall that pj,0(t) = cj for j = i− d, . . . , i. After rearranging the sum and adding zero
terms as before we obtain

f(t) =
n∑

i=1

ciBi,d(t).

But note that in this final step we need two extra knots, namely t1 and tn+d+1 which are
used by B1,d−1 and Bn+1,d−1, and therefore also by B1,d and Bn,d. The value of the spline
in the interval [td+1, tn+1] is independent of these knots, but it is customary to demand
that t1 ≤ t2 and tn+d+1 ≥ tn+d to ensure that the complete knot vector t = (ti)n+d+1

i=1 is a
nondecreasing sequence of real numbers.

The above discussion can be summarised in the following theorem.

28 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

Theorem 1.5. Let (ci)n
i=1 be a set of control points for a spline curve f of degree d, with

nondecreasing knots (ti)n+d+1
i=1 ,

f(t) =
n∑

i=d+1

pi,d(t)Bi,0(t)

where pi,d is given recursively by

pi,d−r+1(t) =
ti+r − t

ti+r − ti
pi−1,d−r(t) +

t− ti
ti+r − ti

pi,d−r(t) (1.33)

for i = d− r + 1, . . . , n, and r = d, d− 1, . . . , 1, while pi,0(t) = ci for i = 1, . . . , n. The
functions {Bi,0}n

i=d+1 are given by

Bi,0(t) =

{
1, ti ≤ t < ti+1,

0, otherwise.
(1.34)

The spline f can also be written

f(t) =
n∑

i=1

ciBi,d(t) (1.35)

where Bi,d is given by the recurrence relation

Bi,d(t) =
t− ti

ti+d − ti
Bi,d−1(t) +

ti+1+d − t

ti+1+d − ti+1
Bi+1,d−1(t). (1.36)

In both (1.33) and (1.36) possible divisions by zero are resolved by the convention that
‘anything divided by zero is zero’. The function Bi,d = Bi,d,t is called a B-spline of degree
d (with knots t).

B-splines have many interesting and useful properties and in the next chapter we will
study these functions in detail.

1.7 Conclusion

Our starting point in this chapter was the need for efficient and numerically stable methods
for determining smooth curves from a set of points. We considered three possibilities,
namely polynomial interpolation, Bézier curves and spline curves. In their simplest forms,
all three methods produce polynomial curves that can be expressed as

g(t) =
d∑

i=0

aiFi(t),

where d is the polynomial degree, (ai)d
i=0 are the coefficients and {Fi}d

i=0 are the basis
polynomials. The difference between the three methods lie in the choice of basis poly-
nomials, or equivalently, how the given points relate to the final curve. In the case of
interpolation the coefficients are points on the curve with the Lagrange polynomials as
basis polynomials. For Bézier and spline curves the coefficients are control points with

1.7. CONCLUSION 29

the property that the curve itself lies inside the convex hull of the control points, while
the basis polynomials are the Bernstein polynomials and (one segment of) B-splines re-
spectively. Although all three methods are capable of generating any polynomial curve,
their differences mean that they lead to different representations of polynomials. For our
purposes Bézier and spline curves are preferable since they can be constructed by forming
repeated convex combinations. As we argued in Section 1.1, this should ensure that the
curves are relatively insensitive to round-off errors.

The use of convex combinations also means that the constructions have simple geo-
metric interpretations. This has the advantage that a Bézier curve or spline curve can
conveniently be manipulated interactively by manipulating the curve’s control points, and
as we saw in Section 1.4.3 it also makes it quite simple to link several Bézier curves
smoothly together. The advantage of spline curves over Bézier curves is that smoothness
between neighbouring polynomial pieces is built into the basis functions (B-splines) instead
of being controlled by constraining control points according to specific rules.

In the coming chapters we are going to study various aspects of splines, primarily
by uncovering properties of B-splines. This means that our point of view will be shifted
somewhat, from spline curves to spline functions (each control point is a real number),
since B-splines are functions. However, virtually all the properties we obtain for spline
functions also make sense for spline curves, and even tensor product spline surfaces, see
Chapters 6 and 7.

We were led to splines and B-splines in our search for approximation methods based
on convex combinations. The method which uses given points (ci)n

i=1 as control points for
a spline as in

f(t) =
n∑

i=1

ciBi,d(t) (1.37)

is often referred to as Schoenberg’s variation diminishing spline approximation. This is a
widely used approximation method that we will study in detail in Section 5.4, and because
of the intuitive relation between the spline and its control points the method is often used
in interactive design of spline curves. However, there are many other spline approximation
methods. For example, we may approximate certain given points (bi)m

i=1 by a spline curve
that passes through these points, or we may decide that we want a spline curve that
approximates these points in such a way that some measure of the error is as small as
possible. To solve these kinds of problems, we are faced with three challenges: we must
pick a suitable polynomial degree and an appropriate set of knots, and then determine
control points so that the resulting spline curve satisfies our chosen criteria. Once this
is accomplished we can compute points on the curve by Algorithm 1.3 and store it by
storing the degree, the knots and the control points. We are going to study various spline
approximation methods of this kind in Chapter 5.

But before turning to approximation with splines, we need to answer some basic ques-
tions: Exactly what functions can be represented as linear combinations of B-splines as
in (1.37)? Is a representation in terms of B-splines unique, or are there several choices of
control points that result in the same spline curve? These and many other questions will
be answered in the next two chapters.

30 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

Exercises for Chapter 1

1.1 Recall that a subset A of Rn is said to be convex if whenever we pick two points in
A, the line connecting the two points is also in A. In this exercise we are going to
prove that the convex hull of a finite set of points is the smallest convex set that
contains the points. This is obviously true if we only have one or two points. To
gain some insight we will first show that it is also true in the case of three points
before we proceed to the general case. We will use the notation CH(c1, . . . , cn) to
denote the convex hull of the points c1, . . . , cn.

a) Suppose we have three points c1, c2 and c3. We know that the convex hull of
c1 and c2 is the straight line segment that connects the points. Let c̃ be a point
on this line, i.e.,

c̃ = (1− λ)c1 + λc2 (1.38)

for some λ with 0 ≤ λ ≤ 1. Show that any convex combination of c̃ and
c3 is a convex combination of c1, c2 and c3. Explain why this proves that
CH(c1, c2, c3) contains the triangle with the three points at its vertexes. The
situation is depicted graphically in Figure 1.2.

b) It could be that CH(c1, c2, c3) is larger than the triangle formed by the three
points since the convex combination that we considered above was rather spe-
cial. We will now show that this is not the case.
Show that any convex combination of c1, c2 and c3 gives rise to a convex
combination on the form (1.38). Hint: Show that if c is a convex combination
of the three points, then we can write

c = λ1c1 + λ2c2 + λ3c3

= (1− λ3)c̃ + λ3c3,

where c̃ is some convex combination of c1 and c2. Why does this prove that the
convex hull of three points coincides with the triangle formed by the points?
Explain why this shows that if B is a convex set that contains c1, c2 and c3

then B must also contain the convex hull of the three points which allows us
to conclude that the convex hull of three points is the smallest convex set that
contains the points.

c) The general proof that the convex hull of n points is the smallest convex set
that contains the points is by induction on n. We know that this is true for
n = 2 and n = 3 so we assume that n ≥ 4. Let B be a convex set that contains
c1, . . . , cn. Use the induction hypothesis and show that B contains any point
on a straight line that connects cn and an arbitrary point in CH(c1, . . . , cn−1).

d) From what we have found in (c) it is not absolutely clear that any convex
set B that contains c1, . . . , cn also contains all convex combinations of the
points. To settle this show that any point c in CH(c1, . . . , cn) can be written
c = λc̃ + (1 − λ)cn for some λ in [0, 1] and some point c̃ in CH(c1, . . . , cn−1).
Hint: Use a trick similar to that in (b).
Explain why this lets us conclude that CH(c1, . . . , cn) is the smallest convex
set that contains c1, . . . , cn.

1.7. CONCLUSION 31

1.2 Show that the interpolatory polynomial curve q0,d(t) given by (1.4) can be written
as in (1.5) with `i,d given by (1.6).

1.3 Implement Algorithm 1.1 in a programming language of your choice. Test the code
by interpolating points on a semicircle and plot the results. Perform four tests, with
3, 7, 11 and 15 uniformly sampled points. Experiment with the choice of parameter
values (ti) and try to find both some good and some bad approximations.

1.4 Implement Algorithm 1.2 in your favourite programming language. Test the program
on the same data as in exercise 3.

1.5 In this exercise we are going to write a program for evaluating spline functions. Use
whatever programming language you prefer.

a) Implement Algorithm 1.3 in a procedure that takes as input an integer d (the
degree), d + 1 control points in the plane, 2d knots and a parameter value t.

b) If we have a complete spline curve f =
∑n

i=1 ciBi,d with knots t = (ti)n+d+1
i=1

that we want to evaluate at t we must make sure that the correct control points
and knots are passed to the routine in (a). If

tµ ≤ t < tµ+1 (1.39)

then (ci)
µ
i=µ−d and (ti)

µ+d
i=µ−d+1 are the control points and knots needed in (a).

Write a procedure which takes as input all the knots and a value t and gives as
output the integer µ such that (1.39) holds.

c) Write a program that plots a spline function by calling the two routines from (a)
and (b). Test your program by picking control points from the upper half of the
unit circle and plotting the resulting spline curve. Use cubic splines and try with
n = 4, n = 8 and n = 16 control points. Use the knots t = (0, 0, 0, 0, 1, 1, 1, 1)
when n = 4 and add the appropriate number of knots between 0 and 1 when
n is increased. Experiment with the choice of interior knots when n = 8 and
n = 16. Is the resulting curve very dependent on the knots?

1.6 Show that a quadratic spline is continuous and has a continuous derivative at a single
knot.

1.7 Show by induction that Bi,d depends only on the knots ti, ti+1, . . . , ti+d+1. Show
also that Bi,d(t) = 0 if t < ti or t > ti+d+1.

32 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

