
CHAPTER 6

Parametric Spline Curves

When we introduced splines in Chapter 1 we focused on spline curves, or more precisely,
vector valued spline functions. In Chapters 2, 3 and 4 we then established the basic theory
of spline functions and B-splines, and in Chapter 5 we studied a number of methods for
constructing spline functions that approximate given data. In this chapter we return to
spline curves and show how the approximation methods in Chapter 5 can be adapted to
this more general situation.

We start by giving a formal definition of parametric curves in Section 6.1, and introduce
parametric spline curves in Section 6.2.1. In the rest of Section 6.2 we then generalise the
approximation methods in Chapter 5 to curves. It turns out that the generalisation is
virtually trivial, except for one difficult point.

6.1 Definition of Parametric Curves

In Section 1.2 we gave an intuitive introduction to parametric curves and discussed the
significance of different parameterisations. In this section we will give a more formal
definition of parametric curves, but the reader is encouraged to first go back and reread
Section 1.2 in Chapter 1.

6.1.1 Regular parametric representations
A parametric curve will be defined in terms of parametric representations.
Definition 6.1. A vector function or mapping f : [a, b] !→ Rs of the interval [a, b] into
Rs for s ≥ 2 is called a parametric representation of class Cm for m ≥ 1 if each of the
s components of f has continuous derivatives up to order m. If, in addition, the first
derivative of f does not vanish in [a, b],

Df(u) = f ′(u) $= 0, for u ∈ [a, b],

then f is called a regular parametric representation of class Cm.
A parametric representation will often be referred to informally as a curve, although the

term parametric curve will be given a more precise meaning later. In this chapter we will
always assume the parametric representations to be sufficiently smooth for all operations
to make sense. Note that a function y = h(x) always can be considered as a curve through
the parametric representation f(u) =

(
u, h(u)

)
.
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If we imagine travelling along the curve and let u denote the elapsed time of our journey,
then the length of f ′(u) which we denote by ||f ′(u)||, gives the speed with which we travel
at time u, while the direction of f ′(u) gives the direction in which we travel, in other words
the tangent to the curve at time u. With these interpretations a regular curve is one where
we never stop as we travel along the curve.

The straight line segment

f(u) = (1− u)p0 + up1, for u ∈ [0, 1],

where p0 and p1 are points in the plane, is a simple example of a parametric representation.
Since f ′(u) = p1−p0 for all u, we have in fact that f is a regular parametric representation,
provided that p0 $= p1. The tangent vector is, as expected, parallell to the curve, and the
speed along the curve is constant.

As another example, let us consider the unit circle. It is easy to check that the mapping
given by

f(u) =
(
x(u), y(u)

)
= (cos u, sinu)

satisfies the equation x(u)2 + y(u)2 = 1, so that if u varies from 0 to 2π, the whole unit
circle will be traced out. We also have ||f ′(u)|| = 1 for all u, so that f is a regular
parametric representation.

One may wonder what the significance of the regularity condition f ′(u) $= 0 is. Let us
consider the parametric representation given by

f(u) =

{
(0, u2), for u < 0;
(u2, 0), for u ≥ 0;

in other words, for u < 0 the image of f is the positive y-axis and for u > 0, the image is
the positive x-axis. A plot of f for u ∈ [−1, 1] is shown in Figure 6.1 (a). The geometric
figure traced out by f clearly has a right angle corner at the origin, but f ′ which is given
by

f ′(u) =

{
(0, 2u), for u < 0;
(2u, 0), for u > 0;

is still continuous for all u. The source of the problem is the fact that f ′(0) = 0. For this
means that as we travel along the curve, the speed becomes zero at u = 0 and cancels out
the discontinuity in the tangent direction, so that we can manage to turn the corner. On
the other hand, if we consider the unit tangent vector θ(u) defined by

θ(u) = f ′(u)/||f ′(u)||,

we see that

θ(u) =

{
(0,−1), for u < 0;
(1, 0), for u > 0.

As expected, the unit tangent vector is discontinuous at u = 0.
A less obvious example where the same problem occurs is shown in Figure 6.1 (b). The

parametric representation is f(u) = (u2, u3) which clearly has a continuous tangent, but
again we have f ′(0) = (0, 0) which cancels the discontinuity in the unit tangent vector
at u = 0. To avoid the problems that may occur when the tangent becomes zero, it is
common, as in Definition 6.1, to assume that the parametric representation is regular.
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Figure 6.1. A parametric representation with continuous first derivative but discontinuous unit tangent (a), and
the parametric representation f(u) = (u2, u3) (b).

6.1.2 Changes of parameter and parametric curves
If we visualise a parametric representation through its graph as we have done here, it is
important to know whether the same graph may be obtained from different parametric
representations. It is easy to see that the answer to this question is yes. As an example,
consider again the unit circle f(u) = (cos u, sinu). If we substitute u = 2πv, we obtain the
parametric representation

r̂(v) = (cos 2πv, sin 2πv).

As v varies in the interval [0, 1], the original parameter u will vary in the interval [0, 2π]
so that r̂(v) will trace out the same set of points in R2 and therefore yield the same graph
as f(u). The mapping u = 2πv is called a change of parameter.
Definition 6.2. A real function u(v) defined on an interval I is called an allowable change
of parameter of class Cm if it has m continuous derivatives, and the derivative u′(v) is
nonzero for all v in I. If u′(v) is positive for all v then it is called an orientation preserving
change of parameter.

From the chain rule we observe that if g(v) = f
(
u(v)

)
then

g′(v) = u′(v)f ′(u(v)
)
.

This means that even if f is a regular parametric representation, we can still have g′(v) = 0
for some v if u′(v = 0). This is avoided by requiring u′(v) $= 0 as in Definition 6.2.

If u′(v) > 0 for all v, the points on the graph of the curve are traced in the same order
both by f and g, the two representations have the same orientation. If u′(v) < 0 for all
v, then f and g have opposite orientation, the points on the graph are traced in opposite
orders. The change of parameter u(v) = 2πv of the circle above was orientation preserving.

Note that since u′(v) $= 0, the function u(v) is one-to-one so that the inverse v(u) exists
and is an allowable change of parameter as well.

The redundancy in the representation of geometric objects can be resolved in a standard
way. We simply say that two parametric representations are equivalent if they are related
by a change of parameter. If this is the case we will often say that one representation is a
reparametrisation of the other.
Definition 6.3. A regular parametric curve is the equivalence class of parameterisations
of a given regular parametric representation. A particular parametric representation of a
curve is called a parametrisation of the curve.



134 CHAPTER 6. PARAMETRIC SPLINE CURVES

We will use this definition very informally. Most of the time we will just have a
parametric representation f which we will refer to as a parametrisation of a curve or
simply a curve.

As an interpretation of the different parameterisations of a curve it is constructive to
extend the analogy to travelling along a road. As mentioned above, we can think of the
parameter u as measuring the elapsed time as we travel along the curve, and the length of
the tangent vector as the speed with which we travel. The road with its hills and bends
is fixed, but there are still many ways to travel along it. We can both travel at different
velocities and in different directions. This corresponds to different parameterisations.

A natural question is whether there is a preferred way of travelling along the road. A
mathematician would probably say that the best way to travel is to maintain a constant
speed, and we shall see later that this does indeed simplify the analysis of a curve. On
the other hand, a physicist (and a good automobile driver) would probably say that it is
best to go slowly around sharp corners and faster along straighter parts of the curve. For
the purpose of constructing spline curves it turns out that this latter point of view usually
gives the best results.

6.1.3 Arc length parametrisation

Let us end this brief introduction to parametric curves by a discussion of parameterisations
with constant speed. Suppose that we have a parametrisation such that the tangent vector
has constant unit length along the curve. Then the difference in parameter value at the
beginning and end of the curve equals the length of the curve, which is reason enough to
study such parameterisations. This justifies the next definition.
Definition 6.4. A regular parametric curve g(σ) in Rs is said to be parametrised by arc
length if ||g′(σ)|| = 1 for all σ.

Let f(u) be a given regular curve with u ∈ [a, b], and let g(σ) = f(u(σ)) be a repara-
metrisation such that ||g′(σ)|| = 1 for all σ. Since g′(σ) = u′(σ)f ′(u(σ)), we see that we
must have |u′(σ)| = 1/||f ′(u(σ))|| or |σ′(u)| = ||f ′(u)|| (this follows since u(σ) is invertible
with inverse σ(u) and u′(σ)σ′(u) = 1). The natural way to achieve this is to define σ(u)
by

σ(u) =
∫ u

a
||f ′(v)|| dv. (6.1)

We sum this up in a proposition.
Proposition 6.5. Let f(u) be a given regular parametric curve. The change of parameter
given by (6.1) reparametrises the curve by arc length, so that if g(σ) = f

(
u(σ)

)
then

||g′(σ)|| = 1.
Note that σ(u) as given by (6.1) gives the length of the curve from the starting point

f(a) to the point f(u). This can be seen by sampling f at a set of points, computing the
length of the piecewise linear interpolant to these points, and then letting the density of
the points go to infinity.
Proposition 6.6. The length of a curve f defined on an interval [a, b] is given by

L(f) =
∫ b

a

∥∥f ′(u)
∥∥ du
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It should be noted that parametrisation by arc length is not unique. The orientation
can be reversed and the parameterisation may be translated by a constant. Note also
that if we have a parametrisation that is constant but not arc length, then arc length
parametrisation can be obtained by a simple scaling.

Parametrisation by arc length is not of much practical importance in approximation
since the integral in (6.1) very seldom can be expressed in terms of elementary functions,
and the computation of the integral is usually too expensive. One important exception
is the circle. As we saw at the beginning of the chapter, the parametrisation r(u) =
(cos u, sinu) is by arc length.

6.2 Approximation by Parametric Spline Curves

Having defined parametric curves formally, we are now ready to define parametric spline
curves. This is very simple, we just let the coefficients that multiply the B-splines be points
in Rs instead of real numbers. We then briefly consider how the spline approximation
methods that we introduced for spline functions can be generalised to curves.

6.2.1 Definition of parametric spline curves
A spline curve f must, as all curves, be defined on an interval I and take its values in Rs.
There is a simple and obvious way to achieve this.
Definition 6.7. A parametric spline curve in Rs is a spline function where each B-spline
coefficient is a point in Rs. More specifically, let t = (ti)n+d+1

i=1 be a knot vector for splines
of degree d. Then a parametric spline curve of degree d with knot vector t and coefficients
c = (ci)n

i=1 is given by

g(u) =
n∑

i=1

ciBi,d,t(u),

where each ci = (c1
i , c

2
i , . . . , c

s
i ) is a vector in Rs. The set of all spline curves in Rs of degree

d with knot vector t is denoted by Ss
d,t.

In Definition 6.7, a spline curve is defined as a spline function where the coefficients
are points in Rs. From this it follows that

g(u) =
∑

i

ciBi(u) =
∑

i

(c1
i , . . . , c

s
i )Bi(u)

=
(∑

i

c1
i Bi(u), . . . ,

∑

i

cs
iBi(u)

)

=
(
g1(u), . . . , gs(u)

)
,

(6.2)

so that g is a vector of spline functions. This suggests a more general definition of spline
curves where the degree and the knot vector in the s components need not be the same,
but this is not common and seems to be of little practical interest.

Since a spline curve is nothing but a vector of spline functions as in (6.2), it is simple
to compute f(u): Just apply a routine like Algorithm 2.20 to each of the component spline
functions g1, . . . , gs. If the algorithm has been implemented in a language that supports
vector arithmetic, then evaluation is even simpler. Just apply Algorithm 2.20 directly to
g, with vector coefficients. The result will be the vector g(u) =

(
g1(u), . . . , gs(u)

)
.
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Figure 6.2. A cubic parametric spline curve with its control polygon.

Example 6.8. As an example of a spline curve, suppose that we are given n points p = (pi)
n
i=1 in the

plane with pi = (xi, yi), and define the knot vector t by

t = (1, 1, 2, 3, 4, . . . , n− 2, n− 1, n, n).

Then the linear spline curve

g(u) =
n

i=1

piBi,1,t(u) =
n

i=1

xiBi,1,t(u),
n

i=1

yiBi,1,t(u)

is a representation of the piecewise linear interpolant to the points p.

An example of a cubic spline curve with its control polygon is shown in Figure 6.2,
and this example gives a good illustration of the fact that a spline curve is contained
in the convex hull of its control points. This, we remember, is clear from the geometric
construction of spline curves in Chapter 1.
Proposition 6.9. A spline curve g =

∑n
i=1 ciBi,d,t defined on a d + 1-extended knot

vector t is a subset of the convex hull of its coefficients,

g(u) ∈ CH(c1, . . . , cn), for any u ∈ [td+1, tn+1].

If u is restricted to the interval [tµ, tµ+1] then

g(u) ∈ CH(cµ−d, . . . , cµ).

To create a spline curve, we only have to be able to create spline functions, since a
spline curve is just a vector with spline functions in each component. All the methods
described in previous chapters for approximation with spline functions can therefore also
be utilised for construction of spline curves. To differentiate between curve approximation
and function approximation, we will often refer to the methods of Chapter 5 as functional
approximation methods.
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6.2.2 The parametric variation diminishing spline approximation
In Section 5.4, we introduced the variation diminishing spline approximation to a function.
This generalises nicely to curves.
Definition 6.10. Let f be a parametric curve defined on the interval [a, b], and let t
be a d + 1-extended knot vector with td+1 = a and tn+1 = b. The parametric variation
diminishing spline approximation V f is defined by

(V f)(u) =
n∑

i=1

f(t∗i )Bi,d,t(u),

where t∗i = (ti+1 + · · · ti+d)/d.
Note that the definition of V f means that

V f = (V f1, . . . , V fs).

If we have implemented a routine for determining the variation diminishing approximation
to a scalar function (s = 1), we can therefore determine V f by calling the scalar routine
s times, just as was the case with evaluation of the curve at a point. Alternatively, if the
implementation uses vector arithmetic, we can call the function once but with vector data.

A variation diminishing approximation to a segment of the unit circle is shown in
Figure 6.3.
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Figure 6.3. A cubic variation diminishing approximation to part of a circle.

It is much more difficult to employ the variation diminishing spline approximation when
only discrete data are given, since somehow we must determine a knot vector. This is true
for functional data, and for parametric data we have the same problem. In addition, we
must also determine a parametrisation of the points. This is common for all parametric
approximation schemes when they are applied to discrete data and is most easily discussed
for cubic spline interpolation where it is easy to determine a knot vector.
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6.2.3 Parametric spline interpolation

In Section 5.2, we considered interpolation of a given function or given discrete data by
cubic splines, and we found that the cubic C2 spline interpolant in a sense was the best of
all C2 interpolants. How can this be generalised to curves?
Proposition 6.11. Let

(
ui,f(ui)

)m
i=1

be given data sampled from the curve f in Rs, and
form the knot vector

t = (u1, u1, u1, u1, u2, . . . , um−1, um, um, um, um).

Then there is a unique spline curve g = INf in Ss
3,t that satisfies

g(ui) = f(ui), for i = 1, . . . , m, (6.3)

with the natural end conditions g′′(u1) = g′′(um) = 0, and this spline curve g uniquely
minimises ∥∥∥

∫ um

u1

h′′(u) du
∥∥∥

when h varies over the class of C2 parametric representations that satisfy the interpolation
conditions (6.3).

Proof. All the statements follow by considering the s functional interpolation problems
separately.

Note that Proposition 6.11 can also be expressed in the succinct form

INf = (INf1, . . . , INfs).

This means that the interpolant can be computed by solving s functional interpolation
problems. If we go back to Section 5.2.2, we see that the interpolant is determined by
solving a system of linear equations. If we consider the s systems necessary to determine
INf , we see that it is only the right hand side that differs; the coefficient matrix A remains
the same. This can be exploited to speed up the computations since the LU -factorisation
of the coefficient matrix can be computed once and for all and the s solutions computed
by back substitution; for more information consult a text on numerical linear algebra. As
for evaluation and the variation diminishing approximation, this makes it very simple to
implement cubic spline interpolation in a language that supports vector arithmetic: Simply
call the routine for functional interpolation with vector data.

We have focused here on cubic spline interpolation with natural end conditions, but
Hermite and free end conditions can be treated completely analogously.

Let us turn now to cubic parametric spline interpolation in the case where the data are
just given as discrete data.
Problem 6.12. Let (pi)m

i=1 be a set of points in Rs. Find a cubic spline g in some spline
space Ss

3,t such that
g(ui) = pi, for i = 1, . . . , m,

for some parameter values (ui)m
i=1 with u1 < u2 < · · · < um.
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Problem 6.12 is a realistic problem. A typical situation is that somehow a set of points
on a curve has been determined, for instance through measurements; the user then wants
the computer to draw a ‘nice’ curve through the points. In such a situation the knot
vector is of course not known in advance, but for functional approximation it could easily
be determined from the abscissae. In the present parametric setting this is a fundamentally
more difficult problem as long as we have no parameter values associated with the data
points. An example may be illuminating.
Example 6.13. Suppose that m points in the plane p = (pi)

m
i=1 with pi = (xi, yi) are given. We seek

a cubic spline curve that interpolates the points p. We can proceed as follows. Associate with each data
point pi the parameter value i. If we are also given the derivatives (tangents) at the ends as (x′

1, y
′
1) and

(x′
m, y′

m), we can apply cubic spline interpolation with Hermite end conditions to the two sets of data
(i, xi)

n
i=1 and (i, yi)

n
i=1. The knot vector will then for both of the two components be

t = (1, 1, 1, 1, 2, 3, 4, . . . , m− 2, m− 1, m, m, m, m).

We can then perform the two steps

(i) Find the spline function p1 ∈ S3,t with coefficients c1 = (c1
i )

m+2
i=1 that interpolates the points

(i, xi)
m
i=1 and satisfies Dp1(1) = x′

1 and Dp1(m) = x′
m.

(ii) Find the spline function p2 ∈ S3,t with coefficients c2 = (c2
i )

m+2
i=1 that interpolates the points (i, yi)

m
i=1

and satisfies Dp2(1) = y′
1 and Dp2(m) = y′

m.

Together this yields a cubic spline curve

g(u) =
m+2

i=1

ciBi,3,t(u)

that satisfies g(i) = pi for i = 1, 2, . . . , m.

The only part of the construction of the cubic interpolant in Example 6.13 that is
different from the corresponding construction for spline functions is the assignment of the
parameter value i to the point f i = (xi, yi) for i = 1, 2, . . . , n, and therefore also the
construction of the knot vector. When working with spline functions, the abscissas of the
data points became the knots; for curves we have to choose the knots specifically by giving
the parameter values at the data points. Somewhat arbitrarily we gave point number i
parameter value i in Example 6.13, this is often termed uniform parametrisation.

Going back to Problem 6.12 and the analogy with driving, we have certain places that
we want to visit (the points pi) and the order in which they should be visited, but we do
not know when we should visit them (the parameter values ui). Should one for example
try to drive with a constant speed between the points, or should one try to make the time
spent between points constant? With the first strategy one might get into problems around
a sharp corner where a good driver would usually slow down, and the same can happen
with the second strategy if two points are far apart (you must drive fast to keep the time),
with a sharp corner just afterwards.

In more mathematical terms, the problem is to guess how the points are meant to be
parametrised—which parametric representation are they taken from? This is a difficult
problem that so far has not been solved in a satisfactory way. There are methods available
though, and in the next section we suggest three of the simplest.
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6.2.4 Assigning parameter values to discrete data
Let us recall the setting. We are given m points (pi)m

i=1 in Rs and need to associate a
parameter value ui with each point that will later be used to construct a knot vector for
spline approximation. Here we give three simple alternatives.

1. Uniform parametrisation which amounts to ui = i for i = 1, 2, . . . , m. This has
the shortcomings discussed above.

2. Cord length parametrisation which is given by

u1 = 0 and ui = ui−1 + ||pi − pi−1|| for i = 2, 3, . . . , m.

If the final approximation should happen to be the piecewise linear interpolant to the
data, this method will correspond to parametrisation by arc length. This often causes
problems near sharp corners in the data where it is usually wise to move slowly.

3. Centripetal parametrisation is given by

u1 = 0 and ui = ui−1 + ||pi − pi−1||1/2 for i = 2, 3, . . . , m.

For this method, the difference ui−ui−1 will be smaller than when cord length para-
metrisation is used. But like the other two methods it does not take into consideration
sharp corners in the data, and may therefore fail badly on difficult data.

There are many other methods described in the literature for determining good para-
meter values at the data points, but there is no known ‘best’ method. In fact, the problem
of finding good parameterisations is an active research area.

Figures 6.4 (a)–(c) show examples of how the three methods of parametrisation de-
scribed above perform on a difficult data set.

6.2.5 General parametric spline approximation
In Chapter 5, we also defined other methods for spline approximation like cubic Hermite
interpolation, general spline interpolation and least squares approximation by splines. All
these and many other methods for functional spline approximation can be generalised
very simply to parametric curves. If the data is given in the form of a parametric curve,
the desired functional method can just be applied to each component function of the given
curve. If the data is given as a set of discrete points (pi)m

i=1, a parametrisation of the points
must be determined using for example one of the methods in Section 6.2.4. Once this has
been done, a functional method can be applied to each of the s data sets (ui, p

j
i )

m,d
i,j=1,1. If

we denote the functional approximation scheme by A and denote the data by f , so that
f i = (ui,pi) for i = 1, . . . , m, the parametric spline approximation satisfies

Af = (Af1, . . . , Afs), (6.4)

where f j denotes the data set (ui, p
j
i )

m
i=1 which we think of as

(
ui, f j(ui)

)m
i=1

. As we
have seen several times now, the advantage of the relation (6.4) is that the parametric
approximation can be determined by applying the corresponding functional approximation
scheme to the s components, or, if we use a language that supports vector arithmetic, we
simply call the routine for functional approximation with vector data. In Chapter 7, we
shall see that the functional methods can be applied repeatedly in a similar way to compute
tensor product spline approximations to surfaces.
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Figure 6.4. Parametric, cubic spline interpolation with uniform parametrisation (a), cord length parametrisation
(b), and centripetal parametrisation (c).


