APPENDIX A

Some Linear Algebra

A.1 Matrices

The collection of m,n matrices

a1, .- 501n
A=

am1, -+ 0mmn

with real elements a;; is denoted by R™". If n = 1 then A is called a column vector.
Similarly, if m = 1 then A is a row vector. We let R™ denote the collection of all column
or row vectors with m real components.

A.1.1 Nonsingular matrices, and inverses.

Definition A.1. A collection of vectors a1, ..., a, € R™ islinearly independent if x1a1 +
-+« 4+ xpa, = 0 for some real numbers x1,...,x,, implies that x1 = --- = x,, = 0.
Suppose ai, ..., a, are the columns of a matrix A € R"". For a vector x = (x1,...,

azn)T € R™ we have Ax = Z;‘L:1 zjaj. It follows that the collection ay,...,a, is linearly

independent if and only if Ax = 0 implies « = 0.

Definition A.2. A square matrix A such that Ax = 0 implies x = 0 is said to be
nonsingular.

Definition A.3. A square matrix A € R™" is said to be invertible if for some B € R™"
BA=AB-=1,

where I € R™"™ is the identity matrix.

An invertible matrix A has a unique inverse B = A™'. If A, B, and C are square
matrices, and A = BC, then A is invertible if and only if both B and C' are also invertible.

Moreover, the inverse of A is the product of the inverses of B and C' in reverse order,
Al=c'B™.
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A.1.2 Determinants.

The determinant of a square matrix A will be denoted det(A) or

a1, --- 501n

an,1, --- s0nn
Recall that the determinant of a 2 x 2 matrix is

ail a12

=a1,1622 — 01202 1.
az1 a2

A.1.3 Criteria for nonsingularity and singularity.
We state without proof the following criteria for nonsingularity.

Theorem A.4. The following is equivalent for a square matrix A € R™"™,
1. A is nonsingular.

A is invertible.

Ax = b has a unique solution = A~'b for any b € R™.

A has linearly independent columns.

AT is nonsingular.

A has linearly independent rows.

NS s N

det(A) # 0.

We also have a number of criteria for a matrix to be singular.

Theorem A.5. The following is equivalent for a square matrix A € R™"™,
1. There is a nonzero x € R™ so that Ax = 0.
A has no inverse.

Ax = b has either no solution or an infinite number of solutions.

b

A has linearly dependent columns.
There is a nonzero  so that 7 A = 0.

A has linearly dependent rows.

NS @

det(A) = 0.
Corollary A.6. A matrix with more columns than rows has linearly dependent columns.

Proof. Suppose A € R™" with n > m. By adding n — m rows of zeros to A we obtain a
square matrix B € R™". This matrix has linearly dependent rows. By Theorem A.4 the
matrix B has linearly dependent columns. But then the columns of A are also linearly
dependent. &
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A.2 Vector Norms

Formally, a vector norm || || = ||#||, is a function || || : R — [0,00) that satisfies for
x,y,€ R" and a € R the following properties

1. ||z|] =0 implies « =0.
2. [lox|| = ||| (A1)
3. e +yll <lzll + [lyll-

Property 3 is known as the Triangle Inequality. For us the most useful class of norms are
the p or P norms. They are defined for p > 1 and @ = (x1,z2,...,2,)" € R" by

Zllp = (|21P + |z2fP + -+ |2, [P)V/P.
(A.2)
Since
12]loo < |2l < n'/Pll2|loe,  p>1 (A.3)
and lim, o, n'/P = 1 for any n € N we see that lim, .o |||, = |||
The 1,2, and oo norms are the most important. We have
|2 =ai4 - +22 =zTx. (A.4)
Lemma A.7 (The Holder inequality). We have for 1 < p < co and ¢,y € R
- 11
> Izl <llllpllylly,  where >Tg=" (A.5)

=1

Proof. We base the proof on properties of the exponential function. Recall that the
exponential function is convex, i.e. with f(x) = e* we have the inequality

fAz 4+ (1= Ny) <Af(z) + (1 =) f(y) (A.6)

for every A € [0,1] and z,y € R.

If € = 0 or y = 0, there is nothing to prove. Suppose x,y # 0. Define u = x/||x||,
and v = y/||yl||q- Then ||u||, = ||v||q = 1. If we can prove that ), |u;v;| < 1, we are done
because then 3., 2| = ||l ylly 3, lusvil < ll@llpllylly- Sinee fusvi] = fusljvil, we can
assume that u; > 0 and v; > 0. Moreover, we can assume that u; > 0 and v; > 0 because
a zero term contributes no more to the left hand side than to the right hand side of (A.5).
Let s;, t; be such that u; = e%/P, v; = el/?, Taking f(x) = e*, A\ = 1/p, 1 — X = 1/q,
x=s; and y = t; in (A.6) we find

eSi/Ptti/q < lesi + letz‘.
b q

But then

S g = 3 es/rHisa < ;Zem;zen - ;Zuf+;zvg :;+1: 1

i q

This completes the proof of (A.5). B
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When p = 2 then ¢ = 2 and the Holder inequality is associated with the names
Buniakowski-Cauchy-Schwarz.

Lemma A.8 (The Minkowski inequality). We have for 1 < p < oo and ¢,y € R

| + pr < Hpr + Hpr' (A7)

Proof. Let u = (uy,...,u,) with u; = |2; + ;P! Since ¢(p—1) = p and p/q = p—1, we
find

lallg = (3 il P07 = (3 i+ )1 = |2 + w7 = Il + il

7 3

Using this and the Holder inequality we obtain

lle + 9l =D lzs + il <3 fuallwsl + D il lyal < (el + [1yllp)|lullq
< (2l + llyllp) 2 + "

Dividing by || + y|[5~" proves Minkowski. m

Using the Minkowski inequality it follows that the p norms satisfies the axioms for a
vector norm.
In (A.3) we established the inequality

]l < ll2llp < 27|l p = 1.

More generally, we say that two vector norms || || and || ||" are equivalent if there exists
positive constants p and M such that

pll|] < [l < M||]] (A.8)

for all & € R"™.

Theorem A.9. All vector norms on R" are equivalent.

Proof. It is enough to show that a vector norm || || is equivalent to the lo, norm, || ||sc-
Let x € R™ and let e;,7 = 1,...,n be the unit vectors in R®. Writing * = z1e1+---+xp€e,
we have

el < > laillleil] < llellcd, M=) |leil.
% [

To find p > 0 such that ||z|| > p||z||« for all & € R™ is less elementary. Consider the
function f given by f(x) = ||x|| defined on the [, “unit ball”

S={xecR":||z||lw =1}
S is a closed and bounded set. From the inverse triangle inequality

el =yl < llz—yll, = yeR"
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it follows that f is continuous on S. But then f attains its maximum and minimum on S,
i.e. there is a point &* € S such that

||| = min ||z].
xcS
Moreover, since x* is nonzero we have p := |[|z*|| > 0. If & € R" is nonzero then
x =x/||z|| € S. Thus
T 1
< || =] = |||
1Zlloo ™ ll2lloo ™

and this establishes the lower inequality. =B

It can be shown that for the p norms we have for any ¢ with 1 < ¢ <p < o0

lelly < llzlly < n'/9 VP j]l,, = € R™ (A.9)

A.3 Vector spaces of functions

In R™ we have the operations « + y and ax of vector addition and multiplication by
a scalar a € R. Such operations can also be defined for functions. As an example, if
f(z) ==z, g(x) =1, and a, b are real numbers then af(x) + bg(z) = ax + b. In general, if
f and g are two functions defined on the same set I and a € R, then the sum f 4 g and
the product af are functions defined on I by

(f +9)(z) = f(z) + g(),
(af () = af (2).
Two functions f and g defined on I are equal if f(z) = g(x) for all x € I. We say that f
is the zero function, i.e. f =0, if f(z) =0 for all z € I.

Definition A.10. Suppose S is a collection of real valued or vector valued functions, all
defined on the same set 1. The collection S is called a vector space if af + bg € S for all
f,9 €S and all a,b € R. A subset T of S is called a subspace of S if T itself is a vector
space.

Example A.11. Vector spaces
e All polynomials w4 of degree at most d.
e All polynomials of all degrees.
e All trigonometric polynomials ag + Zzzl(ak cos kx + by sin kx of degree at most d.
e The set C(I) of all continuous real valued functions defined on I.

e The set C"(I) of all real valued functions defined on I with continuous j'th derivative for j =
0,1,...,r.
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Definition A.12. A vector space S is said to be finite dimesional if

S = span(¢q,...,¢,) = {Z cjoj : c; € R},

j=1

for a finite number of functions ¢1, ..., ¢, in S. The functions ¢+, ..., ¢, are said to span
or generate S.

Of the examples above the space 74 = span(1, z, 2%, ... 2%) generated by the monomials
1,z,22, ... 2% is finite dimensional. Also the trigonometric polynomials are finite dimen-
sional. The space of all polynomials of all degrees is not finite dimensional. To see this
we observe that any finite set cannot generate the monomial z¢t! where d is the max-
imal degree of the elements in the spanning set. Finally we observe that C(I) and C"(I)
contain the space of polynomials of all degrees as a subspace. Hence they are not finite
dimensional,

If f €S = span(¢y,...,¢y,) then f = Z?Zl cj¢; for some ¢ = (ci1,...,¢,). With
¢ = (¢1,...,0n)T we will often use the vector notation

f(x) = ¢(z)"c (A.10)
for f.

A.3.1 Linear independence and bases

All vector spaces in this section will be finite dimensional.

Definition A.13. A set of functions ¢ = (¢1,...,¢,)" in a vector space S is said to be
linearly independent on a subset J of I if ¢(z)Tc = c1¢1(x) + - -+ + cpon(x) = 0 for all
x € J implies that ¢ = 0. If J = I then we simply say that ¢ is linearly independent.

If ¢ is linearly independent then the representation in (A.10) is unique. For if f =
¢l'c = ¢Tb for some ¢,b € R” then f = ¢’ (c — b) = 0. Since ¢ is linearly independent
we have c—b=0,0r c=0>b.

Definition A.14. A set of functions ¢! = (41,...,¢n) In a vector space S is a basis for
S if the following two conditions hold

1. ¢ is linearly independent.
2. S = span(¢).

Theorem A.15. The monomials 1,z,z2,...xz% are linearly independent on any set J C R

containing at least d+ 1 distinct points. In particular these functions form as basis for 7.

Proof. Let xo, ..., x4 be d+1 distinct points in .J, and let p(z) = co+c1z+---+cqz? =0
for all x € J. Then p(z;) = 0, for i = 0,1,...,d. Since a nonzero polynomial of degree
d can have at most d zeros we conclude that p must be the zero polynomial. But then
cx =p®(0)/k! =0 for k =0,1,...,d. It follows that the monomial is a basis for 74 since
they span mg by definition. N

To prove some basic results about bases in a vector space of functions it is convenient
to introduce a matrix transforming one basis into another.
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Lemma A.16. Suppose S and T are finite dimensional vector spaces with S C T, and
let ¢ = (¢1,...,6,)" be a basis for S and ¥ = (¢1,...,19m)" a basis for T. Then

¢ =A"y, (A.11)
for some matrix A € R™". If f = ¢ ¢ € S is given then f = ' b with
b= Ac. (A.12)
Moreover A has linearly independent columns.

Proof. Since ¢; € T there are real numbers a; ; such that
m
¢jzzai7ﬂbi, for j:1,...,n,
i=1

This equation is simply the component version of (A.11). If f € S then f € T and f = ’b
for some b. By (A.11) we have ¢* = 9T A and f = ¢Tc = T Ac or pTb = T Ac. Since
1 is linearly independent we get (A.12). Finally, to show that A has linearly independent
columns suppose Ac = 0. Define f € S by f = ¢’ c. By (A.11) we have f = T Ac = 0.
But then f = ¢’ ¢ = 0. Since ¢ is linearly independent we conclude that ¢ = 0. &

The matrix A in Lemma A.16 is called a change of basis matriz.
A basis for a vector space generated by n functions can have at most n elements.

Lemma A.17. If v = (31...,93)7 is a linearly independent set in a vector space S =
span(e1, ..., ¢n), then k < n.

Proof. With ¢ = (¢1,...,¢,)" we have

=AT¢p, for some A eR™.

If k£ > n then A is a rectangular matrix with more columns than rows. From Corollary A.6
we know that the columns of such a matrix must be linearly dependent; I.e. there is some
nonzero ¢ € R¥ such that Ac = 0. But then 9”7 ¢ = ¢’ Ac = 0, for some nonzero c¢. This
implies that 1) is linearly dependent, a contradiction. We conclude that £k <n. &

Lemma A.18. Every basis for a vector space must have the same number of elements.

Proof. Suppose ¢ = (¢1,...,¢0,)" and ¥ = (¢1,...,%m)" are two bases for the vector
space. We need to show that m = n. Now

¢ = ATy, for some AeR™"

W =BT'¢, for some B eR™™.

By Lemma A.16 we know that both A and B have linearly independent columns. But
then by Corollary A.6 we see that m =n. 1

Definition A.19. The number of elements in a basis in a vector space S is called the
dimension of S, and is denoted by dim(S).
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The following lemma shows that every set of linearly independent functions in a vector
space S can be extended to a basis for S. In particular every finite dimensional vector
space has a basis.

Lemma A.20. A set ¢' = (¢1,...,¢p) of linearly independent elements in a finite di-
mensional vector space S, can be extended to a basis ¥’ = (V1,...,1m) for S.

Proof. Let S, = span(¢n,...,¢y) where ¢); = ¢; for j =1,... k. If S, = S then we set
m = k and stop. Otherwise there must be an element ¢, 1 € S such that 91, ..., are
linearly independent. We define a new vector space Sky1 by Sgi1 = span(in, ..., Yk+1).
If Spy1 = S then we set m = k + 1 and stop the process. Otherwise we continue to gen-
erate vector spaces Siy2, Sk13,---. Since S is finitely generated we must by Lemma A.17
eventually find some m such that S,, = 5. 1

The following simple, but useful lemma, shows that a spanning set must be a basis if
it contains the correct number of elements.

Lemma A.21. Suppose S = span(¢). If ¢ contains dim(S) elements then ¢ is a basis
for S.

Proof. Let n = dim(S) and suppose ¢ = (¢1,...,¢,) is a linearly dependent set. Then
there is one element, say ¢, which can be written as a linear combination of ¢1, ..., ¢n_1.
But then S = span(¢q,...,¢,—1) and dim(S) < n by Lemma A.17, a contradiction to the
assumption that ¢ is linearly dependent. R

A.4 Normed Vector Spaces

Suppose S is a vector space of functions. A norm || || = || f]/, is a function || || : S — [0, c0)
that satisfies for f, g, € S, and a € R the following properties

1. ||fll=0 implies f=0.
2. |lafll = el £]]- (A.13)
3.+ gl < IIf1] +[lgl]-

Property 3 is known as the Triangle Inequality. The pair (S, || ||) is called a normed vector
space (of functions).

In the rest of this section we assume that the functions in .S are continuous, or at least
piecewise continuous on some interval [a, b].

Analogous to the p or £ norms for vectors in R™ we have the p or LP norms for
functions. They are defined for 1 < p < oo and f € S by

1/
1l = W lliwny = (J7 1 @)Pdz) ", p=1, (A14)

[ Flloo = [Ifllzocfa) = maxa<a<s [ f(2)]

The 1,2, and co norms are the most important.
We have for 1 < p < oo and f,g € S the Holder inequality

1 1
/Lf Dlde < [fllllllys where +2 =1, (A.15)
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and the Minkowski inequality

1F + gllp < [1£1lp + [lgllp- (A.16)

For p = 2 (A.15) is known as the Schwarz inequality, the Cauchy-Schwarz inequality, or
the Buniakowski-Cauchy- Schwarz inequality.



