
CHAPTER 5

Spline Approximation of Functions
and Data

This chapter introduces a number of methods for obtaining spline approximations to given
functions, or more precisely, to data obtained by sampling a function. In Section 5.1, we
focus on local methods where the approximation at a point x only depends on data values
near x. Connecting neighbouring data points with straight lines is one such method where
the value of the approximation at a point only depends on the two nearest data points.

In order to get smoother approximations, we must use splines of higher degree. With
cubic polynomials we can prescribe, or interpolate, position and first derivatives at two
points. Therefore, given a set of points with associated function values and first derivatives,
we can determine a sequence of cubic polynomials that interpolate the data, joined together
with continuous first derivatives. This is the cubic Hermite interpolant of Section 5.1.2.

In Section 5.2 we study global cubic approximation methods where we have to solve
a system of equations involving all the data points in order to obtain the approximation.
Like the local methods in Section 5.1, these methods interpolate the data, which now only
are positions. The gain in turning to global methods is that the approximation may have
more continuous derivatives and still be as accurate as the local methods.

The cubic spline interpolant with so called natural end conditions solves an interesting
extremal problem. Among all functions with a continuous second derivative that interpol-
ate a set of data, the natural cubic spline interpolant is the one whose integral of the square
of the second derivative is the smallest. This is the foundation for various interpretations
of splines, and is all discussed in Section 5.2.

Two approximation methods for splines of arbitrary degree are described in Section 5.3.
The first method is spline interpolation with B-splines defined on some rather arbitrary
knot vector. The disadvantage of using interpolation methods is that the approximations
have a tendency to oscillate. If we reduce the dimension of the approximating spline space,
and instead minimize the error at the data points this problem can be greatly reduced.
Such least squares methods are studied in Section 5.3.2.

We end the chapter by a discussing a very simple approximation method, the Variation
Diminishing Spline Approximation. This approximation scheme has the desirable ability
to transfer the sign of some of the derivatives of a function to the approximation. This is
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important since many important characteristics of the shape of a function is closely related
to the sign of the derivatives.

5.1 Local Approximation Methods

When we construct an approximation to data, it is usually an advantage if the approxim-
ation at a point x only depends on the data near x. If this is the case, changing the data
in some small area will only affect the approximation in the same area. The variation di-
minishing approximation method and in particular piecewise linear interpolation has this
property, it is a local method. In this section we consider another local approximation
method.

5.1.1 Piecewise linear interpolation
The simplest way to obtain a continuous approximation to a set of ordered data points is
to connect neighbouring data points with straight lines. This approximation is naturally
enough called the piecewise linear interpolant to the data. It is clearly a linear spline and
can therefore be written as a linear combination of B-splines on a suitable knot vector.
The knots must be at the data points, and since the interpolant is continuous, each interior
knot only needs to occur once in the knot vector. The construction is given in the following
proposition.
Proposition 5.1. Let (xi, yi)m

i=1 be a set of data points with xi < xi+1 for i = 1, . . . ,
m− 1, and construct the 2-regular knot vector t as

t = (ti)m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm, xm).

Then the linear spline g given by

g(x) =
m∑

i=1

yiBi,1(x)

satisfies the interpolation conditions

g(xi) = yi, for i = 1, . . . , m− 1, and lim
x→x−m

g(x) = ym. (5.1)

The last condition states that the limit of g from the left at xm is ym. If the data are taken
from a function f so that yi = f(xi) for i = 1, . . . , m, the interpolant g is often denoted
by I1f .

Proof. From Example 2.2 in Chapter 2, we see that the B-spline Bi,1 for 1 ≤ i ≤ m is
given by

Bi,1(x) =






(x− xi−1)/(xi − xi−1), if xi−1 ≤ x < xi,
(xi+1 − x)/(xi+1 − xi), if xi ≤ x < xi+1,
0, otherwise,

where we have set x0 = x1 and xm+1 = xm. This means that Bi,1(xi) = 1 for i < m and
limx→x−m

Bm,1(x) = 1, while Bi,1(xj) = 0 for all j #= i, so the interpolation conditions (5.1)
are satisfied.
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The piecewise linear interpolant preserves the shape of the data extremely well. The
obvious disadvantage of this approximation is its lack of smoothness.

Intuitively, it seems reasonable that if f is continuous, it should be possible to ap-
proximate it to within any accuracy by piecewise linear interpolants, if we let the distance
between the data points become small enough. This is indeed the case. Note that the
symbol Cj [a, b] denotes the set of all functions defined on [a, b] with values in R whose first
j derivatives are continuous.
Proposition 5.2. Suppose that a = x1 < x2 < · · · < xm = b are given points, and set
∆x = max1≤i≤m−1{xi+1 − xi}.

1. If f ∈ C[a, b], then for every ε > 0 there is a δ > 0 such that if ∆x < δ, then
|f(x)− I1f(x)| < ε for all x ∈ [a, b].

2. If f ∈ C2[a, b] then for all x ∈ [a, b],

|f(x)− (I1f)(x)| ≤ 1
8
(∆x)2 max

a≤z≤b
|f ′′(z)|, (5.2)

|f ′(x)− (I1f)′(x)| ≤ 1
2
∆x max

a≤z≤b
|f ′′(z)|. (5.3)

Part (i) of Proposition 5.2 states that piecewise linear interpolation to a continuous
function converges to the function when the distance between the data points goes to zero.
More specifically, given a tolerance ε, we can make the error less than the tolerance by
choosing ∆x sufficiently small.

Part (ii) of Proposition 5.2 gives an upper bound for the error in case the function f is
smooth, which in this case means that f and its first two derivatives are continuous. The
inequality in (5.2) is often stated as “piecewise linear approximation has approximation
order two”, meaning that ∆x is raised to the power of two in (5.2).

The bounds in Proposition 5.2 depend both on ∆x and the size of the second derivative
of f . Therefore, if the error is not small, it must be because one of these quantities are
large. If in some way we can find an upper bound M for f ′′, i.e.,

|f ′′(x)| ≤ M, for x ∈ [a, b], (5.4)

we can determine a value of ∆x such that the error, measured as in (5.2), is smaller than
some given tolerance ε. We must clearly require (∆x)2M/8 < ε. This inequality holds
provided ∆x <

√
8ε/M. We conclude that for any ε > 0, we have the implication

∆x <

√
8ε

M
=⇒ |f(x)− I1f(x)| < ε, for x ∈ [x1, xm]. (5.5)

This estimate tells us how densely we must sample f in order to have error smaller than ε
everywhere.

We will on occasions want to compute the piecewise linear interpolant to a given higher
degree spline f . A spline does not necessarily have continuous derivatives, but at least we
know where the discontinuities are. The following proposition is therefore meaningful.
Proposition 5.3. Suppose that f ∈ Sd,t for some d and t with interior knots of multiplicity
at most d (so f is continuous). If the break points (xi)m

i=1 are chosen so as to include all
the knots in t where f ′ is discontinuous, the bounds in (5.2) and (5.3) continue to hold.
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5.1.2 Cubic Hermite interpolation
The piecewise linear interpolant has the nice property of being a local construction: The
interpolant on an interval [xi, xi+1] is completely defined by the value of f at xi and xi+1.
The other advantage of f is that it does not oscillate between data points and therefore
preserves the shape of f if ∆x is small enough. In this section we construct an interpolant
which, unlike the piecewise linear interpolant, has continuous first derivative, and which,
like the piecewise linear interpolant, only depends on data values locally. The price of
the smoothness is that this interpolant requires information about derivatives, and shape
preservation in the strong sense of the piecewise linear interpolant cannot be guaranteed.
The interpolant we seek is the solution of the following problem.
Problem 5.4 (Piecewise Cubic Hermite Interpolation). Let the discrete data
(xi, f(xi), f ′(xi))m

i=1 with a = x1 < x2 < · · · < xm = b be given. Find a function g = H3f
that satisfies the following conditions:

1. On each subinterval (xi, xi+1) the function g is a cubic polynomial.

2. The given function f is interpolated by g in the sense that

g(xi) = f(xi), and g′(xi) = f ′(xi), for i = 1, . . . , m. (5.6)

A spline g that solves Problem 5.4 must be continuous and have continuous first de-
rivative since two neighbouring pieces meet with the same value f(xi) and first derivative
f ′(xi) at a join xi. Since Hf should be a piecewise cubic polynomial, it is natural to try
and define a knot vector so that Hf can be represented as a linear combination of B-splines
on this knot vector. To get the correct smoothness, we need at least a double knot at each
data point. Since d = 3 and we have 2m interpolation conditions, the length of the knot
vector should be 2m + 4, and we might as well choose to use a 4-regular knot vector. We
achieve this by making each interior data point a knot of multiplicity two and place four
knots at the two ends. This leads to the knot vector

t = (ti)2m+4
i=1 = (x1, x1, x1, x1, x2, x2, . . . , xm−1, xm−1, xm, xm, xm, xm), (5.7)

which we call the Cubic Hermite knot vector on x = (x1, . . . , xm). This allows us to
construct the solution to Problem 5.4.
Proposition 5.5. Problem 5.4 has a unique solution Hf in the spline space S3,t, where t
is given in equation (5.7). More specifically, the solution is given by

Hf =
2m∑

i=1

ciBi,3, (5.8)

where
c2i−1 = f(xi)−

1
3
∆xi−1f

′(xi),

c2i = f(xi) +
1
3
∆xif

′(xi),





for i = 1, . . . , m, (5.9)

where ∆xj = xj+1−xj , and the points x0 and xm+1 are defined by x0 = x1 and xm+1 = xm.
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Figure 5.1. Figure (a) shows the cubic Hermite interpolant (solid) to f(x) = x4 (dashed), see Example 5.6, while
the error in this approximation is shown in (b).

Proof. We leave the proof that the spline defined by (5.9) satisfies the interpolation con-
ditions in Problem 5.4 to the reader.

By construction, the solution is clearly a cubic polynomial. That there is only one
solution follows if we can show that the only solution that solves the problem with f(xi) =
f ′(xi) = 0 for all i is the function that is zero everywhere. For if the general problem has
two solutions, the difference between these must solve the problem with all the data equal
to zero. If this difference is zero, the two solutions must be equal.

To show that the solution to the problem where all the data are zero is the zero function,
it is clearly enough to show that the solution is zero in one subinterval. On each subinterval
the function Hf is a cubic polynomial with value and derivative zero at both ends, and
it therefore has four zeros (counting multiplicity) in the subinterval. But the only cubic
polynomial with four zeros is the polynomial that is identically zero. From this we conclude
that Hf must be zero in each subinterval and therefore identically zero.

Let us see how this method of approximation behaves in a particular situation.
Example 5.6. We try to approximate the function f(x) = x4 on the interval [0, 1] with only one
polynomial piece so that m = 2 and [a, b] = [x1, xm] = [0, 1]. Then the cubic Hermite knots are just the
Bernstein knots. From (5.9) we find (c1, c2, c3, c4) = (0, 0,−1/3, 1), and

(Hf)(x) = −1
3
3x2(1− x) + x3 = 2x3 − x2.

The two functions f and Hf are shown in Figure 5.1.

Example 5.7. Let us again approximate f(x) = x4 on [0, 1], but this time we use two polynomial pieces
so that m = 3 and x = (0, 1/2, 1). In this case the cubic Hermite knots are t = (0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1),
and we find the coefficients c = (0, 0,−1/48, 7/48, 1/3, 1). The two functions f and Hf are shown in
Figure 5.1 (a). With the extra knots at 1/2 (cf. Example 5.6), we get a much more accurate approximation
to x4. In fact, we see from the error plots in Figures 5.1 (b) and 5.1 (b) that the maximum error has been
reduced from 0.06 to about 0.004, a factor of about 15.

Note that in Example 5.6 the approximation becomes negative even though f is non-
negative in all of [0, 1]. This shows that in contrast to the piecewise linear interpolant, the
cubic Hermite interpolant Hf does not preserve the sign of f . However, it is simple to
give conditions that guarantee Hf to be nonnegative.
Proposition 5.8. Suppose that the function f to be approximated by cubic Hermite
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Figure 5.2. Figure (a) shows the cubic Hermite interpolant (solid) to f(x) = x4 (dashed) with two polynomial
pieces, see Example 5.7, while the error in the approximation is shown in (b).

interpolation satisfies the conditions

f(xi)−
1
3
∆xi−1f

′(xi) ≥ 0,

f(xi) +
1
3
∆xif

′(xi) ≥ 0,





for i = 1, . . . , m.

Then the cubic Hermite interpolant Hf is nonnegative on [a, b].

Proof. In this case, the spline approximation Hf given by Proposition 5.5 has nonnegative
B-spline coefficients, so that (Hf)(x) for each x is a sum of nonnegative quantities and
therefore nonnegative.

As for the piecewise linear interpolant, it is possible to relate the error to the spacing
in x and the size of some derivative of f .
Proposition 5.9. Suppose that f has continuous derivatives up to order four on the
interval [x1, xm]. Then

|f(x)− (Hf)(x)| ≤ 1
384

(∆x)4 max
a≤z≤b

|f (iv)(z)|, for x ∈ [a, b]. (5.10)

This estimate also holds whenever f is in some spline space Sd,t provided f has a continuous
derivative at all the xi.

Proof. See a text on numerical analysis.

The error estimate in (5.10) says that if we halve the distance between the interpolation
points, then we can expect the error to decrease by a factor of 24 = 16. This is usually
referred to as “fourth order convergence”. This behaviour is confirmed by Examples 5.6
and 5.7 where the error was reduced by a factor of about 15 when ∆x was halved.

From Proposition 5.9, we can determine a spacing between data points that guarantees
that the error is smaller than some given tolerance. Suppose that

|f (iv)(x)| ≤ M, for x ∈ [a, b].
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For any ε > 0 we then have

∆x ≤
(

384ε

M

)1/4

=⇒ |f(x)− (Hf)(x)| ≤ ε, for x ∈ [a, b].

When ε → 0, the number ε1/4 goes to zero more slowly than the term ε1/2 in the cor-
responding estimate for piecewise linear interpolation. This means that when ε becomes
small, we can usually use a larger ∆x in cubic Hermite interpolation than in piecewise
linear interpolation, or equivalently, we generally need fewer data points in cubic Hermite
interpolation than in piecewise linear interpolation to obtain the same accuracy.

5.1.3 Estimating the derivatives
Sometimes we have function values available, but no derivatives, and we still want a smooth
interpolant. In such cases we can still use cubic Hermite interpolation if we can somehow
estimate the derivatives. This can be done in many ways, but one common choice is to use
the slope of the parabola interpolating the data at three consecutive data-points. To find
this slope we observe that the parabola pi such that pi(xj) = f(xj), for j = i − 1, i and
i + 1, is given by

pi(x) = f(xi−1) + (x− xi−1)δi−1 + (x− xi−1)(x− xi)
δi − δi−1

∆xi−1 + ∆xi
,

where
δj =

(
f(xj+1)− f(xj)

)
/∆xj .

We then find that
p′i(xi) = δi−1 + ∆xi−1

δi − δi−1

∆xi−1 + ∆xi
.

After simplification, we obtain

p′i(xi) =
∆xi−1δi + ∆xiδi−1

∆xi−1 + ∆xi
, for i = 2, . . . , m− 1, (5.11)

and this we use as an estimate for f ′(xi). Using cubic Hermite interpolation with the choice
(5.11) for derivatives is known as cubic Bessel interpolation. It is equivalent to a process
known as parabolic blending. The end derivatives f ′(x1) and f ′(xm) must be estimated
separately. One possibility is to use the value in (5.11) with x0 = x3 and xm+1 = xm−2.

5.2 Cubic Spline Interpolation

Cubic Hermite interpolation works well in many cases, but it is inconvenient that the
derivatives have to be specified. In Section 5.1.3 we saw one way in which the derivatives
can be estimated from the function values. There are many other ways to estimate the
derivatives at the data points; one possibility is to demand that the interpolant should have
a continuous second derivative at each interpolation point. As we shall see in this section,
this leads to a system of linear equations for the unknown derivatives so the locality of
the construction is lost, but we gain one more continuous derivative which is important
in some applications. A surprising property of this interpolant is that it has the smallest
second derivative of all C2-functions that satisfy the interpolation conditions. The cubic
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spline interpolant therefore has a number of geometric and physical interpretations that
we discuss briefly in Section 5.2.1.

Our starting point is m points a = x1 < x2 < · · · < xm = b with corresponding values
yi = f(xi). We are looking for a piecewise cubic polynomial that interpolates the given
values and belongs to C2[a, b]. In this construction, it turns out that we need two extra
conditions to specify the interpolant uniquely. One of the following boundary conditions
is often used.

(i) g′(a) = f ′(a) and g′(b) = f ′(b); H(ermite)
(ii) g′′(a) = g′′(b) = 0; N(atural)
(iii) g′′′ is continuous at x2 and xm−1. F(ree)
(iv) Djg(a) = Djg(b) for j = 1, 2. P(eriodic)

(5.12)

The periodic boundary conditions are suitable for closed parametric curves where f(x1) =
f(xm).

In order to formulate the interpolation problems more precisely, we will define the
appropriate spline spaces. Since we want the splines to have continuous derivatives up to
order two, we know that all interior knots must be simple. For the boundary conditions
H, N, and F, we therefore define the 4-regular knot vectors

tH = tN = (ti)m+6
i=1 = (x1, x1, x1, x1, x2, x3, . . . , xm−1, xm, xm, xm, xm),

tF = (ti)m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm, xm, xm, xm).

(5.13)

This leads to three cubic spline spaces S3,tH , S3,tN and S3,tF , all of which will have two
continuous derivatives at each interior knot. Note that x2 and xm−1 are missing in tF .
This means that any h ∈ S3,tF will automatically satisfy the free boundary conditions.

We consider the following interpolation problems.
Problem 5.10. Let the data (xi, f(xi))m

i=1 with a = x1 < x2 < · · · < xm = b be given,
together with f ′(x1) and f ′(xm) if they are needed. For Z denoting one of H,N , or F ,
we seek a spline g = gZ = IZf in the spline space S3,tZ , such that g(xi) = f(xi) for
i = 1, 2, . . . ,m, and such that boundary condition Z holds.

We consider first Problem 5.10 in the case of Hermite boundary conditions. Our aim
is to show that the problem has a unique solution, and this requires that we study it in
some detail.

It turns out that any solution of Problem 5.10 H has a remarkable property. It is the
interpolant which, in some sense, has the smallest second derivative. To formulate this, we
need to work with integrals of the splines. An interpretation of these integrals is that they
are generalizations of the dot product or inner product for vectors. Recall that if u and v
are two vectors in Rn, then their inner product is defined by

〈u,v〉 = u · v =
n∑

i=1

uivi,

and the length or norm of u can be defined in terms of the inner product as

||u|| = 〈u,u〉1/2 =
( n∑

i=1

u2
i

)1/2
.
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The corresponding inner product and norm for functions are

〈u, v〉 =
∫ b

a
u(x)v(x)dx =

∫ b

a
uv

and

||u|| =
(∫ b

a
u(t)2dt

)1/2
=

(∫ b

a
u2

)1/2
.

It therefore makes sense to say that two functions u and v are orthogonal if 〈u, v〉 =
∫

uv =
0.

The first result that we prove says that the error f − IHf is orthogonal to a family of
linear splines.
Lemma 5.11. Denote the error in cubic spline interpolation with Hermite end conditions
by e = f − IHf , and let t be the 1-regular knot vector

t = (ti)m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm, xm).

Then the second derivative of e is orthogonal to the spline space S1,t. In other words
∫ b

a
e′′(x)h(x) dx = 0, for all h ∈ S1,t.

Proof. Dividing [a, b] into the subintervals [xi, xi+1] for i = 1, . . . , m − 1, and using
integration by parts, we find

∫ b

a
e′′h =

m−1∑

i=1

∫ xi+1

xi

e′′h =
m−1∑

i=1

(
e′h

∣∣∣
xi+1

xi

−
∫ xi+1

xi

e′h′
)
.

Since e′(a) = e′(b) = 0, the first term is zero,

m−1∑

i=1

e′h
∣∣∣
xi+1

xi

= e′(b)h(b)− e′(a)h(a) = 0. (5.14)

For the second term, we observe that since h is a linear spline, its derivative is equal
to some constant hi in the subinterval (xi, xi+1), and therefore can be moved outside the
integral. Because of the interpolation conditions we have e(xi+1) = e(xi) = 0, so that

m−1∑

i=1

∫ xi+1

xi

e′h′ =
m−1∑

i=1

hi

∫ xi+1

xi

e′(x) dx = 0.

This completes the proof.

We can now show that the cubic spline interpolant solves a minimisation problem. In
any minimisation problem, we must specify the space over which we minimise. The space
in this case is EH(f), which is defined in terms of the related space E(f)

E(f) =
{
g ∈ C2[a, b] | g(xi) = f(xi) for i = 1, . . . , m

}
,

EH(f) =
{
g ∈ E(f) | g′(a) = f ′(a) and g′(b) = f ′(b)

}
.

(5.15)
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The space E(f) is the set of all functions with continuous derivatives up to the second
order that interpolate f at the data points. If we restrict the derivatives at the ends to
coincide with the derivatives of f we obtain EH(f).

The following theorem shows that the second derivative of a cubic interpolating spline
has the smallest second derivative of all functions in EH(f).
Theorem 5.12. Suppose that g = IHf is the solution of Problem 5.10 H. Then

∫ b

a

(
g′′(x)

)2
dx ≤

∫ b

a

(
h′′(x)

)2
dx for all h in EH(f), (5.16)

with equality if and only if h = g.

Proof. Select some h ∈ EH(f) and set e = h− g. Then we have
∫ b

a
h′′2 =

∫ b

a

(
e′′ + g′′

)2 =
∫ b

a
e′′2 + 2

∫ b

a
e′′g′′ +

∫ b

a
g′′2. (5.17)

Since g ∈ S3,tH we have g′′ ∈ S1,t, where t is the knot vector given in Lemma 5.11. Since
g = IHh = IHf , we have e = h−IHh so we can apply Lemma 5.11 and obtain

∫ b
a e′′g′′ = 0.

We conclude that
∫ b
a h′′2 ≥

∫ b
a g′′2.

To show that we can only have equality in (5.16) when h = g, suppose that
∫ b
a h′′2 =∫ b

a g′′2. Using (5.17), we observe that we must have
∫ b
a e′′2 = 0. But since e′′ is continuous,

this means that we must have e′′ = 0. Since we also have e(a) = e′(a) = 0, we conclude
that e = 0. This can be shown by using Taylor’s formula

e(x) = e(a) + (x− a)e′(a) +
∫ x

a
e′′(t)(x− t) dt.

Since e = 0, we end up with g = h.

Lemma 5.11 and Theorem 5.12 allow us to show that the Hermite problem has a unique
solution.
Theorem 5.13. Problem 5.10 H has a unique solution.

Proof. We seek a function

g = IHf =
m+2∑

i=1

ciBi,3

in S3,tH such that

m+2∑

j=1

cjBj,3(xi) = f(xi), for i = 1, . . . , m,

m+2∑

j=1

cjB
′
j,3(xi) = f ′(xi), for i = 1 and m.

(5.18)

This is a linear system of m + 2 equations in the m + 2 unknown B-spline coefficients.
From linear algebra we know that such a system has a unique solution if and only if the



5.2. CUBIC SPLINE INTERPOLATION 113

corresponding system with zero right-hand side only has the zero solution. This means that
existence and uniqueness of the solution will follow if we can show that Problem 5.10 H
with zero data only has the zero solution. Suppose that g ∈ S3,tH solves Problem 5.10 H
with zero data. Clearly g = 0 is a solution. According to Theorem 5.12, any other solution
must also minimise the integral of the second derivative. By the uniqueness assertion in
Theorem 5.12, we conclude that g = 0 is the only solution.

We have similar results for the “natural” case.
Lemma 5.14. If e = f − INf and t the knot vector

t = (ti)m
i=1 = (x1, x2, x3, . . . , xm−1, xm),

the second derivative of e is orthogonal to S1,t,
∫ b

a
e′′(x)h(x) dx = 0, for all h in S1,t.

Proof. The proof is similar to Lemma 5.11. The relation in (5.14) holds since every
h ∈ S1,t now satisfies h(a) = h(b) = 0.

Lemma 5.14 allows us to prove that the cubic spline interpolation problem with natural
boundary conditions has a unique solution.
Theorem 5.15. Problem 5.10 N has a unique solution g = INf . The solution is the
unique function in C2[a, b] with the smallest possible second derivative in the sense that

∫ b

a

(
g′′(x)

)2
dx ≤

∫ b

a

(
h′′(x)

)2
dx, for all h ∈ E(f),

with equality if and only if h = g.

Proof. The proof of Theorem 5.12 carries over to this case. We only need to observe that
the natural boundary conditions imply that g′′ ∈ S1,t.

From this it should be clear that the cubic spline interpolants with Hermite and natural
end conditions are extraordinary functions. If we consider all continuous functions with
two continuous derivatives that interpolate f at the xi, the cubic spline interpolant with
natural end conditions is the one with the smallest second derivative in the sense that
the integral of the square of the second derivative is minimised. This explains why the N
boundary conditions in (5.12) are called natural. If we restrict the interpolant to have the
same derivative as f at the ends, the solution is still a cubic spline.

For the free end interpolant we will show existence and uniqueness in the next section.
No minimisation property is known for this spline.

5.2.1 Interpretations of cubic spline interpolation
Today engineers use computers to fit curves through their data points; this is one of
the main applications of splines. But splines have been used for this purpose long before
computers were available, except that at that time the word spline had a different meaning.
In industries like for example ship building, a thin flexible ruler was used to draw curves.
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The ruler could be clamped down at fixed data points and would then take on a nice
smooth shape that interpolated the data and minimised the bending energy in accordance
with the physical laws. This allowed the user to interpolate the data in a visually pleasing
way. This flexible ruler was known as a draftmans spline.

The physical laws governing the classical spline used by ship designers tell us that
the ruler will take on a shape that minimises the total bending energy. The linearised
bending energy is given by

∫
g′′2, where g(x) is the position of the centreline of the ruler.

Outside the first and last fixing points the ruler is unconstrained and will take the shape
of a straight line. From this we see that the natural cubic spline models such a linearised
ruler. The word spline was therefore a natural choice for the cubic interpolants we have
considered here when they were first studied systematically in 1940’s.

The cubic spline interpolant also has a related, geometric interpretation. From differ-
ential geometry we know that the curvature of a function g(x) is given by

κ(x) =
g′′(x)

(
1 + (g′(x))2

)3/2
.

The curvature κ(x) measures how much the function curves at x and is important in the
study of parametric curves. If we assume that 1 + g′2 ≈ 1 on [a, b], then κ(x) ≈ g′′(x).
The cubic spline interpolants IHf and INf can therefore be interpreted as the interpolants
with the smallest linearised curvature.

5.2.2 Numerical solution and examples
If we were just presented with the problem of finding the C2 function that interpolate a
given function at some points and have the smallest second derivative, without the know-
ledge that we obtained in Section 5.2, we would have to work very hard to write a reliable
computer program that could solve the problem. With Theorem 5.15, the most difficult
part of the work has been done, so that in order to compute the solution to say Prob-
lem 5.10 H, we only have to solve the linear system of equations (5.18). Let us take a
closer look at this system. We order the equations so that the boundary conditions cor-
respond to the first and last equation, respectively. Because of the local support property
of the B-splines, only a few unknowns appear in each equation, in other words we have a
banded linear system. Indeed, since ti+3 = xi, we see that only {Bj,3}i+3

j=i can be nonzero
at xi. But we note also that xi is located at the first knot of Bi+3,3, which means that
Bi+3,3(xi) = 0. Since we also have B′

j,3(x1) = 0 for j ≥ 3 and B′
j,3(xm) = 0 for j ≤ m, we

conclude that the system can be written in the tridiagonal form

Ac =





α1 γ1

β2 α2 γ2
. . . . . . . . .

βm+1 αm+1 γm+1

βm+2 αm+2









c1

c2
...

cm+1

cm+2




=





f ′(x1)
f(x1)

...
f(xm)
f ′(xm)




= f , (5.19)

where the elements of A are given by
α1 = B′

1,3(x1), αm+2 = B′
m+2,3(xm),

γ1 = B′
2,3(x1), βm+2 = B′

m+1,3(xm),

βi+1 = Bi,3(xi), αi+1 = Bi+1,3(xi), γi+1 = Bi+2,3(xi).

(5.20)
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Figure 5.3. Cubic spline interpolation to smoothly varying data (a) and data with sharp corners (b).

The elements of A can be computed by one of the triangular algorithms for B-bases.
For H3f we had explicit formulas for the B-spline coefficients that only involved a few

function values and derivatives, in other words the approximation was local. In cubic spline
interpolation the situation is quite different. All the equations in (5.19) are coupled and we
have to solve a linear system of equations. Each coefficient will therefore in general depend
on all the given function values which means that the value of the interpolant at a point
also depends on all the given function values. This means that cubic spline interpolation
is not a local process.

Numerically it is quite simple to solve (5.19). It follows from the proof of Theorem 5.13
that the matrix A is nonsingular, since otherwise the solution could not be unique. Since it
has a tridiagonal form it is recommended to use Gaussian elimination. It can be shown that
the elimination can be carried out without changing the order of the equations (pivoting),
and a detailed error analysis shows that this process is numerically stable .

In most cases, the underlying function f is only known through the data yi = f(xi),
for i = 1, . . . , m. We can still use Hermite end conditions if we estimate the end slopes
f ′(x1) and f ′(xm). A simple estimate is f ′(a) = d1 and f ′(b) = d2, where

d1 =
f(x2)− f(x1)

x2 − x1
and d2 =

f(xm)− f(xm−1)
xm − xm−1

. (5.21)

More elaborate estimates like those in Section 5.1.3 are of course also possible.
Another possibility is to turn to natural and free boundary conditions which also lead to

linear systems similar to the one in equation (5.19), except that the first and last equations
which correspond to the boundary conditions must be changed appropriately. For natural
end conditions we know from Theorem 5.15 that there is a unique solution. Existence and
uniqueness of the solution with free end conditions is established in Corollary 5.19.

The free end condition is particularly attractive in a B-spline formulation, since by not
giving any knot at x2 and xm−1 these conditions take care of themselves. The free end
conditions work well in many cases, but extra wiggles can sometimes occur near the ends
of the range. The Hermite conditions give us better control in this respect.
Example 5.16. In Figure 5.3 (a) and 5.3 (b) we show two examples of cubic spline interpolation. In
both cases we used the Hermite boundary conditions with the estimate in (5.21) for the slopes. The data
to be interpolated is shown as bullets. Note that in Figure 5.3 (a) the interpolant behaves very nicely and
predictably between the data points.

In comparison, the interpolant in Figure 5.3 (b) has some unexpected wiggles. This is a characteristic
feature of spline interpolation when the data have sudden changes or sharp corners. For such data, least
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squares approximation by splines usually gives better results, see Section 5.3.2.

5.3 General Spline Approximation

So far, we have mainly considered spline approximation methods tailored to specific de-
grees. In practise, cubic splines are undoubtedly the most common, but there is an obvious
advantage to have methods available for splines of all degrees. In this section we first con-
sider spline interpolation for splines of arbitrary degree. The optimal properties of the cubic
spline interpolant can be generalised to spline interpolants of any odd degree, but here we
only focus on the practical construction of the interpolant. Least squares approximation,
which we study in Section 5.3.2, is a completely different approximation procedure that
often give better results than interpolation, especially when the data changes abruptly like
in Figure 1.6 (b).

5.3.1 Spline interpolation

Given points (xi, yi)m
i=1, we again consider the problem of finding a spline g such that

g(xi) = yi, i = 1, . . . ,m.

In the previous section we used cubic splines where the knots of the spline were located
at the data points. This works well if the data points are fairly evenly spaced, but can
otherwise give undesirable effects. In such cases the knots should not be chosen at the data
points. However, how to choose good knots in general is difficult.

In some cases we might also be interested in doing interpolation with splines of degree
higher than three. We could for example be interested in a smooth representation of the
second derivative of f . However, if we want f ′′′ to be continuous, say, then the degree d
must be higher than three. We therefore consider the following interpolation problem.
Problem 5.17. Let there be given data

(
xi, yi

)m
i=1

and a spline space Sd,t whose knot
vector t = (ti)m+d+1

i=1 satisfies ti+d+1 > ti, for i = 1, . . . , m. Find a spline g in Sd,t such
that

g(xi) =
m∑

j=1

cjBj,d(xi) = yi, for i = 1, . . . , m. (5.22)

The equations in (5.22) form a system of m equations in m unknowns. In matrix form
these equations can be written

Ac =




B1,d(x1) . . . Bm,d(x1)

... . . . ...
B1,d(xm) . . . Bm,d(xm)








c1
...

cm



 =




y1
...

ym



 = y. (5.23)

Theorem 5.18 gives necessary and sufficient conditions for this system to have a unique
solution, in other words for A to be nonsingular.
Theorem 5.18. The matrix A in (5.23) is nonsingular if and only if the diagonal elements
ai,i = Bi,d(xi) are positive for i = 1, . . . m.

Proof. See Theorem 10.6 in Chapter 10.
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The condition that the diagonal elements of A should be nonzero can be written

ti < xi < ti+d+1, i = 1, 2, . . . ,m, (5.24)

provided we allow xi = ti if ti = · · · = ti+d. Conditions (5.24) are known as the Schoenberg-
Whitney nesting conditions.

As an application of Theorem 5.18, let us verify that the coefficient matrix for cubic
spline interpolation with free end conditions is nonsingular.
Corollary 5.19. Cubic spline interpolation with free end conditions (Problem 5.10 F) has
a unique solution.

Proof. The coefficients of the interpolant are found by solving a linear system of equations
of the form (5.22). Recall that the knot vector t = tF is given by

t = (ti)m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm, xm, xm, xm).

From this we note that B1(x1) and B2(x2) are both positive. Since ti+2 = xi for i = 3,
. . . , m− 2, we also have ti < xi−1 < ti+4 for 3 ≤ i ≤ m− 2. The last two conditions follow
similarly, so the coefficient matrix is nonsingular.

For implementation of general spline interpolation, it is important to make use of the
fact that at most d + 1 B-splines are nonzero for a given x, just like we did for cubic
spline interpolation. This means that in any row of the matrix A in (5.22), at most d + 1
entries are nonzero, and those entries are consecutive. This gives A a band structure that
can be exploited in Gaussian elimination. It can also be shown that nothing is gained by
rearranging the equations or unknowns in Gaussian elimination, so the equations can be
solved without pivoting.

5.3.2 Least squares approximation
In this chapter we have described a number of spline approximation techniques based on
interpolation. If it is an absolute requirement that the spline should pass exactly through
the data points, there is no alternative to interpolation. But such perfect interpolation is
only possible if all computations can be performed without any round-off error. In practise,
all computations are done with floating

point numbers, and round-off errors are inevitable. A small error is
therefore always present and must be tolerable whenever computers are used for ap-

proximation. The question is what is a tolerable error? Often the data are results of
measurements with a certain known resolution. To interpolate such data is not recommen-
ded since it means that the error is also approximated. If it is known that the underlying
function is smooth, it is usually better to use a method that will only approximate the
data, but approximate in such a way that the error at the data points is minimised. Least
squares approximation is a general and simple approximation method for accomplishing
this. The problem can be formulated as follows.
Problem 5.20. Given data (xi, yi)m

i=1 with x1 < · · · < xm, positive real numbers wi for
i = 1, . . . , m, and an n-dimensional spline space Sd,t, find a spline g in Sd,t which solves
the minimization problem

min
h∈Sd,t

m∑

i=1

wi (yi − h(xi))2 . (5.25)
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The expression (5.25) that is minimized is a sum of the squares of the errors at each
data point, weighted by the numbers wi which are called weights. This explains the name
least squares approximation, or more precisely weighted least squares approximation. If wi

is large in comparison to the other weights, the error yi − h(xi) will count more in the
minimization. As the the weight grows, the error at this data point will go to zero. On
the other hand, if the weight is small in comparison to the other weights, the error at that
data point gives little contribution to the total least squares deviation. If the weight is
zero, the approximation is completely independent of the data point. Note that the actual
value of the weights is irrelevant, it is the relative size that matters. The weights therefore
provides us with the opportunity to attach a measure of confidence to each data point. If
we know that yi is a very accurate data value we can give it a large weight, while if yi

is very inaccurate we can give it a small weight. Note that it is the relative size of the
weights that matters, a natural ‘neutral’ value is therefore wi = 1.

From our experience with interpolation, we see that if we choose the spline space Sd,t

so that the number of B-splines equals the number of data points and such that Bi(xi) > 0
for all i, then the least squares approximation will agree with the interpolant and give zero
error, at least in the absence of round-off errors. Since the

whole point of introducing the least squares approximation is to avoid interpolation of
the data, we must make sure that n is smaller than m and that the knot vector is appro-
priate. This all means that the spline space Sd,t must be chosen appropriately, but this is
not easy. Of course we would like the spline space to be such that a “good” approximation
g can be found. Good, will have different interpretations for different applications. A
statistician would like g to have certain statistical properties. A designer would like an
aesthetically pleasing curve, and maybe some other shape and tolerance requirements to
be satisfied. In practise, one often starts with a small spline space, and then adds knots in
problematic areas until hopefully a satisfactory approximation is obtained.

Different points of view are possible in order to analyse Problem 5.20 mathematically.
Our approach is based on linear algebra. Our task is to find the vector c = (c1, . . . , cn)
of B-spline coefficients of the spline g solving Problem 5.20. The following matrix-vector
formulation is convenient.

Lemma 5.21. Problem 5.20 is equivalent to the linear least squares problem

min
c∈Rn

‖Ac− b‖2,

where A ∈ Rm,n and b ∈ Rm have components

ai,j =
√

wiBj(xi) and bi =
√

wiyi, (5.26)

and for any u = (u1, . . . , um),

‖u‖ =
√

u2
1 + · · · + u2

m,

is the usual Euclidean length of a vector in Rm.
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Proof. Suppose c = (c1, . . . , cn) are the B-spline coefficients of some h ∈ Sd,t. Then

‖Ac− b‖22 =
m∑

i=1

( n∑

j=1

ai,jcj − bi

)2

=
m∑

i=1

( n∑

j=1

√
wiBj(xi)cj −

√
wiyi

)2

=
m∑

i=1

wi

(
h(xi)− yi

)2
.

This shows that the two minimisation problems are equivalent.

In the next lemma, we collect some facts about the general linear least squares problem.
Recall that a symmetric matrix N is positive semidefinite if cT Nc ≥ 0 for all c ∈ Rn, and
positive definite if in addition cT Nc > 0 for all nonzero c ∈ Rn.
Lemma 5.22. Suppose m and n are positive integers with m ≥ n, and let the matrix A
in Rm,n and the vector b in Rm be given. The linear least squares problem

min
c∈Rn

‖Ac− b‖2 (5.27)

always has a solution c∗ which can be found by solving the linear set of equations

AT Ac∗ = AT b. (5.28)

The coefficient matrix N = AT A is symmetric and positive semidefinite. It is positive
definite, and therefore nonsingular, and the solution of (5.27) is unique if and only if A
has linearly independent columns.

Proof. Let span(A) denote the n-dimensional linear subspace of Rm spanned by the
columns of A,

span(A) = {Ac | c ∈ Rn}.

From basic linear algebra we know that a vector b ∈ Rm can be written uniquely as a sum
b = b1 + b2, where b1 is a linear combination of the columns of A so that b1 ∈ span(A),
and b2 is orthogonal to span(A), i.e., we have bT

2 d = 0 for all d in span(A). Using this
decomposition of b, and the Pythagorean theorem, we have for any c ∈ Rn,

‖Ac− b‖2 = ‖Ac− b1 − b2‖2 = ‖Ac− b1‖2 + ‖b2‖2.

It follows that ‖Ac − b‖22 ≥ ‖b2‖22 for any c ∈ Rn, with equality if Ac = b1. A c = c∗

such that Ac∗ = b1 clearly exists since b1 is in span(A), and c∗ is unique if and only if
A has linearly independent columns. To derive the linear system for c∗, we note that any
c that is minimising satisfies Ac − b = −b2. Since we also know that b2 is orthogonal to
span(A), we must have

dT (Ac− b) = cT
1 AT (Ac− b) = 0

for all d = Ac1 in span(A), i.e., for all c1 in Rn. But this is only possible if AT (Ac−b) = 0.
This proves (5.28).
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Figure 5.4. Figure (a) shows the cubic spline interpolation to the noisy data of Example 5.24, while least squares
approximation to the same data is shown in (b).

The n× n-matrix N = AT A is clearly symmetric and

cT Nc = ‖Ac‖22 ≥ 0, (5.29)

for all c ∈ Rn, so that N is positive semi-definite. From (5.29) we see that we can find a
nonzero c such that cT Nc = 0 if and only if Ac = 0, i.e., if and only if A has linearly
dependent columns . We conclude that N is positive definite if and only if A has linearly
independent columns.

Applying these results to Problem 5.20 we obtain.
Theorem 5.23. Problem 5.20 always has a solution. The solution is unique if and only
if we can find a sub-sequence (xi!)

n
!=1 of the data abscissa such that

B!(xi!) #= 0 for ' = 1, . . . , n.

Proof. By Lemma 5.21 and Lemma 5.22 we conclude that Problem 5.20 always has a
solution, and the solution is unique if and only if the matrix A in Lemma 5.21 has linearly
independent columns. Now A has linearly independent columns if and only if we can find
a subset of n rows of A such that the square submatrix consisting of these rows and all
columns of A is nonsingular. But such a matrix is of the form treated in Theorem 5.18.
Therefore, the submatrix is nonsingular if and only if the diagonal elements are nonzero.
But the diagonal elements are given by B!(xi!).

Theorem 5.23 provides a nice condition for checking that we have a unique least squares
spline approximation to a given data set; we just have to check that each B-spline has its
‘own’ xi! in its support. To find the B-spline coefficients of the approximation, we must
solve the linear system of equations (5.28). These equations are called the normal equations
of the least squares system and can be solved by Cholesky factorisation of a banded matrix
followed by back substitution. The least squares problem can also be solved by computing
a QR-factorisation of the matrix A; for both methods we refer to a standard text on
numerical linear algebra for details.
Example 5.24. Least squares approximation is especially appropriate when the data is known to be
noisy. Consider the data represented as bullets in Figure 5.4 (a). These data were obtained by adding
random perturbations in the interval [−0.1, 0.1] to the function f(x) = 1. In Figure 5.4 (a) we show
the cubic spline interpolant (with free end conditions) to the data, while Figure 5.4 (b) shows the cubic
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least squares approximation to the same data, using no interior knots. We see that the least squares
approximation smooths out the data nicely. We also see that the cubic spline interpolant gives a nice
approximation to the given data, but it also reproduces the noise that was added artificially.

Once we have made the choice of approximating the data in Example 5.24 using cubic
splines with no interior knots, we have no chance of representing the noise in the data.
The flexibility of cubic polynomials is nowhere near rich enough to represent all the os-
cillations that we see in Figure 5.4 (a), and this gives us the desired smoothing effect in
Figure 5.4 (b). The advantage of the method of least squares is that it gives a reasonably
simple method for computing a reasonably good approximation to quite arbitrary data on
quite arbitrary knot vectors. But it is largely the knot vector that decides how much the
approximation is allowed to oscillate, and good methods for choosing the knot vector is
therefore of fundamental importance. Once the knot vector is given there are in fact many
approximation methods that will provide good approximations.

5.4 The Variation Diminishing Spline Approximation

In this section we describe a simple, but very useful method for obtaining spline approx-
imations to a function f defined on an interval [a, b]. This method is a generalisation of
piecewise linear interpolation and has a nice shape preserving behaviour. For example, if
the function f is positive, then the spline approximation will also be positive.
Definition 5.25. Let f be a given continuous function on the interval [a, b], let d be a
given positive integer, and let t = (t1, . . . , tn+d+1) be a d + 1-regular knot vector with
boundary knots td+1 = a and tn+1 = b. The spline given by

(V f)(x) =
n∑

j=1

f(t∗j )Bj,d(x) (5.30)

where t∗j = (tj+1 + · · · + tj+d)/d are the knot averages, is called the Variation Diminishing
Spline Approximation of degree d to f on the knot vector t.

The approximation method that assigns to f the spline approximation V f is about
the simplest method of approximation that one can imagine. Unlike some of the other
methods discussed in this chapter there is no need to solve a linear system. To obtain V f ,
we simply evaluate f at certain points and use these function values as B-spline coefficients
directly.

Note that if all interior knots occur less than d + 1 times in t, then

a = t∗1 < t∗2 < . . . < t∗n−1 < t∗n = b. (5.31)

This is because t1 and tn+d+1 do not occur in the definition of t∗1 and t∗n so that all selections
of d consecutive knots must be different.
Example 5.26. Suppose that d = 3 and that the interior knots of t are uniform in the interval [0, 1],
say

t = (0, 0, 0, 0, 1/m, 2/m, . . . , 1− 1/m, 1, 1, 1, 1). (5.32)

For m ≥ 2 we then have

t∗ = (0, 1/(3m), 1/m, 2/m, . . . , 1− 1/m, 1− 1/(3m), 1). (5.33)

Figure 5.5 (a) shows the cubic variation diminishing approximation to the exponential function on the
knot vector in (5.32) with m = 5, and the error is shown in Figure 5.5 (b). The error is so small that it is
difficult to distinguish between the two functions in Figure 5.5 (a).



122 CHAPTER 5. SPLINE APPROXIMATION OF FUNCTIONS AND DATA

0.2 0.4 0.6 0.8 1

1.25
1.5
1.75
2

2.25
2.5
2.75

(a)

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

(b)

Figure 5.5. The exponential function together with the cubic variation diminishing approximation of Example 5.26
in the special case m = 5 is shown in (a). The error in the approximation is shown in (b).

The variation diminishing spline can also be used to approximate functions with sin-
gularities, that is, functions with discontinuities in a derivative of first or higher orders.
Example 5.27. Suppose we want to approximate the function

f(x) = 1− e−50|x|, x ∈ [−1, 1], (5.34)

by a cubic spline V f . In order to construct a suitable knot vector, we take a closer look at the function,
see Figure 5.6 (a). The graph of f has a cusp at the origin, so f ′ is discontinuous and changes sign there.
Our spline approximation should therefore also have some kind of singularity at the origin. Recall from
Theorem 3.19 that a B-spline can have a discontinuous first derivative at a knot provided the knot has
multiplicity at least d. Since we are using cubic splines, we therefore place a triple knot at the origin. The
rest of the interior knots are placed uniformly in [−1, 1]. A suitable knot vector is therefore

t = (−1,−1,−1,−1,−1 + 1/m, . . . ,−1/m, 0, 0, 0, 1/m, . . . , 1− 1/m, 1, 1, 1, 1). (5.35)

The integer m is a parameter which is used to control the number of knots and thereby the accuracy of
the approximation. The spline V f is shown in Figure 5.6 (a) for m = 4 together with the function f itself.
The error is shown in Figure 5.6 (b), and we note that the error is zero at x = 0, but quite large just
outside the origin.

Figures 5.6 (c) and 5.6 (d) show the first and second derivatives of the two functions, respectively.
Note that the sign of f and its derivatives seem to be preserved by the variation diminishing spline
approximation.

The variation diminishing spline approximation is a very simple procedure for obtaining
spline approximations. In Example 5.27 we observed that the approximation has the same
sign as f everywhere, and more than this, even the sign of the first two derivatives is
preserved in passing from f to the approximation V f . This is important since the sign of
the derivative gives important information about the shape of the graph of the function.
A nonnegative derivative for example, means that the function is nondecreasing, while a
nonnegative second derivative roughly means that the function is convex, in other words it
curves in the same direction everywhere. Approximation methods that preserve the sign of
the derivative are therefore important in practical modelling of curves. We will now study
such shape preservation in more detail.

5.4.1 Preservation of bounds on a function

Sometimes it is important that the maximum and minimum values of a function are pre-
served under approximation. Splines have some very useful properties in this respect.
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Figure 5.6. Figure (a) shows the function f(x) = 1 − e−50|x| (dashed) and its cubic variation diminishing spline
approximation (solid) on the knot vector described in Example 5.27, and the error in the approximation is shown
in Figure (b). The first derivative of the two functions is shown in (c), and the second derivatives in (d).

Lemma 5.28. Let g be a spline in some spline space Sd,t of dimension n. Then g is
bounded by its smallest and largest B-spline coefficients,

min
i

{ci} ≤
∑

i

ciBi(x) ≤ max
i

{ci}, for all x ∈ [td+1, tn+1). (5.36)

Proof. Let cmax be the largest coefficient. Then we have
∑

i

ciBi(x) ≤
∑

i

cmaxBi(x) = cmax

∑

i

Bi(x) = cmax,

since
∑

i Bi(x) = 1. This proves the second inequality in (5.36). The proof of the first
inequality is similar.

Note that this lemma only says something interesting if n ≥ d+1. Any plot of a spline
with its control polygon will confirm the inequalities (5.36), see for example Figure 5.7.

With Lemma 5.28 we can show that bounds on a function are preserved by its variation
diminishing approximation.
Proposition 5.29. Let f be a function that satisfies

fmin ≤ f(x) ≤ fmax for all x ∈ R.

Then the variation diminishing spline approximation to f from some spline space Sd,t has
the same bounds,

fmin ≤ (V f)(x) ≤ fmax for all x ∈ R. (5.37)
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Figure 5.7. A cubic spline with its control polygon. Note how the extrema of the control polygon bound the
extrema of the spline.

Proof. Recall that the B-spline coefficients ci of V f are given by

ci = f(t∗i ) where t∗i = (ti+1 + · · · + ti+d)/d.

We therefore have that all the B-spline coefficients of V f are bounded below by fmin and
above by fmax. The inequalities in (5.37) therefore follow as in Lemma 5.28.

5.4.2 Preservation of monotonicity

Many geometric properties of smooth functions can be characterised in terms of the deriv-
ative of the function. In particular, the sign of the derivative tells us whether the function
is increasing or decreasing. The variation diminishing approximation also preserves in-
formation about the derivatives in a very convenient way. Let us first define exactly what
we mean by increasing and decreasing functions.
Definition 5.30. A function f defined on an interval [a, b] is increasing if the inequality
f(x0) ≤ f(x1) holds for all x0 and x1 in [a, b] with x0 < x1. It is decreasing if f(x0) ≥ f(x1)
for all x0 and x1 in [a, b] with x0 < x1. A function that is increasing or decreasing is said
to be monotone.

The two properties of being increasing and decreasing are clearly completely symmetric
and we will only prove results about increasing functions.

If f is differentiable, monotonicity can be characterized in terms of the derivative.
Proposition 5.31. A differentiable function is increasing if and only if its derivative is
nonnegative.

Proof. Suppose that f is increasing. Then (f(x + h)− f(x))/h ≥ 0 for all x and positive
h such that both x and x + h are in [a, b]. Taking the limit as h tends to zero, we must
have f ′(x) ≥ 0 for an increasing differentiable function. At x = b a similar argument with
negative h may be used.
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If the derivative of f is nonnegative, let x0 and x1 be two distinct points in [a, b] with
x0 < x1. The mean value theorem then states that

f(x1)− f(x0)
x1 − x0

= f ′(θ)

for some θ ∈ (x0, x1). Since f ′(θ) ≥ 0, we conclude that f(x1) ≥ f(x0).

Monotonicity of a spline can be characterized in terms of some simple conditions on its
B-spline coefficients.
Proposition 5.32. Let t be a d + 1-extended knot vector for splines on the interval
[a, b] = [td+1, tn+1], and let g =

∑n
i=1 ciBi be a spline in Sd,t. If the coefficients are

increasing, that is ci ≤ ci+1 for i = 1, . . . , n − 1, then g is increasing. If the coefficients
are decreasing then g is decreasing.

Proof. The proposition is certainly true for d = 0, so we can assume that d ≥ 1. Suppose
first that there are no interior knots in t of multiplicity d + 1. If we differentiate g we find
g′(x) =

∑n
i=1 ∆ciBi,d−1(x) for x ∈ [a, b], where

∆ci = d
ci − ci−1

ti+d − ti
.

Since all the coefficients of g′ are nonnegative we must have g′(x) ≥ 0 (really the one sided
derivative from the right) for x ∈ [a, b]. Since we have assumed that there are no knots
of multiplicity d + 1 in (a, b), we know that g is continuous and hence that it must be
increasing.

If there is an interior knot at ti = ti+d of multiplicity d+1, we conclude from the above
that g is increasing on both sides of ti. But we also know that g(ti) = ci while the limit of
g from the left is ci−1. The jump is therefore ci − ci−1 which is nonnegative so g increases
across the jump.

An example of an increasing spline with its control polygon is shown in Figure 5.8 (a).
Its derivative is shown in Figure 5.8 (b) and is, as expected, positive.
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Figure 5.8. An increasing cubic spline (a) and its derivative (b).

From Proposition 5.32 it is now easy to deduce that V f preserves monotonicity in f .
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Figure 5.9. A convex function and the cord connecting two points on the graph.

Proposition 5.33. Let f be function defined on the interval [a, b] and let t be a d + 1-
extended knot vector with td+1 = a and tn+1 = b. If f is increasing (decreasing) on [a, b],
then the variation diminishing approximation V f is also increasing (decreasing) on [a, b].

Proof. The variation diminishing approximation V f has as its i’th coefficient ci = f(t∗i ),
and since f is increasing these coefficients are also increasing. Proposition 5.32 then shows
that V f is increasing.

That V f preserves monotonicity means that the oscillations we saw could occur in
spline interpolation are much less pronounced in the variation diminishing spline approx-
imation. In fact, we shall also see that V f preserves the sign of the second derivative of f
which reduces further the possibility of oscillations.

5.4.3 Preservation of convexity

From elementary calculus, we know that the sign of the second derivative of a function tells
us in whether the function curves upward or downwardsupward, or whether the function
is convex or concave. These concepts can be defined for functions that have no a priori
smoothness.
Definition 5.34. A function f is said to be convex on an interval (a, b) if

f
(
(1− λ)x0 + λx2

)
≤ (1− λ)f(x0) + λf(x2) (5.38)

for all x0 and x2 in [a, b] and for all λ in [0, 1]. If −f is convex then f is said to be concave.
From Definition 5.34 we see that f is convex if the line between two points on the

graph of f is always above the graph, see Figure 5.9. It therefore ‘curves upward’ just like
smooth functions with nonnegative second derivative.

Convexity can be characterised in many different ways, some of which are listed in the
following lemma.
Lemma 5.35. Let f be a function defined on the open interval (a, b).
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1. The function f is convex if and only if

f(x1)− f(x0)
x1 − x0

≤ f(x2)− f(x1)
x2 − x1

(5.39)

for all x0, x1 and x2 in (a, b) with x0 < x1 < x2.

2. If f is differentiable on (a, b), it is convex if and only if f ′(y0) ≤ f ′(y1) when a <
y0 < y1 < b, that is, the derivative of f is increasing.

3. If f is two times differentiable it is convex if and only if f ′′(x) ≥ 0 for all x in (a, b).

Proof. Let λ = (x1−x0)/(x2−x0) so that x1 = (1−λ)x0 +λx2. Then (5.38) is equivalent
to the inequality

(1− λ)
(
f(x1)− f(x0)

)
≤ λ

(
f(x2)− f(x1)

)
.

Inserting the expression for λ gives (5.39), so (i) is equivalent to Definition 5.34.
To prove (ii), suppose that f is convex and let y0 and y1 be two points in (a, b) with

y0 < y1. From (5.39) we deduce that

f(y0)− f(x0)
y0 − x0

≤ f(y1)− f(x1)
y1 − x1

,

for any x0 and x1 with x0 < y0 < x1 < y1. Letting x0 and x1 tend to y0 and y1 respectively,
we see that f ′(y0) ≤ f ′(y1).

For the converse, suppose that f ′ is increasing, and let x0 < x1 < x2 be three points
in (a, b). By the mean value theorem we have

f(x1)− f(x0)
x1 − x0

= f ′(θ0) and
f(x2)− f(x1)

x2 − x1
= f ′(θ1),

where x0 < θ0 < x1 < θ1 < x2. Since f ′ is increasing, conclude that (5.39) holds and
therefore that f is convex.

For part (iii) we use part (ii) and Proposition 5.31. From (ii) we know that f is convex
if and only if f ′ is increasing, and by Proposition 5.31 we know that f ′ is increasing if and
only if f ′′ is nonnegative.

It may be a bit confusing that the restrictions on x0 < x1 < x2 in Lemma 5.35
are stronger than the restrictions on x0, x2 and λ in Definition 5.34. But this is only
superficial since in the special cases x0 = x2, and λ = 0 and λ = 1, the inequality (5.38) is
automatically satisfied.

It is difficult to imagine a discontinuous convex function. This is not so strange since
all convex functions are in fact continuous.
Proposition 5.36. A function that is convex on an open interval is continuous on that
interval.

Proof. Let f be a convex function on (a, b), and let x and y be two points in some
subinterval (c, d) of (a, b). Using part (i) of Lemma 5.35 repeatedly, we find that

f(c)− f(a)
c− a

≤ f(y)− f(x)
y − x

≤ f(b)− f(d)
b− d

. (5.40)
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Set M = max{(f(c)− f(a))/(c− a), (f(b)− f(d))/(b− d)}. Then (5.40) is equivalent to

|f(y)− f(x)| ≤ M |y − x|.

But this means that f is continuous at each point in (c, d). For if z is in (c, d) we can
choose x = z and y > z and obtain that f is continuous from the right at z. Similarly, we
can also choose y = z and x < z to find that f is continuous from the left as well. Since
(c, d) was arbitrary in (a, b), we have showed that f is continuous in all of (a, b).

The assumption in Proposition 5.36 that f is defined on an open interval is essential. On
the interval (0, 1] for example, the function f that is identically zero except that f(1) = 1,
is convex, but clearly discontinuous at x = 1. For splines however, this is immaterial if we
assume a spline to be continuous from the right at the left end of the interval of interest
and continuous from the left at the right end of the interval of interest. In addition, since
a polynomial never is infinite, we see that our results in this section remain true for splines
defined on some closed interval [a, b].

We can now give a simple condition that ensures that a spline function is convex.
Proposition 5.37. Let t be a d + 1-extended knot vector for some d ≥ 1, and let g =∑n

i=1 ciBi,d be a spline in Sd,t. Define ∆ci by

∆ci =

{
(ci − ci−1)/(ti+d − ti), if ti < ti+d,

∆ci−1, if ti = ti+d;

for i = 2, . . . , n. Then g is convex on [td+1, tn+1] if it is continuous and

∆ci−1 ≤ ∆ci for i = 2, . . . , n. (5.41)

Proof. Note that (∆ci)n
i=2 are the B-spline coefficients of g′ on the interval [td+1, tn+1],

bar the constant d. Since (5.41) ensures that these are increasing, we conclude from
Proposition 5.32 that g′ is increasing. If g is also differentiable everywhere in [td+1, tn+1],
part (ii) of Lemma 5.35 shows that g is convex.

In the rest of the proof, the short hand notation

δ(u, v) =
g(v)− g(u)

v − u

will be convenient. Suppose now that there is only one point z where g is not differentiable,
and let x0 < x1 < x2 be three points in [td+1, tn+1]. We must show that

δ(x0, x1) ≤ δ(x1, x2). (5.42)

The case where all three x’s are on one side of z are covered by the first part of the proof.
Suppose therefore that x0 < z ≤ x1 < x2. Since δ(u, v) = g′(θ) with u < θ < v when g is
differentiable on [a, b], and since g′ is increasing, we certainly have δ(x0, z) ≤ δ(z, x2), so
that (5.42) holds in the special case where x1 = z. When x1 > z we use the simple identity

δ(x0, x1) = δ(x0, z)
z − x0

x1 − x0
+ δ(z, x1)

x1 − z

x1 − x0
,
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which shows that δ(x0, x1) is a weighted average of δ(x0, z) and δ(z, x1). But then we have

δ(x0, x1) ≤ δ(z, x1) ≤ δ(x1, x2),

the first inequality being valid since δ(x0, z) ≤ δ(z, x1) and the second one because g is
convex to the right of z. This shows that g is convex.

The case where x0 < x1 < z < x2 and the case of several discontinuities can be treated
similarly.

An example of a convex spline is shown in Figure 5.10, together with its first and second
derivatives in.
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Figure 5.10. A convex spline with its control polygon (a), its first derivative (b) and its second derivative (c).

With Proposition 5.37 at hand, it is simple to show that the variation diminishing
spline approximation preserves convexity.
Proposition 5.38. Let f be a function defined on the interval [a, b], let d ≥ 1 be an
integer, and let t be a d + 1-extended knot vector with td+1 = a and tn+1 = b. If f is
convex on [a, b] then V f is also convex on [a, b].

Proof. Recall that the coefficients of V f are
(
f(t∗i )

)n
i=1

so that the differences in Propos-
ition 5.37 are

∆ci =
f(t∗i )− f(t∗i−1)

ti+d − ti
=

f(t∗i )− f(t∗i−1)
(t∗i − t∗i−1)d

,
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if ti < ti+d. Since f is convex, these differences must be increasing. Proposition 5.37 then
shows that V f is convex.

At this point, we can undoubtedly say that the variation diminishing spline approxim-
ation is a truly remarkable method of approximation. In spite of its simplicity, it preserves
the shape of f both with regards to convexity, monotonicity and bounds on the function
values. This makes it very attractive as an approximation method in for example design
where the shape of a curve is more important than how accurately it approximates given
data.

It should be noted that the shape preserving properties of the variation diminishing
approximation is due to the properties of B-splines. When we determine V f we give its
control polygon directly by sampling f at the knot averages, and the results that we have
obtained about the shape preserving properties of V f are all consequences of relationships
between a spline and its control polygon: A spline is bounded by the extrema of its control
polygon, a spline is monotone if the control polygon is monotone, a spline is convex if
the control polygon is convex. In short: A spline is a smoothed out version of its control
polygon. We will see many more realisations of this general principle in later chapters


