
CHAPTER 7

Tensor Product Spline Surfaces

Earlier we introduced parametric spline curves by simply using vectors of spline functions,
defined over a common knot vector. In this chapter we introduce spline surfaces, but again
the construction of tensor product surfaces is deeply dependent on spline functions. We
first construct spline functions of two variables of the form z = f(x, y), so called explicit
spline surfaces, whose graph can be visualised as a surface in three dimensional space. We
then pass to parametric surfaces in the same way that we passed from spline functions to
spline curves.

The advantage of introducing tensor product surfaces is that all the approximation
methods that we introduced in Chapter 5 generalise very easily as we shall see below. The
methods also generalise nicely to parametric tensor product surfaces, but here we get the
added complication of determining a suitable parametrisation in the case where we are
only given discrete data.

7.1 Explicit tensor product spline surfaces

The reader is undoubtedly familiar with polynomial surfaces of degree one and two. A
linear surface

z = ax + by + c

represents a plane in 3-space. An example of a quadratic surface is the circular paraboloid

z = x2 + y2

shown in Figure 7.1 (a). The spline surfaces we will consider are made by gluing together
polynomial “patches” like these.

7.1.1 Definition of the tensor product spline
For x ∈ [0, 1] the line segment

b0(1− x) + b1x

connects the two values b0 and b1. Suppose b0(y) and b1(y) are two functions defined for
y in some interval [c, d]. Then for each y ∈ [c, d] the function b0(y)(1 − x) + b1(y)x is a
line segment connecting b0(y) and b1(y). When y varies we get a family of straight lines
representing a surface

z = b0(y)(1− x) + b1(y)x.

Such a “ruled” surface is shown in Figure 7.1 (b). Here we have chosen b0(y) = y2 and
b1(y) = sin(πy) for y ∈ [0, 1].

An interesting case is obtained if we take b0 and b1 to be linear polynomials. Specifically,
if

b0(y) = c0,0(1− y) + c0,1y, and b1(y) = c1,0(1− y) + c1,1y,

we obtain

f(x, y) = c0,0(1− x)(1− y) + c0,1(1− x)y + c1,0x(1− y) + c1,1xy,
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(a) (b)

Figure 7.1. A piece of the circular paraboloid z = x2 + y2 is shown in (a), while the surface (1− x)y2 + x sin(πy)
is shown in (b).

for suitable coefficients ci,j . In fact these coefficients are the values of f at the corners
of the unit square. This surface is ruled in both directions. For each fixed value of one
variable we have a linear function in the other variable. We call f a bilinear polynomial.
Note that f reduces to a quadratic polynomial along the diagonal line x = y.

We can use similar ideas to construct spline surfaces from families of spline functions.
Suppose that for some integer d and knot vector σ we have the spline space

S1 = Sd,σ = span{φ1, . . . , φn1}.

To simplify the notation we have denoted the B-splines by {φi}n1
i=1. Consider a spline in

S1 with coefficients that are functions of y,

f(x, y) =
n1∑

i=1

ci(y)φi(x). (7.1)

For each value of y we now have a spline in S1, and when y varies we get a family of
spline functions that each depends on x. Any choice of functions ci results in a surface,
but a particularly useful construction is obtained if we choose the ci to be splines as well.
Suppose we have another spline space of degree # and with knots τ ,

S2 = Sd2,τ2 = span{ψ1, . . . , ψn2}

where {ψj}n2
j=1 denotes the B-spline basis in S2. If each coefficient function ci(y) is a spline

in S2, then

ci(y) =
n2∑

j=1

ci,jψj(y) (7.2)

for suitable numbers (ci,j)n1,n2
i,j=1 . Combining (7.1) and (7.2) we obtain

f(x, y) =
n1∑

i=1

n2∑

j=1

ci,jφi(x)ψj(y). (7.3)
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(a)

(b) (c)

Figure 7.2. A bilinear B-spline (a), a biquadratic B-spline (b) and biquadratic B-spline with a triple knot in one
direction (c).

Definition 7.1. The tensor product of the two spaces S1 and S2 is defined to be the family
of all functions of the form

f(x, y) =
n1∑

i=1

n2∑

j=1

ci,jφi(x)ψj(y),

where the coefficients (ci,j)n1,n2
i,j=1 can be any real numbers. This linear space of functions is

denoted S1 ⊗ S2.
The space S1 ⊗ S2 is spanned by the functions {φi(x)ψj(y)}n1,n2

i,j=1 and therefore has
dimension n1n2. Some examples of these basis functions are shown in Figure 7.2. In
Figure 7.2 (a) we have φ = ψ = B(·| 0, 1, 2). The resulting function is a bilinear polynomial
in each of the four squares [i, i + 1) × [j, j + 1) for i, j = 0, 1. It has the shape of a
curved pyramid with value one at the top. In Figure 7.2 (b) we show the result of taking
φ = ψ = B(·| 0, 1, 2, 3). This function is a biquadratic polynomial in each of the 9 squares
[i, i + 1)× [j, j + 1) for i, j = 0, 1, 2. In Figure 7.2 (c) we have changed φ to B(·| 0, 0, 0, 1).

Tensor product surfaces are piecewise polynomials on rectangular domains. A typical
example is shown in Figure 7.3. Each vertical line corresponds to a knot for the S1 space,
and similarly, each horizontal line stems from a knot in the S2 space. The surface will
usually have a discontinuity across the knot lines, and the magnitude of the discontinuity
is inherited directly from the univariate spline spaces. For example, across a vertical knot
line, partial derivatives with respect to x have the continuity properties of the univariate
spline functions in S1. This follows since the derivatives, say the first derivative, will involve
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Figure 7.3. The knot lines for a tensor product spline surface.

sums of terms of the form
∂

∂x
(ci,jφi(x)ψj(y)) = ci,jφ

′
i(x)ψj(y).

A tensor product surface can be written conveniently in matrix-vector form. If f(x, y)
is given by (7.3) then

f(x, y) = φ(x)T Cψ(y), (7.4)

where
φ = (φ1, . . . , φn1)

T , ψ = (ψ1, . . . , ψn2)
T ,

and C = (ci,j) is the matrix of coefficients. This can be verified quite easily by expanding
the multiplications.

7.1.2 Evaluation of tensor product spline surfaces
There are many ways to construct surfaces from two spaces of univariate functions, but
the tensor product has one important advantage: many standard operations that we wish
to perform with the surfaces are very simple generalisations of corresponding univariate
operations. We will see several examples of this, but start by showing how to compute a
point on a tensor product spline surface.

To compute a point on a tensor product spline surface, we can make use of the al-
gorithms we have for computing points on spline functions. Suppose we want to compute
f(x, y) = φ(x)T Cψ(y)T , and suppose for simplicity that the polynomial degree in the two
directions are equal, so that d = #. If the integers µ and ν are such that σν ≤ x < σν+1

and τµ ≤ y < τµ+1, then we know that only (φi(x))ν
i=ν−d and (ψj(y))µ

j=µ−# can be nonzero
at (x, y). To compute

f(x, y) = φ(x)T Cψ(y) (7.5)

we therefore first make use of Algorithm 2.21 to compute the d + 1 nonzero B-splines at
x and the # + 1 nonzero B-splines at y with the triangular down algorithm. We can then
pick out that part of the coefficient matrix C which corresponds to these B-splines and
multiply together the right-hand side of (7.5).
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A pleasant feature of this algorithm is that its operation count is of the same order
of magnitude as evaluation of univariate spline functions. If we assume, for simplicity,
that # = d, we know that roughly 3(d + 1)2/2 multiplications are required to compute the
nonzero B-splines at x, and the same number of multiplications to compute the nonzero
B-splines at y. To finish the computation of f(x, y), we have to evaluate a product like
that in (7.5), with C a (d+1)×(d+1)-matrix and the two vectors of dimension d+1. This
requires roughly (d + 1)2 multiplications, giving a total of 4(d + 1)2 multiplications. The
number of multiplications required to compute a point on a spline surface is therefore of the
same order as the number of multiplications required to compute a point on a univariate
spline function. The reason we can compute a point on a surface this quickly is the rather
special structure of tensor products.

7.2 Approximation methods for tensor product splines

One of the main advantages of the tensor product definition of surfaces is that the approx-
imation methods that we developed for functions and curves can be utilised directly for
approximation of surfaces. In this section we consider some of the approximation methods
in Chapter 5 and show how they can be generalised to surfaces.

7.2.1 The variation diminishing spline approximation
Consider first the variation diminishing approximation. Suppose f is a function defined
on a rectangle

Ω =
{

(x, y) | a1 ≤ x ≤ b1 & a2 ≤ y ≤ b2

}
= [a1, b1]× [a2, b2].

Let σ = (σi)n1+d+1
i=1 be a d + 1-regular knot vector with boundary knots σd = a1 and

σn1 = b1, and let τ = (τj)n2+#+1
j=1 be an # + 1-regular knot vector with boundary knots

τ# = a2 and τn2 = b2. As above we let φi = Bi,d,σ and ψj = Bj,#,τ be the B-splines on σ
and τ respectively. The spline

V f(x, y) =
n1∑

i=1

n2∑

j=1

f(σ∗i , τ
∗
j )φi(x)ψj(y) (7.6)

where
σ∗i = σ∗i,d = (σi+1 + . . . + σi+d)/d

τ∗j = τ∗j,# = (τj+1 + . . . + τj+#)/#,
(7.7)

is called the variation diminishing spline approximation on (σ, τ ) of degree (d, #). If no
interior knots in σ has multiplicity d + 1 then

a1 = σ∗1 < σ∗2 < . . . < σ∗n1
= b1,

and similarly, if no interior knots in τ has multiplicity # + 1 then

a2 = τ∗1 < τ∗2 < . . . < τ∗n2
= b2.

This means that the nodes (σ∗i , τ
∗
j )n1,n2

i,j=1 divides the domain Ω into a rectangular grid.



148 CHAPTER 7. TENSOR PRODUCT SPLINE SURFACES

0
0.2

0.4
0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0
0.25
0.5

0.75
1

0
0.2

0.4
0.6

0.8

1

0
0.25
0.5

0.75
1

(a)

0
0.2

0.4
0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0
0.25
0.5

0.75
1

0
0.2

0.4
0.6

0.8

1

0
0.25
0.5

0.75
1

(b)

Figure 7.4. The function f(x, y) given in Example 7.2 is shown in (a) and its variation diminishing spline approx-
imation is shown in (b).

Example 7.2. Suppose we want to approximate the function

f(x, y) = g(x)g(y), (7.8)

where

g(x) =
1, 0 ≤ x ≤ 1/2,
e−10(x−1/2), 1/2 < x ≤ 1,

on the unit square
Ω = (x, y) | 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 = [0, 1]2.

A graph of this function is shown in Figure 7.4 (a), and we observe that f has a flat spot on the square
[0, 1/2]2 and falls off exponentially on all sides. In order to approximate this function by a bicubic vari-
ation diminishing spline we observe that the surface is continuous, but that it has discontinuities partial
derivatives across the lines x = 1/2 and y = 1/2. We obtain a tensor product spline space with similar
continuity properties across these lines by making the value 1/2 a knot of multiplicity 3 in σ and τ . For
an integer q with q ≥ 2 we define the knot vectors by

σ = τ = (0, 0, 0, 0, 1/(2q), . . . , 1/2− 1/(2q), 1/2, 1/2, 1/2,

1/2 + 1/(2q), . . . 1− 1/(2q), 1, 1, 1, 1).

The corresponding variation diminishing spline approximation is shown in Figure 7.4 (b) for q = 2.

The tensor product variation diminishing approximation V f has shape preserving prop-
erties analogous to those discussed in Section 5.4 for curves. In Figures 7.4 (a) and (b) we
observe that the constant part of f in the region [0, 1/2] × [0, 1/2] is reproduced by V f ,
and V f appears to have the same shape as f . These and similar properties can be verified
formally, just like for functions.

7.2.2 Tensor Product Spline Interpolation
We consider interpolation at a set of gridded data

(xi, yj , fi,j)m1,m2
i=1,j=1, (7.9)

where
a1 = x1 < x2 < · · · < xm1 = b1, a2 = y1 < y2 < · · · < ym2 = b2.
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For each i, j we can think of fi,j as the value of an unknown function f = f(x, y) at the
point (xi, yj). Note that these data are given on a grid of the same type as that of the
knot lines in Figure 7.3.

We will describe a method to find a function g = g(x, y) in a tensor product space
S1 ⊗ S2 such that

g(xi, yj) = fi,j , i = 1, . . . ,m1, j = 1, . . . ,m2. (7.10)

We think of S1 and S2 as two univariate spline spaces

S1 = span{φ1, . . . , φm1}, S2 = span{ψ1, . . . , ψm2}, (7.11)

where the φ’s and ψ’s are bases of B-splines for the two spaces. Here we have assumed
that the dimension of S1 ⊗ S2 agrees with the number of given data points since we want
to approximate using interpolation. With g in the form

g(x, y) =
m1∑

p=1

m2∑

q=1

cp,qψq(y)φp(x) (7.12)

the interpolation conditions (7.10) lead to a set of equations
m1∑

p=1

m2∑

q=1

cp,qψq(yj)φp(xi) = fi,j , for all i and j.

This double sum can be split into two sets of simple sums
m1∑

p=1

dp,jφp(xi) = fi,j , (7.13)

m2∑

q=1

cp,qψq(yj) = dp,j . (7.14)

In order to study existence and uniqueness of solutions, it is convenient to have a matrix
formulation of the equations for the cp,q. We define the matrices

Φ = (φi,p) ∈ Rm1,m1 , φi,p = φp(xi),
Ψ = (ψj,q) ∈ Rm2,m2 , ψj,q = ψq(yj),
D = (dp,j) ∈ Rm1,m2 , F = (fi,j) ∈ Rm1,m2 , C = (cp,q) ∈ Rm1,m2 .

(7.15)

We then see that in (7.13) and (7.14)
m1∑

p=1

dp,jφp(xi) =
m1∑

p=1

φi,pdp,j = (ΦD)i,j = (F )i,j ,

m2∑

q=1

cp,qψq(yj) =
m2∑

q=1

ψj,qcp,q = (ΨCT )j,p = (DT )j,p.

It follows that (7.13) and (7.14) can be written in the following matrix form

ΦD = F and CΨT = D. (7.16)

From these equations we obtain the following proposition.
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Proposition 7.3. Suppose the matrices Φ and Ψ are nonsingular. Then there is a unique
g ∈ S1 ⊗ S2 such that (7.10) holds. This g is given by (7.12) where the coefficient matrix
C = (cp,q) satisfies the matrix equation

ΦCΨT = F .

Proof. The above derivation shows that there is a unique g ∈ S1 ⊗ S2 such that (7.10)
holds if and only if the matrix equations in (7.16) have unique solutions D and C. But
this is the case if and only if the matrices Φ and Ψ are nonsingular. The final matrix
equation is just the two equations in (7.16) combined.

There is a geometric interpretation of the interpolation process. Let us define a family
of x-curves by

Xj(x) =
m1∑

p=1

dp,jφp(x), j = 1, 2, . . . ,m2.

Here the dp,j are taken from (7.13). Then for each j we have

Xj(xi) = fi,j , i = 1, 2, . . . ,m1.

We see that Xj is a curve which interpolates the data f j = (f1,j , . . . , fm1,j) at the y-level
yj . Moreover, by using (7.10) we see that for all x

Xj(x) = g(x, yj), j = 1, 2, . . . ,m2.

This means that we can interpret (7.13) and (7.14) as follows:

(i) Interpolate in the x-direction by determining the curves Xj interpolating the data
f j .

(ii) Make a surface by filling in the space between these curves.

This process is obviously symmetric in x and y. Instead of (7.13) and (7.14) we can use
the systems

m2∑

q=1

ei,qψq(yj) = fi,j , (7.17)

m1∑

p=1

cp,qφp(xi) = ei,q. (7.18)

In other words we first make a family of y-curves Yi(y) =
∑m2

q=1 ei,qψq(y) interpolating the
row data vectors Fi = (fi,1, . . . , fi,m2). We then blend these curves to obtain the same
surface g(x, y).

The process we have just described is a special instance of a more general process which
we is called lofting. By lofting we mean any process to construct a surface from a family
of parallel curves. The word lofting originated in ship design. To draw a ship hull, the
designer would first make parallel cross-sections of the hull. These curves were drawn in
full size using mechanical splines. Then the cross-sections were combined into a surface by
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using longitudinal curves. Convenient space for this activity was available at the loft of
the shipyard.

We have seen that tensor product interpolation is a combination of univariate interpol-
ation processes. We want to take a second look at this scheme. The underlying univariate
interpolation process can be considered as a map converting the data x,f into a spline
interpolating this data. We can write such a map as

g = I[x,f ] =
m1∑

p=1

cpφp.

The coefficients c = (cp) are determined from the interpolation requirements g(xi) = fi for
i = 1, 2, . . . ,m1. We also have a related map Ĩ which maps the data into the coefficients

c = Ĩ[x,f ].

Given m2 data sets (xi, fi,j)m1
i=1 for j = 1, 2, . . . ,m2, we combine the function values into a

matrix
F = (f1, . . . ,fn) = (fi,j) ∈ Rm1,m2

and define
C = Ĩ[x,F ] = (Ĩ[x,f1], . . . , Ĩ[x,fn]). (7.19)

With this notation the equations in (7.16) correspond to

D = Ĩ1[x,F ], CT = Ĩ2[y,DT ],

where Ĩ1 and Ĩ2 are the univariate interpolation operators in the x and y directions, re-
spectively. Combining these two equations we have

C = (Ĩ1 ⊗ Ĩ2)[x,y,F ] = Ĩ2[y, Ĩ1[x,F ]T ]T . (7.20)

We call Ĩ1 ⊗ Ĩ2, defined in this way, for the tensor product of Ĩ1 and Ĩ2. We also define
(I1 ⊗ I2)[x,y,F ] as the spline in S1 ⊗ S2 with coefficients (Ĩ1 ⊗ Ĩ2)[x,y,F ].

These operators can be applied in any order. We can apply I1 on each of the data
vectors f j to create the Xj curves, and then use I2 for the lofting. Or we could start by
using I2 to create y-curves Yi(y) and then loft in the x-direction using I1. From this it is
clear that

(Ĩ1 ⊗ Ĩ2)[x,y,F ] = (Ĩ2 ⊗ Ĩ1)[y,x,F T ].

Tensor product interpolation is quite easy to program on a computer. In order to
implement the Ĩ[x,F ] operation we need to solve linear systems of the form given in
(7.16). These systems have one coefficient matrix, but several right hand sides.

Two univariate programs can be combined easily and efficiently as in (7.20) provided
we have a linear equation solver that can handle several right-hand sides simultaneously.
Corresponding to the operator I[x,f ] we would have a program

IP [x,f , d, τ , c],

which to given data x and f will return a spline space represented by the degree d and the
knot vector τ , and the coefficients c of an interpolating spline curve in the spline space.
Suppose we have two such programs IP

1 and IP
2 corresponding to interpolation in spline

spaces S1 = Sq,σ and S2 = S#,τ . Assuming that these programs can handle data of the
form x,F , a program to carry out the process in (7.20) would be
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1. IP
1 [x,F , d,σ,D];

2. IP
2 [y,DT , #, τ ,G];

3. C = GT ;

7.2.3 Least Squares for Gridded Data
The least squares technique is a useful and important technique for fitting of curves and
surfaces to data. In principle, it can be used for approximation of functions of any number
of variables. Computationally there are several problems however, the main one being that
usually a large linear system has to be solved. The situation is better when the data is
gridded, say of the form (7.9). We study this important special case in this section and
consider the following problem:
Problem 7.4. Given data

(xi, yj , fi,j)m1,m2
i=1,j=1,

positive weights (wi)m1
i=1 and (vj)m2

j=1, and univariate spline spaces S1 and S2, find a spline
surface g in S1 ⊗ S2 which solves the minimisation problem

min
g∈S1⊗S2

m1∑

i=1

m2∑

j=1

wivj [g(xi, yj)− fi,j ]2 .

We assume that the vectors of data abscissas x = (xi)m1
i=1 and y = (yj)m2

j=1 have distinct
components, but that they do not need to be ordered. Note that we only have m1 + m2

independent weights. Since we have m1×m2 data points it would have been more natural
to have m1×m2 weights, one for each data point. The reason for associating weights with
grid lines instead of points is computational. As we will see, this assures that the problem
splits into a sequence of univariate problems.

We assume that the spline spaces S1 and S2 are given in terms of B-splines

S1 = span{φ1, . . . , φn1}, S2 = span{ψ1, . . . , ψn2},

and seek the function g in the form

g(x, y) =
n1∑

p=1

n2∑

q=1

cp,qψq(y)φp(x).

Our goal in this section is to show that Problem 7.4 is related to the univariate least
squares problem just as the interpolation problem in the last section was related to uni-
variate interpolation. We start by giving a matrix formulation analogous to Lemma 5.21
for the univariate case.
Lemma 7.5. Problem 7.4 is equivalent to the following matrix problem

min
C∈Rn1,n2

‖ACBT −G‖2, (7.21)

where
A = (ai,p) ∈ Rm1,n1 , ai,p =

√
wiφp(xi),

B = (bj,q) ∈ Rm2,n2 , bj,q = √
vjψq(yj),

G = (
√

wi
√

vjfi,j) ∈ Rm1,m2 , C = (cp,q) ∈ Rn1,n2 .

(7.22)
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Here, the norm ‖ · ‖ is the Frobenius norm,

‖E‖ =
( m∑

i=1

n∑

j=1

|ei,j |2
)1/2

(7.23)

for any rectangular m× n matrix E = (ei,j).

Proof. Suppose C = (cp,q) are the B-spline coefficients of some g ∈ S1 ⊗ S2. Then

‖ACBT −G‖2 =
m1∑

i=1

m2∑

j=1

( n1∑

p=1

n2∑

q=1

ai,pcp,qbj,q − gi,j

)2

=
m1∑

i=1

m2∑

j=1

( n1∑

p=1

n2∑

q=1

√
wiφp(xi)cp,q

√
vjψq(yj)−

√
wi
√

vjfi,j

)2

=
m1∑

i=1

m2∑

j=1

wivj [g(xi, yj)− fi,j ]2 .

This shows that the two minimisation problems are equivalent.

We next state some basic facts about the matrix problem (7.21).
Proposition 7.6. The problem (7.21) always has a solution C = C∗, and the solution
is unique if and only if both matrices A and B have linearly independent columns. The
solution C∗ can be found by solving the matrix equation

AT AC∗BT B = AT GB. (7.24)

Proof. By arranging the entries of C in a one dimensional vector it can be seen that the
minimisation problem (7.21) is a linear least squares problem. The existence of a solution
then follows from Lemma 5.22. For the rest of the proof we introduce some additional
notation. For matrices H = (hi,j) and K = (ki,j) in Rm,n we define the scalar product

(H,K) =
m∑

i=1

n∑

j=1

hi,jqi,j .

This is a scalar product of the matrices H and K regarded as vectors. We have (H,H) =
‖H‖2, the Frobenius norm of H, squared. We also observe that for any m × n matrices
H and K, we have

‖H + K‖2 = ‖H‖2 + 2(H,K) + ‖K‖2.

Moreover,
(E,HK) = (HT E,K) = (EKT ,H), (7.25)

for any matrices E,H,K such that the matrix operations make sense. For any C ∈ Rn1,n2

we let
q(C) = ‖ACBT −G‖2.
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This is the function we want to minimise. Suppose C∗ is the solution of (7.24). We want
to show that q(C∗ + εD) ≥ q(C∗) for any real ε and any D ∈ Rn1×n2 . This will follow
from the relation

q(C∗ + εD) = q(C∗) + 2ε(AT AC∗BT B −AT GB,D) + ε2‖ADBT ‖2. (7.26)

For if C∗ satisfies (7.24) then the complicated middle term vanishes and

q(C∗ + εD) = q(C∗) + ε2‖ADBT ‖2 ≥ q(C∗).

To establish (7.26) we have to expand q(C∗ + εD),

q(C∗ + εD) = ‖(AC∗BT −G) + εADBT ‖2

= q(C∗) + 2ε(AC∗BT −G,ADBT ) + ε2‖ADBT ‖2.

Using (7.25) on the middle term, we can move A and BT to the left-hand side of the inner
product form, and we obtain (7.26). The uniqueness is left as a problem.

Conversely, suppose that C does not satisfy (7.24). We need to show that C does not
minimise q. Now, for at least one matrix component i, j we have

z = (AT ACBT B −AT GB)i,j )= 0.

We choose D as the matrix where the i, j element is equal to 1 and all other entries are 0.
Then (7.26) takes the form

q(C + εD) = q(C) + 2εz + ε2‖ADBT ‖2,

and this implies that q(C + εD) < q(C) for εz < 0 and |ε| sufficiently small. But then C
cannot minimize q.

In order to find the solution of Problem 7.4, we have to solve the matrix equation
(7.24). We can do this in two steps:

1. Find D from the system AT AD = AT G.

2. Find C from the system BT BCT = BT DT .

The matrix C is then the solution of (7.24). The first step is equivalent to

AT Adj = AT gj , j = 1, 2, . . . ,m2,

where D = (d1, . . . ,dm2) and G = (g1, . . . , gm2
). This means that we need to solve m2

linear least squares problems

min ‖Adj − gj‖22, j = 1, 2, . . . ,m2.

We then obtain a family of x-curves

Xj(x) =
n1∑

p=1

dp,jφp(x).
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In the second step we solve n1 linear least squares problems of the form

min ‖Bhi − ei‖22, i = 1, 2, . . . , n1,

where the ei are the rows of D, and the hi are the rows of C

D =




eT

1
...

eT
n1



 , C =




hT

1
...

hT
n1



 .

Alternatively we can do the computation by first performing a least squares approximation
in the y-direction by constructing a family of y-curves, and then use least squares in the
x-direction for the lofting. The result will be the same as before. To minimize the number
of arithmetic operations one should start with the direction corresponding to the largest
of the integers m1 and m2.

Corresponding to Problem 7.4 we have the univariate least squares problem defined in
Problem 5.20. Associated with this problem we have an operator L[x,w,f ] which to given
univariate data x = (xi)m

i=1 and f = (fi)m
i=1, and positive weights w = (wi)m

i=1, assigns a
spline

g = L[x,w,f ] =
n∑

p=1

cpφp,

in a spline space S = span{φ1, . . . , φn}. We also have the operator L̃[x,w,f ] which maps
the data into the B-spline coefficients and is defined analagously to (7.19). With L̃1 and L̃2

being least squares operators in the x and y direction, respectively, the B-spline coefficients
of the solution of Problem 7.4 can now be written

C = (L̃1 ⊗ L̃2)[x,y,F ,w,v] = L̃2[y,v, L̃1[x,w,F ]T ]T , (7.27)

in analogy with the interpolation process (7.20).

7.3 General tensor product methods

In the previous sections we saw how univariate approximation schemes could be combined
into a surface scheme for gridded data. Examples of this process is given by (7.20) and
(7.27). This technique can in principle be applied quite freely. We could for example
combine least squares in the x direction with cubic spline interpolation in the y direction.
If Q̃1[x,f ] and Q̃2[y, g] define univariate approximation methods then we define their
tensor product as

(Q̃1 ⊗ Q̃2)[x,y,F ] = Q̃2[y, Q̃1[x,F ]T ]T . (7.28)

In this section we want to show that

(Q̃1 ⊗ Q̃2)[x, y, F ] = (Q̃2 ⊗ Q̃1)[y, x, F T ]

for a large class of operators Q1 and Q2. Thus, for such operators we are free to use Q2 in
the y-direction first and then Q1 in the x-direction, or vice-versa.
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We need to specify more abstractly the class of approximation schemes we consider.
Suppose Q[x,f ] is a univariate approximation operator mapping the data into a spline in
a univariate spline space

S = span{φ1, . . . , φn}.

Thus

Q[x,f ] =
n∑

p=1

ap(f)φp(x). (7.29)

The coefficients ap(f) of the spline are functions of both x and f , but here we are mostly
interested in the dependence of f . We also let (ap(f)) = Q̃[x,f ] be the coefficients of
Q[x,f ]. We are interested in the following class of operators Q.
Definition 7.7. The operator Q : Rm → S given by (7.29) is linear if

ap(f) =
m∑

i=1

ap,ifi, (7.30)

for suitable numbers ap,i independent of f .
If Q is linear then

Q[x, αg + βh] = αQ[x, g] + βQ[x,h]

for all α, β ∈ R and all g,h ∈ Rm.
Example 7.8. All methods in Chapter 5 are linear approximation schemes.

1. For the Schoenberg Variation Diminishing Spline Approximation we have f = (f1, . . . , fm) =
(f(τ∗1 ), . . . , f(τ∗m)). Thus V f is of the form (7.29) with ap(f ) = fp, and ap,i = δp,i.

2. All the interpolation schemes in Chapter 5, like cubic Hermite, and cubic spline with various bound-
ary conditions are linear. This follows since the coefficients c = (cp) are found by solving a linear
system Φc = f . Thus c = Φ−1f , and cp is of the form (7.30) with ap,i being the (p, i)-element of
Φ−1. For cubic Hermite interpolation we also have the explicit formulas in Proposition 5.5.

3. The least squares approximation method is also a linear approximation scheme. Recall that Q in
this case is constructed from the solution of the minimisation problem

min
c

m

i=1

wi

n

p=1

cpφp(xi)− fi

2

.

The vector c is determined as the solution of a linear system

AT Ac = AT f .

Thus ap,i is the (p, i)-element of the matrix (AT A)−1AT .

Consider now the surface situation. Suppose we are given a set of gridded data and
two univariate approximation operators Q1 and Q2, and associated with these operators
we have the coefficient operators Q̃1 and Q̃2 assigning the coefficient vectors to the data.
Proposition 7.9. Suppose Q1 and Q2 are linear operators of the form given by (7.29).
Then for all data

(x,y,F ) = (xi, yj , fi,j)m1,m2
i=1,j=1, (7.31)

we have
(Q̃1 ⊗ Q̃2)[x,y,F ] = (Q̃2 ⊗ Q̃1)[y,x,F T ].
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Proof. To see this we go through the constructions in detail. Suppose that

Q1[x,f ] =
n1∑

p=1

ap(f)φp, ap(f) =
m1∑

i=1

ap,ifi,

Q2[y, g] =
n2∑

q=1

bp(g)ψp, bq(g) =
m2∑

j=1

bq,jgj .

The matrix F = (fi,j)) ∈ Rm1,m2 can be partitioned either by rows or by columns.

F = (f1, . . . ,fm2
) =




g1
...

gm1



 .

If we use Q1 first then we obtain a family of x-curves from the columns f j of the data F

Q1[x,f j ] =
n1∑

p=1

ap(f j)φp(x), j = 1, 2, . . . ,m2.

From these curves we get the final surface

g(x, y) =
n1∑

p=1

n2∑

q=1

cp,qψq(y)φp(x),

where
cp,q = bq

(
ap(f1), . . . , ap(fm2

)
)
.

Using the linearity we obtain

cp,q =
m2∑

j=1

bq,jap(f j) =
m2∑

j=1

m1∑

i=1

bq,jap,ifi,j . (7.32)

Suppose now we use Q2 first and then Q1. We then obtain a surface

h(x, y) =
n2∑

q=1

n1∑

p=1

dp,qψq(y)φp(x),

where
dp,q = ap

(
bq(g1), . . . , bq(gm1

)
)
.

Thus,

dp,q =
m1∑

i=1

ap,ibq(gi) =
m1∑

i=1

m2∑

j=1

ap,ibq,jfi,j .

Comparing this with (7.32) we see that dp,q = cp,q for all integers p and q, and hence g = h.
We conclude that we end up with the same surface in both cases.
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Figure 7.5. A cubical gridded region in space.

7.4 Trivariate Tensor Product Methods

The tensor product construction can be extended to higher dimensions. For trivariate
approximation we can combine three univariate approximation schemes into a method to
approximate trivariate data

(xi, yj , zk, fi,j,k)
m1, m2, m3
i=1,j=1,k=1. (7.33)

Here the f ’s are function values of an unknown trivariate function

f = f(x, y, z).

The data is given on a cubical region determined from the grid points
(xi, yj , zk) in space. We write

F = (fi,j,k) ∈ Rm1,m2,m3

to indicate that the data can be thought of as sitting in a cube of dimensions m1,m2,m3.
Such a cubical grid is shown in Figure 7.5.

The approximation we seek have the form

g(x, y, z) =
n1∑

p=1

n2∑

q=1

n3∑

r=1

cp,q,rωr(z)ψq(y)φp(x). (7.34)



7.4. TRIVARIATE TENSOR PRODUCT METHODS 159

Here

S1 = span{φ1, . . . , φn1}, S2 = span{ψ1, . . . , ψn2}, S3 = span{ω1, . . . , ωn3},

are three univariate spline spaces spanned by some B-splines. We can construct g by
forming a a sequence of simpler sums as follows

g(x, y, z) =
n1∑

p=1

dp(y, z)φp(x),

dp(y, z) =
n2∑

q=1

ep,q(z)ψq(y),

ep,q(z) =
n3∑

r=1

cp,q,rωr(z).

(7.35)

In order to interpolate the data given by (7.33) we obtain the following set of equations
n1∑

p=1

dp(yj , zk)φp(xi) = fi,j,k, i = 1, 2, . . . ,m1,

n2∑

q=1

ep,q(zk)ψq(yj) = dp(yj , zk), j = 1, 2, . . . ,m2,

n3∑

r=1

cp,q,rωr(zk) = ep,q(zk). k = 1, 2, . . . ,m3,

(7.36)

These are square systems if ni = mi, and have to be solved in the least squares sense if
mi > ni for one or more i.

Consider now writing these systems in matrix form. The equations involve arrays with
3 subscripts. For a positive integer s we define a rank s tensor to be a s-dimensional table
of the form

A = (ai1,i2,...,is)
m1, m2, ... ,ms
i1=1,i2=1,...,is=1.

We write
A ∈ Rm1,m2,...,ms = Rm,

for membership in the class of all rank s tensors with real elements. These tensors are
generalisations of ordinary vectors and matrices. A rank s tensor can be arranged in a s-
dimensional cuboidal array. This is the usual rectangular array for s = 2 and a rectangular
parallelepiped for s = 3.

The operations of addition and scalar multiplication for vectors and matrices extend
easily to tensors. The product of two tensors, say A ∈ Rm1,m2,...,ms and B ∈ Rn1,n2,...,ne

can be defined if the last dimension of A equals the first dimension of B. Indeed, with
m = ms = n1, we define the product AB as the tensor

C = AB ∈ Rm1,m2,...,ms−1,n2,...,ns

with elements

ci1,...,is−1,j2,...,je =
m∑

i=1

ai1,...,is−1,ibi,j2,...,je .
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For s = e = 2 this is the usual product of two matrices, while for s = e = 1 we have
the inner product of vectors. In general this ‘inner product’ of tensors is a tensor of rank
s + e− 2. We just contract the last index of A and the first index of B. Another product
is known as the outer product.

Let us now write the equations in (7.36) in tensor form. The first equation can be
written

ΦD = F . (7.37)

Here

Φ = (φi,p) = (φp(xi)) ∈ Rm1,n1 ,

D = (dp,j,k) = dp(yj , zk) ∈ Rn1,m2,m3 , F = (fi,j,k) ∈ Rm1,m2,m3 .

The system (7.37) is similar to the systems we had earlier for bivariate approximation.
We have the same kind of coefficient matrix, but many more right-hand sides.

For the next equation in (7.36) we define

Ψ = (ψj,q) = (ψq(yj)) ∈ Rm2,n2 ,

E = (eq,k,p) = (ep,q(zk)) ∈ Rn2,m3,n1 , D′ = (dj,k,p) ∈ Rm2,m3,n1 .

The next equation can then be written

ΨE = D′. (7.38)

The construction of D′ from D involves a cyclic rotation of the dimensions from (n1,m2,
m3) to (m2,m3, n1). The same operation is applied to E for the last equation in (7.36).
We obtain

ΩG = E′, (7.39)

where

Ω = (ωk,r) = (ωr(zk)) ∈ Rm3,n3 ,

E′ = (ek,p,q) = (ep,q(zk)) ∈ Rm3,n1,n2 , G = (gr,p,q) ∈ Rn3,n1,n2 .

The coefficients C ′ are obtained by a final cyclic rotation of the dimensions

C = G′. (7.40)

The systems (7.37), (7.38), and (7.39) corresponds to three univariate operators of the
form Q[x,f ]. We denote these Q1, Q2, and Q3. We assume that Qi can be applied to a
tensor. The tensor product of these three operators can now be defined as follows

(Q1 ⊗Q2 ⊗Q3)[x,y,z,F ] = Q3[z, Q2[y, Q1[x, F ]′]′]′. (7.41)

The actual implementation of this scheme on a computer will depend on how arrays
are sorted in the actual programming language used. Some languages arrange by columns,
while others arrange by rows.
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7.5 Parametric Surfaces

Parametric curves and explicit surfaces have a natural generalisation to parametric surfaces.
Let us consider the plane P through three points in space which we call p0, p1 and p2.
We define the function f : R2 +→ P by

f(u, v) = p0 + (p1 − p0)u + (p2 − p0)v. (7.42)

We see that f(0, 0) = p0, while f(1, 0) = p1 and f(0, 1) = p2, so that f interpolates the
three points. Since f is also a linear function, we conclude that it is indeed a representation
for the plane P .

We start by generalising and formalising this.
Definition 7.10. A parametric representation of class Cm of a set S ⊆ R3 is a mapping
f of an open set Ω ⊆ R2 onto S such that

1. f has continuous derivatives up to order m.

Suppose that f(u, v) =
(
f1(u, v), f2(u, v), f3(u, v)

)
and let D1f and D2f denote differ-

entiation with respect to the first and second variables of f , respectively. The parametric
representation f is said to be regular if in addition

(ii) the Jacobian matrix of f given by

J(f) =




D1f1(u, v) D2f1(u, v)
D1f2(u, v) D2f2(u, v)
D1f3(u, v) D2f3(u, v)





has full rank for all (u, v) in Ω.

That J(f) has full rank means that its two columns must be linearly independent for
all (u, v) ∈ Ω, or equivalently, that for all (u, v) there must be at least one nonsingular
2× 2 submatrix of J(f).

A function of two variables z = h(x, y) can always be considered as a parametric surface
through the representation f(u, v) =

(
u, v, h(u, v)

)
.

In the following we will always assume that f is sufficiently smooth for all operations
on f to make sense.

It turns out that there are many surfaces that cannot be described as the image of a
regular parametric representation. One example is a sphere. It can be shown that it is
impossible to find one regular parametric representation that can cover the whole sphere.
Instead one uses several parametric representations to cover different parts of the sphere
and call the collection of such representations a parametric surface. For our purposes this
is unnecessary, since we are only interested in analysing a single parametric representation
given as a spline. We will therefore often adopt the sloppy convention of referring to a
parametric representation as a surface.

Let us check that the surface given by (7.42) is regular. The Jacobian matrix is easily
computed as

J(f) =
(
p1 − p0,p2 − p0

)
,

(the two vectors p1−p0 and p2−p0 give the columns of J(f)). We see that J(f) has full
rank unless p1 − p0 = λ(p2 − p0) for some real number λ, i.e., unless all three points lie
on a straight line.
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A curve on the surface S of the form f(u, v0) for fixed v0 is called a u-curve, while
a curve of the form f(u0, v) is called a v-curve. A collective term for such curves is iso-
parametric curves.

Iso-parametric curves are often useful for plotting. By drawing a set of u- and v-curves,
one gets a simple but good impression of the surface.

The first derivatives D1f(u, v) and D2f(u, v) are derivatives of, and therefore tangent
to, a u- and v-curve respectively. For a regular surface the two first derivatives are linearly
independent and therefore the cross product D1f(u, v)×D2f(u, v) is nonzero and normal
to the two tangent vectors.
Definition 7.11. The unit normal of the regular parametric representation f is the vector

N(u, v) =
D1f(u, v)×D2f(u, v)
‖D1f(u, v)×D2f(u, v)‖ .

The normal vector will play an important role when we start analysing the curvature
of surfaces.

Let
(
u(σ), v(σ)

)
be a regular curve in the domain Ω of a parametric representation f .

This curve is mapped to a curve g(σ) on the surface,

g(σ) = f
(
u(σ), v(σ)

)
.

The tangent of g is given by

g′(σ) = u′(σ)D1f
(
u(σ), v(σ)

)
+ v′(σ)D2f

(
u(σ), v(σ)

)
,

in other words, a linear combination of the two tangent vectors D1f
(
u(σ), v(σ)

)
and

D2f
(
u(σ), v(σ)

)
. Note that g is regular since g′(σ) = 0 implies u′(σ) = v′(σ) = 0.

All regular curves on S through the point f(u, v) has a tangent vector on the form
δ1D1f + δ2D2f , where δ = (δ1, δ2) is a vector in R2. The space of all such tangent vectors
is the tangent plane of S at f(u, v).
Definition 7.12. Let S be a surface with a regular parametric representation f . The
tangent space or tangent plane Tf(u, v) of S at f(u, v) is the plane in R3 spanned by the
two vectors D1f(u, v) and D2f(u, v), i.e., all vectors on the form δ1D1f(u, v)+δ2D2f(u, v).

Note that the normal of the tangent plane Tf(u, v) is the normal vector N(u, v).

7.5.1 Parametric Tensor Product Spline Surfaces
Given how we generalised from spline functions to parametric spline curves, the definition
of parametric tensor product spline surfaces is the obvious generalisation of tensor product
spline functions.
Definition 7.13. A parametric tensor product spline surface is given by a parametric
representation on the form

f(u, v) =
m∑

i=1

n∑

j=1

ci,jBi,d,σ(u)Bj,#,τ(v),

where the coefficients (ci,j)m,n
i,j=1 are points in space,

ci,j = (c1
i,j , c

2
i,j , c

3
i,j),

and σ = (σi)m+d+1
i=1 and τ = (τj)n+#+1

j=1 are knot vectors for splines of degrees d and #.
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As for curves, algorithms for tensor product spline surfaces can easily be adapted to
give methods for approximation with parametric spline surfaces. Again, as for curves, the
only complication is the question of parametrisation, but we will not consider this in more
detail here.
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