
CHAPTER 10

Shape Preserving Properties of
B-splines

In earlier chapters we have seen a number of examples of the close relationship between a
spline function and its B-spline coefficients. This is especially evident in the properties of
the Schoenberg operator, but the same phenomenon is apparent in the diagonal property
of the blossom, the stability of the B-spline basis, the convergence of the control polygon
to the spline it represents and so on. In the present chapter we are going to add to this list
by relating the number of zeros of a spline to the number of sign changes in the sequence
of its B-spline coefficients. From this property we shall obtain an accurate characterisation
of when interpolation by splines is uniquely solvable. In the final section we show that the
knot insertion matrix and the B-spline collocation matrix are totally positive, i.e., all their
square submatrices have nonnegative determinants.

10.1 Bounding the number of zeros of a spline

In Section 4.5 of Chapter 4 we showed that the number of sign changes in a spline is
bounded by the number of sign changes in its B-spline coefficients, a generalisation of
Descartes’ rule of signs for polynomials, Theorem 4.23. Theorem 4.25 is not a completely
satisfactory generalisation of Theorem 4.23 since it does not allow multiple zeros. In this
section we will prove a similar result that does allow multiple zeros, but we cannot allow
the most general spline functions. we have to restrict ourselves to connected splines.
Definition 10.1. A spline f =

∑n
j=1 cjBj,d in Sd,t is said to be connected if for each x in

(t1, tn+d+1) there is some j such that tj < x < tj+d+1 and cj != 0. A point x where this
condition fails is called a splitting point for f .

To develop some intuition about connected splines, let us see when a spline is not
connected. A splitting point of f can be of two kinds:

(i) The splitting point x is not a knot. If tµ < x < tµ+1, then tj < x < tj+d+1

for j = µ − d, . . . , µ (assuming the knot vector is long enough) so we must have
cµ−d = · · · = cµ = 0. In other words f must be identically zero on (tµ, tµ+1). In this
case f splits into two spline functions f1 and f2 with knot vectors t1 = (tj)µ

j=1 and
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t2 = (tj)n+d+1
j=µ+1 . We clearly have

f1 =
µ−d−1∑

j=1

cjBj,d, f2 =
n∑

j=µ+1

cjBj,d.

(ii) The splitting point x is a knot of multiplicity m, say

tµ < x = tµ+1 = · · · = tµ+m < tµ+m+1.

In this case we have tj < x < tj+1+d for j = µ + m − d, . . . , µ. We must therefore
have cµ+m−d = · · · = cµ = 0. (Note that if m = d + 1, then no coefficients need to
be zero). This means that all the B-splines that “cross” x do not contribute to f(x).
It therefore splits into two parts f1 and f2, but now the two pieces are not separated
by an interval, but only by the single point x. The knot vector of f1 is t1 = (tj)µ+m

j=1

while the knot vector of f2 is t2 = (tj)n+d+1
j=µ+1 . The two spline functions are given by

f1 =
µ+m−d−1∑

j=1

cjBj,d, f2 =
n∑

j=µ+1

cjBj,d.

Before getting on with our zero counts we need the following lemma.
Lemma 10.2. Suppose that z is a knot that occurs m times in t,

ti < z = ti+1 = · · · = ti+m < ti+m+1

for some i. Let f =
∑

j cjBj,d be a spline in Sd,t. Then

cj =
1
d!

d−m∑

k=0

(−1)kDd−kρj,d(z)Dkf(z) (10.1)

for all j such that tj < z < tj+d+1, where ρj,d(y) = (y − tj+1) · · · (y − tj+d).

Proof. Recall from Theorem 8.5 that the B-spline coefficients of f can be written as

cj = λjf =
1
d!

d∑

k=0

(−1)kDd−kρj,d(y)Dkf(y),

where y is a number such that Bj,d(y) > 0. In particular, we may choose y = z for
j = i + m− d, . . . , i so

cj = λjf =
1
d!

d∑

k=0

(−1)kDd−kρj,d(z)Dkf(z), (10.2)

for these values of j. But in this case ρj,d(y) contains the factor (y− ti+1) · · · (y− ti+m) =
(y − z)m so Dd−kρj,d(z) = 0 for k > d−m and j = i + m− d, . . . , i, i.e., for all values of
j such that tj < z < tj+d+1. The formula (10.1) therefore follows from (10.2).
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In the situation of Lemma 10.2, we know from Lemma 2.6 that Dkf is continuous at z
for k = 0, . . . , d−m, but Dd+1−mf may be discontinuous. Equation (10.1) therefore shows
that the B-spline coefficients of f can be computed solely from continuous derivatives of f
at a point.
Lemma 10.3. Let f be a spline that is connected. For each x in (t1, tn+d+1) there is then
a nonnegative integer r such that Drf is continuous at x and Drf(x) != 0.

Proof. The claim is clearly true if x is not a knot, for otherwise f would be identically zero
on an interval and therefore not connected. Suppose next that x is a knot of multiplicity
m. Then the first discontinuous derivative at x is Dd−m+1f , so if the claim is not true,
we must have Dkf(x) = 0 for k = 0, . . . , d − m. But then we see from Lemma 10.2
that cl = λlf = 0 for all l such that tl < x < tl+d+1. But this is impossible since f is
connected.

The lemma shows that we can count zeros of connected splines precisely as for smooth
functions. If f is a connected spline then a zero must be of the form f(z) = Df(z) = · · · =
Dr−1f(z) = 0 with Drf(z) != 0 for some integer r. Moreover Drf is continuous at z. The
total number of zeros of f on (a, b), counting multiplicities, is denoted Z(f) = Z(a,b)(f).
Recall from Definition 4.21 that S−(c) denotes the number of sign changes in the vector c
(zeros are completely ignored).
Example 10.4. Below are some examples of zero counts of functions. For comparison we have also
included counts of sign changes. All zero counts are over the whole real line.

Z(x) = 1,

Z(x2) = 2,

Z(x7) = 7,

S−(x) = 1,

S−(x2) = 0,

S−(x7) = 1,

Z x(1− x)2 = 3,

Z x3(1− x)2 = 5,

Z(−1− x2 + cos x) = 2,

S− x(1− x)2 = 1,

S− x3(1− x)2 = 1,

S−(−1− x2 + cos x) = 0.

We are now ready to prove a generalization of Theorem 4.23 that allows zeros to be
counted with multiplicities.
Theorem 10.5. Let f =

∑n
j=1 cjBj,d be a spline in Sd,t that is connected. Then

Z(t1,tn+d+1)(f) ≤ S−(c) ≤ n− 1.

Proof. Let z1 < z2 < · · · < z! be the zeros of f in the interval (t1, tn+d+1), each of
multiplicity ri; Lemma 10.2 shows that zi occurs at most d − ri times in t. For if zi

occured m > d− ri times in t then d−m < ri, and hence all the derivatives of f involved
in (10.1) would be zero for all j such that tj < z < tj+d+1. But this means that z is a
splitting point for f which is impossible since f is connected.

Now we form a new knot vector t̂ where zi occurs exactly d− ri times and the numbers
zi − h and zi + h occur d + 1 times. Here h is a number that is small enough to ensure
that there are no other zeros of f or knots from t other than zi in [zi − h, zi + h] for
1 ≤ i ≤ #. Let ĉ be the B-spline coefficients of f relative to t̂. By Lemma 4.24 we then
have S−(ĉ) ≤ S−(c) so it suffices to prove that Z(t1,tn+d+1)(f) ≤ S−(ĉ). But since

Z(t1,tn+d+1)(f) =
!∑

i=1

Z(zi−h,zi+h)(f),
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it suffices to establish the theorem in the following situation: The knot vector is given by

t = (
d+1︷ ︸︸ ︷

z − h, . . . , z − h,
d−r︷ ︸︸ ︷

z, . . . , z,

d+1︷ ︸︸ ︷
z + h, . . . , z + h)

and z is a zero of f of multiplicity r. The key to proving the theorem in this more specialised
situation is to show that

cj =
(d− r)!

d!
(−1)d+1−jhrDrf(z), j = d + 1− r, . . . , d + 1, (10.3)

as this means that the r + 1 coefficients (cj)d+1
j=d+1−r alternate in sign and S−(c) ≥ r =

Z(z−h,z+h)(f). Fix j in the range d + 1− r ≤ j ≤ d + 1. By equation (10.1) we have

cj =
1
d!

r∑

k=0

(−1)kDd−kρj,d(z)Dkf(z) =
(−1)r

d!
Dd−rρj,d(z)Drf(z),

since Djf(z) = 0 for j = 0 . . . , r − 1. With our special choice of knot vector we have

ρj,d(y) = (y − z + h)d+1−j(y − z)d−r(y − z − h)r−d−1+j .

Taking d− r derivatives we therefore obtain

Dd−rρj,d(z) = (d− r)!hd+1−j(−h)r−d−1+j = (d− r)!(−1)r−d−1+jhr

and (10.3) follows.

Figures 10.1 (a)–(d) show some examples of splines with multiple zeros of the sort
discussed in the proof of Theorem 10.5. All the knot vectors are d + 1-regular on the
interval [0, 2], with additional knots at x = 1. In Figure 10.1 (a) there is one knot at x = 1
and the spline is the polynomial (x − 1)2 which has a double zero at x = 1. The control
polygon models the spline in the normal way and has two sign changes. In Figure 10.1 (b)
the knot vector is the same, but the spline is now the polynomial (x − 1)3. In this case
the multiplicity of the zero is so high that the spline has a splitting point at x = 1. The
construction in the proof of Theorem 10.5 prescribes a knot vector with no knots at x = 1
in this case. Figure 10.1 (c) shows the polynomial (x − 1)3 as a degree 5 spline on a
6-regular knot vector with a double knot at x = 1. As promised by the theorem and its
proof the coefficients change sign exactly three times. The spline in Figure 10.1 (d) is more
extreme. It is the polynomial (x− 1)8 represented as a spline of degree 9 with one knot at
x = 1. The control polygon has the required 8 changes of sign.

10.2 Uniqueness of spline interpolation

Having established Theorem 10.5, we return to the problem of showing that the B-spline
collocation matrix that occurs in spline interpolation, is nonsingular. We first consider
Lagrange interpolation, and then turn to Hermite interpolation where we also allow inter-
polation derivatives.
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(a) Cubic, 2 zeros, simple knot.
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(b) Cubic, multiplicity 3, simple knot.
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(c) Degree 5, multiplicity 3, double knot.
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(d) Degree 9, multiplicity 8, simple knot.

Figure 10.1. Splines of varying degree with a varying number of zeros and knots at x = 1.

10.2.1 Lagrange Interpolation
In Chapter 8 we studied spline interpolation. With a spline space Sd,t of dimension n and
data (yi)n

i=1 given at n distinct points x1 < x2 < · · · < xn, the aim is to determine a spline
g =

∑n
i=1 ciBi,d in Sd,t such that

g(xi) = yi, for i = 1, . . . , n. (10.4)

This leads to the linear system of equations

Ac = y,

where

A =





B1,d(x1) B2,d(x1) . . . Bn,d(x1)
B1,d(x2) B2,d(x2) . . . Bn,d(x2)

...
... . . . ...

B1,d(xn) B2,d(xn) . . . Bn,d(xn)




, c =





c1

c2
...

cn




, y =





y1

y2
...

yn




.

The matrix A is often referred to as the B-spline collocation matrix. Since Bi,d(x) is
nonzero only if ti < x < ti+d+1 (we may allow ti = x if ti = ti+d < ti+d+1), the matrix A
will in general be sparse. The following theorem tells us exactly when A is nonsingular.
Theorem 10.6. Let Sd,t be a given spline space, and let x1 < x2 < · · · < xn be n distinct
numbers. The collocation matrix A with entries

(
Bj,d(xi)

)n
i,j=1

is nonsingular if and only
if its diagonal is positive, i.e.,

Bi,d(xi) > 0 for i = 1, . . . , n. (10.5)
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Proof. We start by showing that A is singular if a diagonal entry is zero. Suppose that
xq ≤ tq (strict inequality if tq = tq+d < tq+d+1) for some q so that Bq,d(xq) = 0. By the
support properties of B-splines we must have ai,j = 0 for i = 1, . . . , q and j = q, . . . ,
n. But this means that only the n − q last entries of each of the last n − q + 1 columns
of A can be nonzero; these columns must therefore be linearly dependent and A must be
singular. A similar argument shows that A is also singular if xq ≥ tq+d+1.

To show the converse, suppose that (10.5) holds but A is singular. Then there is a
nonzero vector c such that Ac = 0. Let f =

∑n
i=1 ciBi,d denote the spline with B-spline

coefficients c. We clearly have f(xq) = 0 for q = 1, . . . , n. Let G denote the set

G = ∪i
{
(ti, ti+d+1) | ci != 0

}
.

Since each x in G must be in (ti, ti+d+1) for some i with ci != 0, we note that G contains no
splitting points of f . Note that if xi = ti = ti+d < ti+d+1 occurs at a knot of multiplicity
d + 1, then 0 = f(xi) = ci. To complete the proof, suppose first that G is an open
interval. Since xi is in G if ci != 0, the number of zeros of f in G is greater than or equal
to the number # of nonzero coefficients in c. Since we also have S−(c) < # ≤ ZG(f), we
have a contradiction to Theorem 10.5. In general G consists of several subintervals which
means that f is not connected, but can be written as a sum of connected components, each
defined on one of the subintervals. The above argument then leads to a contradiction on
each subinterval, and hence we conclude that A is nonsingular.

Theorem 10.6 makes it simple to ensure that the collocation matrix is nonsingular. We
just place the knots and interpolation points in such a way that ti < xi < ti+d+1 for i = 1,
. . . , n (note again that if ti = ti+d < ti+d+1, then xi = ti is allowed).

10.2.2 Hermite Interpolation
In earlier chapters, particularly in Chapter 8, we made use of polynomial interpolation
with Hermite data—data based on derivatives as well as function values. This is also of
interest for splines, and as for polynomials this is conveniently indicated by allowing the
interpolation point to coalesce. If for example x1 = x2 = x3 = x, we take x1 to signify
interpolation of function value at x, the second occurrence of x signifies interpolation of
first derivative, and the third tells us to interpolate second derivative at x. If we introduce
the notation

λx(i) = max
j

{j | xi−j = xi}

and assume that the interpolation points are given in nondecreasing order as x1 ≤ x2 ≤
· · · ≤ xn, then the interpolation conditions are

Dλx(i)g(xi) = Dλx(i)f(xi) (10.6)

where f is a given function and g is the spline to be determined. Since we are dealing with
splines of degree d we cannot interpolate derivatives of higher order than d; we therefore
assume that xi < xi+d+1 for i = 1, . . . , n − d − 1. At a point of discontinuity (10.6) is
to be interpreted according to our usual convention of taking limits from the right. The
(i, j)-entry of the collocation matrix A is now given by

ai,j = Dλx(i)Bj,d(xi),
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and as before the interpolation problem is generally solvable if and only if the collocation
matrix is nonsingular. Also as before, it turns out that the collocation matrix is nonsingular
if and only if ti ≤ xi < ti+d+1, where equality is allowed in the first inequality only if
Dλx(i)Bi,d(xi) != 0. This result will follow as a special case of our next theorem where we
consider an even more general situation.

At times it is of interest to know exactly when a submatrix of the collocation matrix is
nonsingular. The submatrices we consider are obtained by removing the same number of
rows and columns from A. Any columns may be removed, or equivalently, we consider a
subset {Bj1,d, . . . , Bj!,d} of the B-splines. When removing rows we have to be a bit more
careful. The convention is that if a row with derivatives of order r at z is included, then we
also include all the lower order derivatives at z. This is most easily formulated by letting
the sequence of interpolation points only contain # points as in the following theorem.
Theorem 10.7. Let Sd,t be a spline space and let {Bj1,d, . . . , Bj!,d} be a subsequence of
its B-splines. Let x1 ≤ · · · ≤ x! be a sequence of interpolation points with xi ≤ xi+d+1 for
i = 1, . . . , #− d− 1. Then the #× # matrix A(j) with entries given by

ai,q = Dλx(i)Bjq ,d(xi)

for i = 1, . . . , # and q = 1, . . . , # is nonsingular if and only if

tji ≤ xi < tji+d+1, for i = 1, . . . , #, (10.7)

where equality is allowed in the first inequality if Dλx(i)Bji,d(xi) != 0.

Proof. The proof follows along the same lines as the proof of Theorem 10.6. The most
challenging part is the proof that condition (10.7) is necessary so we focus on this. Suppose
that (10.7) holds, but A(j) is singular. Then we can find a nonzero vector c such that
A(j)c = 0. Let f =

∑!
i=1 ciBji,d denote the spline with c as its B-spline coefficients, and

let G denote the set
G = ∪!

i=1{(tji , tji+d+1) | ci != 0}.

To carry through the argument of Theorem 10.6 we need to verify that in the exceptional
case where xi = tji then ci = 0.

Set r = λx(i) and suppose that the knot tji occurs m times in t and that tji = xi so
DrBji,d(xi) != 0. In other words

tµ < xi = tµ+1 = · · · = tµ+m < tµ+m+1

for some integer µ, and in addition ji = µ + k for some integer k with 1 ≤ k ≤ m. Note
that f satisfies

f(xi) = Df(xi) = · · · = Drf(xi) = 0.

(Remember that if a derivative is discontinuous at xi we take limits from the right.) Recall
from Lemma 2.6 that all B-splines have continuous derivatives up to order d −m at xi.
Since DrBji clearly is discontinuous at xi, it must be true that r > d−m. We therefore have
f(xi) = Df(xi) = · · · = Dd−mf(xi) = 0 and hence cµ+m−d = · · · = cµ = 0 by Lemma 10.2.
The remaining interpolation conditions at xi are Dd−m+1f(xi) = Dd−m+2f(xi) = · · · =
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Drf(xi) = 0. Let us consider each of these in turn. By the continuity properties of
B-splines we have Dd−m+1Bµ+1(xi) != 0 and Dd−m+1Bµ+ν = 0 for ν > 1. This means that

0 = Dd−m+1f(xi) = cµ+1D
d−m+1Bµ+1(xi)

and cµ+1 = 0. Similarly, we also have

0 = Dd−m+2f(xi) = cµ+2D
d−m+2Bµ+2(xi),

and hence cµ+2 = 0 since Dd−m+2Bµ+2(xi) != 0. Continuing this process we find

0 = Drf(xi) = cµ+r+m−dD
rBµ+r+m−d(xi),

so cµ+r+m−d = 0 since DrBµ+r+m−d(xi) != 0. This argument also shows that ji cannot be
chosen independently of r; we must have ji = µ + r + m− d.

For the rest of the proof it is sufficient to consider the case where G is an open interval,
just as in the proof of Theorem 10.6. Having established that ci = 0 if xi = tji , we
know that if ci != 0 then xi ∈ G. The number of zeros of f in G (counting multiplicities) is
therefore greater than or equal to the number of nonzero coefficients. But this is impossible
according to Theorem 10.5.

10.3 Total positivity

In this section we are going to deduce another interesting property of the knot insertion
matrix and the B-spline collocation matrix, namely that they are totally positive. We
follow the same strategy as before and establish this first for the knot insertion matrix and
then obtain the total positivity of the collocation matrix by recognising it as a submatrix
of a knot insertion matrix.
Definition 10.8. A matrix A in Rm,n is said to be totally positive if all its square
submatrices have nonnegative determinant. More formally, let i = (i1, i2, . . . , i!) and
j = (j1, j2, . . . , j!) be two integer sequences such that

1 ≤ i1 < i2 < · · · < i! ≤ m, (10.8)
1 ≤ i1 < i2 < · · · < i! ≤ n, (10.9)

and let A(i, j) denote the submatrix of A with entries (aip,jq)!
p,q=1. Then A is totally

positive if det A(i, j) ≥ 0 for all sequences i and j on the form (10.8) and (10.9), for all #
with 1 ≤ # ≤ min{m,n}.

We first show that knot insertion matrices are totally positive.
Theorem 10.9. Let τ and t be two knot vectors with τ ⊆ t. Then the knot insertion
matrix from Sd,τ to Sd,t is totally positive.

Proof. Suppose that there are k more knots in t than in τ ; our proof is by induction on
k. We first note that if k = 0, then A = I, the identity matrix, while if k = 1, then
A is a bi-diagonal matrix with one more rows than columns. Let us denote the entries
of A by

(
αj(i)

)n+1,n
i,j=1

(if k = 0 the range of i is 1, . . . , n). In either case all the entries
are nonnegative and αj(i) = 0 for j < i − 1 and j > i. Consider now the determinant of
A(i, j). If j! ≥ i! then j! > iq for q = 1, . . . , #−1 so αj!(iq) = 0 for q < #. This means that
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only the last entry of the last column of A(i, j) is nonzero. The other possibility is that
j! ≤ i!− 1 so that jq < i!− 1 for q < #. Then αjq(i!) = 0 for q < # so only the last entry of
the last row of A(i, j) is nonzero. Expanding the determinant either by the last column or
last row we therefore have det A(i, j) = αj!(i!) detA(i′, j′) where i′ = (i1, . . . , i!−1) and
j′ = (j1, . . . , j!−1). Continuing this process we find that

det A(i, j) = αj1(i1)αj2(i2) · · ·αj!(i!)

which clearly is nonnegative.
For k ≥ 2, we make use of the factorization

A = Ak · · ·A1 = AkB, (10.10)

where each Ar corresponds to insertion of one knot and B = Ak−1 · · ·A1 is the knot
insertion matrix for inserting k − 1 of the knots. By the induction hypothesis we know
that both Ak and B are totally positive; we must show that A is totally positive. Let
(ai) and (bi) denote the rows of A and B, and let

(
αj(i)

)m,m−1
i,j=1

denote the entries of Ak.
From (10.10) we have

ai = αi−1(i)bi−1 + αi(i)bi for i = 1, . . . , m,

where α0(1) = αm(m) = 0. Let ai(j) and bi(j) denote the vectors obtained by keeping
only entries (jq)!

q=1 of ai and bi respectively. Row q of A(i, j) of A is then given by

aiq(j) = αiq−1(iq)biq−1(j) + αiq(iq)biq(j).

Using the linearity of the determinant in row q we therefore have

det





ai1(j)
...

aiq(j)
...

ai!(j)




= det





ai1(j)
...

αiq−1(iq)biq−1(j) + αiq(iq)biq(j)
...

ai!(j)





= αiq−1(iq) det





ai1(j)
...

biq−1(j)
...

ai!(j)




+ αiq(iq) det





ai1(j)
...

biq(j)
...

ai!(j)




.

By expanding the other rows similarly we find that det A(i, j) can be written as a sum
of determinants of submatrices of B, multiplied by products of αj(i)’s. By the induction
hypothesis all these quantities are nonnegative, so the determinant of A(i, j) must also be
nonnegative. Hence A is totally positive.

Knowing that the knot insertion matrix is totally positive, we can prove a similar
property of the B-spline collocation matrix, even in the case where multiple collocation
points are allowed.
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Theorem 10.10. Let Sd,τ be a spline space and let {Bj1,d, . . . , Bj!,d} be a subsequence
of its B-splines. Let x1 ≤ · · · ≤ x! be a sequence of interpolation points with xi ≤ xi+d+1

for i = 1, . . . , #− d− 1, and denote by A(j) the #× # matrix with entries given by

ai,q = Dλx(i)Bjq ,d(xi)

for i = 1, . . . , # and q = 1, . . . , #. Then

det A(j) ≥ 0.

Proof. We first prove the claim in the case x1 < x2 < · · · < x!. By inserting knots
of multiplicity d + 1 at each of (xi)!

i=1 we obtain a knot vector t that contains τ as a
subsequence. If ti−1 < ti = ti+d < ti+d+1 we know from Lemma 2.6 that Bj,d,τ(ti) =
αj,d(i). This means that the matrix A(j) appears as a submatrix of the knot insertion
matrix from τ to t. It therefore follows from Theorem 10.9 that det A(j) ≥ 0 in this case.

To prove the theorem in the general case we consider a set of distinct collocation points
y1 < · · · < y! and let A(j,y) denote the corresponding collocation matrix. Set λi = λx(i)
and let ρi denote the linear functional given by

ρif = λi! [yi−λi , . . . , yi]f (10.11)

for i = 1, . . . , #. Here [·, . . . , ·]f is the divided difference of f . By standard properties of
divided differences we have

ρiBj,d =
i∑

s=i−λi

γi,sBj,d(ys)

and γi,i > 0. Denoting by D the matrix with (i, j)-entry ρiBj,d, we find by properties of
determinants and (10.11) that

det D = γ1,1 · · · γ!,! det A(j,y).

If we now let y tend to x we know from properties of the divided difference functional that
ρiBj tends to Dλi

Bj in the limit. Hence D tends to A(j) so det A(j) ≥ 0.
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